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Abstract

Cell morphology encodes essential information on many underlying biological processes. It is 

commonly used by clinicians and researchers in the study, diagnosis, prognosis, and treatment of 

human diseases. Quantification of cell morphology has seen tremendous advances in recent years. 

However, effectively defining morphological shapes and evaluating the extent of morphological 

heterogeneity within cell populations remain challenging. Here we present a protocol and software 

for the analysis of cell and nuclear morphology from fluorescence or bright-field images using the 

VAMPIRE algorithm (https://github.com/kukionfr/VAMPIRE_open). This algorithm enables the 

profiling and classification of cells into shape modes based on equidistant points along cell and 

nuclear contours. Examining the distributions of cell morphologies across automatically identified 

shape modes provides an effective visualization scheme that relates cell shapes to cellular subtypes 

based on endogenous and exogenous cellular conditions. In addition, these shape mode 

distributions offer a direct and quantitative way to measure the extent of morphological 

heterogeneity within cell populations. This protocol is highly automated and fast, with the ability 
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to quantify the morphologies from 2D projections of cells seeded both on 2D substrates or 

embedded within 3D microenvironments, such as hydrogels and tissues. The complete analysis 

pipeline can be completed within 60 minutes for a dataset of ~20,000 cells/2,400 images.

Introduction

Cell morphology is commonly employed by clinicians and researchers in the study, 

diagnosis, prognosis, and treatment of human diseases. Fundamentally, cellular morphology 

represents the ensemble imprints of highly interactive molecular networks, which include 

metabolic, proteomic, epigenomic, and genomic components1-6. The coordinated 

orchestration of these interdependent cellular programs is critical to properly govern cellular 

behavior4 and ultimately determines cellular responses to perturbations and stressors, mainly 

microenvironmental cues7,8, biomechanical stimuli9,10, and pharmacological 

treatments11-13. Advances in high-content imaging6,14,15, image processing16,17, and 

machine learning18-21 have greatly improved the throughput and accuracy of cell-

morphological measurements and have bolstered the utility of digital pathology22-25, 

biomarker identification1,26, and phenotypic screens12,27-29.

Cell morphology is traditionally quantified using a handful of geometric parameters14,30, 

delineating the size (e.g., area, perimeter) and shape (e.g., shape factor, aspect ratio) of cells 

and their corresponding nuclei. These measures are often complemented by fluorescence 

readouts of protein expressions, together with intensity patterns and localization within cells. 

Measuring cell and nuclear sizes can be readily achieved using open-source software 

platforms, such as CellProfiler31,32 and ImageJ/Fiji33,34. However, defining and quantifying 

cellular shapes is more complicated.

Classically, shape descriptors, such as shape factor (4πA/P2, where A is the area of the 

object and P is the perimeter), aspect ratio (long axis length/short axis length) and 

eccentricity (see Box 1 for a glossary of geometric and statistical descriptors), all measure 

the deviation of the shape of a cell from that of a circle. While these geometric parameters 

are geared towards biological simplicity and provide the ability to quickly and directly detect 

differences among tested cellular conditions, they tend to insufficiently capture the true 

complexities of cell shapes1. To illustrate this, we describe here the morphologies of 

fluorescently labeled mouse embryonic fibroblasts (MEFs) using conventional shape 

features, including shape factor, aspect ratio, and solidity (see Box 1). From this analysis, we 

observe that taking a subset of cells having highly similar values of these parameters still 

results in a high degree of morphological variability among individual cells (Fig. 1). This 

example underscores the notion that conventional cell morphology parameters may be 

insufficient to capture cellular differences. Furthermore, mesenchymal cells on flat 

substrates or cells embedded within physiologically relevant 3D collagen gels, which often 

feature extensive dendritic protrusions and nuclear blebs35-39, are similarly difficult to 

distinguish using these traditional parameters.

A popular approach to address this shortcoming consists of defining additional geometric 

and statistical descriptors of cells, some of which are based on the curvature and roughness 

of the cell and nuclear contours14,30,40. This has led to an expansion of morphological 
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descriptors (see Box 1), with the premise that these additional descriptors would help to 

better define and differentiate cellular subtypes. While increasing the number of shape 

descriptors allows users to capture more complex cell morphologies, visualizing differences 

in cell morphology, and assigning biological meaning for these additional morphology 

descriptors is challenging.

To address this challenge, we recently developed cell morphology analysis software that 

provides improved visualization and quantitative analysis of complex shape 

morphologies1,6,26. The software, which we named Visually Aided Morpho-Phenotyping 

Image Recognition (VAMPIRE), is highly automated and allows users to rapidly process 

large datasets of post-segmented images of cells and/or their corresponding nuclei.

Development of the protocol

VAMPIRE analysis was initially developed to better interpret morphological data that we 

acquired for a set of 11 fluorescently labeled pancreatic cancer cell lines using a custom 

high-throughput microscopy imaging system1. Our goal was to identify a potential 

morphological signature of metastasis in pancreatic ductal adenocarcinoma (PDAC). Among 

the samples used, five were collected from patient-derived primary tumors, four were 

obtained from liver metastases, and two were non-neoplastic pancreatic epithelial cell lines. 

For direct visual assessment of cell and nuclear shapes, we randomly selected subsets of 

individual cell contours (after alignment) and found no overt morphological differences 

between primary tumor cells and liver-metastasis cells. This was most likely to be due to the 

irregularities of cell shapes.

To quantify cell shapes, we used commonly defined morphological features, such as cell 

area, shape factor, and aspect ratio. However, these features could not reflect the observed 

extent of cell shape variations, since even a small subset of cells displaying an extremely 

narrow range of values of these conventional shape descriptors appeared radically different 

from each other.

To address this problem, we established and validated VAMPIRE analysis, which provides 

morphological information beyond classically defined geometric parameters1,6,26. 

VAMPIRE analysis is a visual aid that compares cell morphologies by first identifying 

representative shape modes (see Box 1) among all cell shapes present within a cell 

population. Then, using these shape modes, VAMPIRE determines the abundance of cells 

classified within each shape mode per condition. VAMPIRE comprises four essential 

computational stages: (i) the determination and registration of the coordinates of equally-

spaced points along cell and nuclear contours to define morphological descriptors; (ii) the 

reduction of the number of morphological descriptors using principal component analysis 

(PCA); (iii) the identification of shape modes through unsupervised K-means clustering 

analysis, and (iv) the determination of abundances and distributions of cells within each 

shape mode for all tested cell samples and conditions (Fig. 2).

Following segmentation of the fluorescence or bright-field images, the coordinates for points 

along the contour of each cell and its corresponding nuclei are aligned, scaled, and shifted to 

unify the sizes and reduce shape variations due to rotational variations and mirror effects. 
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Briefly, the alignment of cell and nuclear shapes is done based on Procrustes analysis35,41,42. 

To represent the highly complex shapes of cells and nuclei, a sufficient number of equally-

spaced points along each contour (typically 50 points) (Fig. 2a) is used to define high-

dimensional “features”. Then, these coordinates along the boundaries of each cell and/or 

nucleus are subtracted by their mean value to shift the center of each cell and/or nucleus to 

the location (0,0). To normalize each contour and reduce the contributions from the cell and 

nuclear sizes, a characteristic length scale is determined for each cell and/or nucleus, based 

on the following equation:

R = ∑
i = 1

50
(xi2 + yi2) ∕ 50

where R is the characteristic length scale, and x and y are the coordinates along the shape 

boundary/contour.

Using the value of R calculated for each cell and/or nucleus, shape are then normalized by 

dividing the contour coordinates for each shape by the corresponding R. To reduce shape 

variations that could arise due to rotational variations or mirror effects, each shape is aligned 

along its major axis length by applying a rotation matrix. Since cell and nuclear shapes are 

enclosed objects, each of the 50 points along the boundaries are iteratively assessed in both 

the clockwise and counterclockwise directions to ensure the most stable and comparable 

rotational conformation among shapes1 (Fig. 2b).

Next, using the 50 points along the contours of each normalized shape as high-dimensional 

features, principal component analysis (PCA) is then used to determine the eigenshape 

vectors (see Box 1). The eigenshape vector that accounts for 95% of the total variance is 

then used as a reduced set of descriptors for all cell and/or nuclear shapes43-46 (Fig. 2c). To 

empirically determine the representative shape modes for a given cell population, K-means 

clustering is performed using the reduced shape descriptors determined from the PCA47 

(Fig. 2d). Among several classification methods tested, such as DBscan48, OPTICS49, 

Meanshift, and K-means, the K-means clustering algorithm was chosen for its fast 

calculation, robustness, and simplicity in setting the parameters.

Each cell and/or nucleus is then classified and sorted into each cluster, which determines the 

distribution of shape modes per condition. To identify the representative shape for each 

shape mode for visualization purposes, the centroid locations of each cluster within the 

PCA-reduced features are then used to reconstruct the average morphology for each shape 

mode (Fig. 2e). Lastly, using these representative shapes, together with the abundance of 

cells and/or nuclei within each shape mode, this analysis provides both a quantitative and 

visual handle for biological inferences on morphological data per condition. In addition, 

these shape mode distributions are used to compute the degree of morphological 

heterogeneity per condition based on the Shannon entropy (see Box 1).

In our previous study of pancreatic cancer cells1 (see above), VAMPIRE analysis showed 

that metastasized cells present significantly lower heterogeneity than primary tumor cells 

based on the Shannon entropy. A lower heterogeneity was also found in a cohort of ten 

Phillip et al. Page 4

Nat Protoc. Author manuscript; available in PMC 2021 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



breast cancer cell lines comparing metastatic to nonmetastatic cancer cells1. Furthermore, 

deciphering the relative contributions to this heterogeneity, we identified potential sources 

stemming from the cell cycle, cell–cell contacts, and heritable morphological variations (see 

Box 1).

In a separate study, we further demonstrated the utility of the VAMPIRE analysis by 

investigating how the morphologies of single-cell clones derived from a metastatic breast 

cancer cell line were associated with metastatic potential6. We found that cell morphology is 

an emergent property of cancer cells, encoding information related to molecular 

determinants, and allowing the robust prediction of metastasis. Lastly, we have used this 

approach to evaluate the morphological signature of healthy aging from skin dermal 

fibroblast cells26. We found that cellular age could be used to classify individuals based on 

the cell morphology using a cohort of 32 samples of primary dermal fibroblasts collected 

from individuals between 2 and 96 years of age (see ‘Anticipated results’ for a subset of this 

re-analyzed data).

In all the studies mentioned1,6,26, the core algorithms of VAMPIRE analysis remain 

unchanged. However, for this protocol, we have translated the original MATLAB code to 

Python, providing an open-source platform that is more amendable for distribution and 

implementation among various laboratories. In addition, we have optimized the performance 

and speed, and integrated the software into an easy-to-use graphical user interface (GUI), 

allowing users to input post-segmented images to generate a comprehensive panel of results 

that include plots, tables, and readouts of population heterogeneity (https://github.com/

kukionfr/VAMPIRE_open).

Overview of the procedure

The overall procedure is performed using four main stages: image segmentation from 

fluorescence/bright-field images of cells and nuclei (Step 1), formatting segmentation data 

before importing into the VAMPIRE GUI (Steps 2–3), generating a VAMPIRE model from a 

training set of images (Steps 4–10), and applying the VAMPIRE model to the training set or 

a new image set (Steps 11–13) (Fig. 3).

The procedure starts with the segmentation of fluorescence or bright-field images of cells to 

generate binary images of segmented cells (Step 1). This segmentation is executed outside of 

the VAMPIRE software using a segmentation tool of the user’s choice (see ‘Experimental 

design’ for more detail).

To import segmented cells into VAMPIRE, the segmented images need to be organized in a 

designated format for use in the VAMPIRE GUI (Step 2). The segmented images must be 

grayscale images, with nonzero integer values representing the detected cell areas, and zero 

integer values for the background (non-cell areas). For instance, within an image, object 1 

has pixel values of 1, object 2 has pixel values of 2, etc. This required format is a standard 

output in most segmentation software. Once segmented images are properly imported into 

the VAMPIRE GUI, it reads the images to obtain the coordinates along the curvilinear 

boundaries of the cell and/or nuclear contours. In addition, a few classic morphological 

parameters are computed for each object, including surface area, perimeter, major and minor 
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axis length, circularity, and aspect ratio (see VAMPIRE datasheet c1.csv in Supplementary 

Data 1 for list of parameters generated).

Selecting image sets in building and applying the model

Once the dataset is segmented and properly organized, the user decides the set of images to 

be used to train a VAMPIRE model by specifying the image folder locations in a comma-

separated values (CSV) file (Step 3). Hereafter, we refer to these specified images as the 

“training set”. An example CSV file of this list, “segmented image sets to build model.csv”, 

can be found in Supplementary Data 1. The resulting VAMPIRE model that is built, based 

on the specified training set, will be saved within a designated local folder. (Steps 4–10). 

Following this training step, the model can then be applied to either the same image set used 

to train the model or to a new image set by specifying the location in a new CSV file (Steps 

11–13). Ideally, users will apply the model to the same image set that was used for training. 

However, there are instances when it is appropriate to apply the VAMPIRE model to an 

entirely new dataset. For instance, (i) if the datasets are unbalanced between experimental 

replicates or conditions, the user can balance the dataset by selecting a subset of datasets 

from certain replicates or conditions in building the model; (ii) if the datasets grow to a point 

that it takes too long to build a new model with every run, a user can save time in building a 

new model by selecting a subset of datasets; (iii) if a user wants to validate the model or 

directly compare different conditions using the same shape modes. In so doing, the user can 

build a model on one experimental replicate, or similar cell types/conditions and apply it to 

another data set. Beyond these three examples, we intend to offer more flexible applications 

by allowing users to select specific datasets in building and applying the model.

It is important to note that these cases are valid only if the dataset used for training is 

expansive and similar enough (e.g., in cell type, dimensionality (2D/3D) or magnification) to 

represent the newly acquired data, as this influences the appropriate classification of cells 

within each shape mode. To quantify this, users should use the ‘distance from cluster center’ 

values, to determine how well cells are classified within each shape mode (see ‘Limitations 

of VAMPIRE’ below).

The output of the VAMPIRE model includes a plot showing the frequency distribution of 

each shape mode per condition, and the CSV files that contain the shape mode for each cell 

and/or nucleus. (Step 13). Specifically, data for each cell includes the “xy” coordinates of 

cell centroid within the image, the area, circularity, aspect ratio, and assigned shape mode 

index (IDX), as well as the goodness of the shape mode classification for each cell that we 

refer to as “distance from cluster center” (see Box 1). This datasheet can be directly linked 

to the morphological features generated by CellProfiler, which makes VAMPIRE and 

CellProfiler analyses complementary in this regard. This seamless integration allows users to 

further compare shape modes with other morphological features, and associate them with 

other cell features such as cell-cycle state, protein expression, etc. Example datasheets 

showing the results from the analysis using both platforms are provided in Supplementary 

Data 1, labeled “CellProfiler datasheet c1.csv” and “VAMPIRE datasheet c1.csv”. See the 

directory of Supplementary Data 1 in the Supplementary Fig. 1 to locate example CSV files.
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Applications of VAMPIRE

We have previously demonstrated the utility of VAMPIRE in three key studies, (i) the 

morphological changes displayed by human pancreatic cancer cells as they spread from the 

primary tumor to the liver1, (ii) the ability of single-cell morphologies to encode metastatic 

potential in breast cancer6, and (iii) the morphological changes of dermal fibroblasts derived 

from healthy individuals during aging26.

In general, VAMPIRE can be applied to any set of segmented images of cells or nuclei to 

detect and analyze changes in their morphology across multiple conditions and cell-culture 

systems. For instance, VAMPIRE can be applied to study cell morphologies in response to a 

wide range of physiochemical changes, i.e. molecular characteristics2,3,38,39 (e.g., cell cycle 

state, genetic and epigenetic status), microenvironmental and biomechanical 

perturbations9,50,51 or disease states1,6,26. VAMPIRE analysis is also suitable for 

applications in phenotypic or drug screening11,12,15. Changes in cell morphology are often 

used in high-throughput biochemical discovery screens52. However, the large volume of data 

that is typically generated in such screens makes it difficult to visually inspect cell 

responses. Here, VAMPIRE provides users with the ability to rapidly classify phenotypically 

distinct cellular conditions in large amounts of data to identify drug-induced changes in the 

abundance and distributions of shape modes.

VAMPIRE analysis can also be applied to the cellular images obtained beyond standard 2D 

cell culture models. We have recently demonstrated the utility of VAMPIRE analysis for 

cells embedded in 3D collagen matrices1. In that study, we obtained the 2D contours of cells 

from the z-projected images. VAMPIRE analysis showed that shape modes for cells in 3D 

cultures were distinctly more protrusive than the same cells in more traditional 2D cultures1. 

In addition to cell-culture systems in 3D matrices, VAMPIRE analysis is applicable to study 

changes in cell and nuclear shapes in cells embedded within tissue sections (see ‘Anticipated 

results’). A growing number of studies have shown that nuclear shape can encode prognostic 

information for patients with different types of cancer53,54. Segmented nuclei within tissue 

sections can be imported directly into the VAMPIRE workflow to assess, for instance, 

changes in nuclear morphology that are associated with tumor progression, drug responses, 

and patient outcomes.

Limitations of VAMPIRE

A key assumption of VAMPIRE analysis is that the shapes of segmented cells and nuclei 

faithfully represent the original cell and nuclear shapes. The accuracy of this segmentation, 

using, for instance, CellProfiler, relies on the user properly optimizing the image processing 

pipeline, choosing appropriate noise-reduction filters, and using suitable thresholding 

parameters. If the segmentation is not accurate, the shape modes generated using VAMPIRE 

will not be representative of the actual shapes of cells and nuclei. To address this potential 

issue, the user should evaluate the accuracy of segmentation before running VAMPIRE. This 

can be done by visual inspection by overlaying segmented cell contours onto the original 

image to gauge deviations. If the deviation between the segmented contours and the original 

images is substantial, the results from VAMPIRE analysis will not be reliable. Furthermore, 
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VAMPIRE in its current version is designed to work on 2D projections of cells (x,y) and is 

not amendable to the analysis of 3D image stacks (x,y,z).

A challenge for any cell-morphological tool is the analysis and classification of highly 

complex cell shapes, such as cells with highly protrusive morphologies. Although 

VAMPIRE can compute a vast number of features from the coordinates of points along the 

shape boundaries to examine the complexity of cell shapes, the use of a reduced number of 

coordinates (i.e., 50 points) together with the dimensional reduction from the PCA can lead 

to shape modes with limited spatial resolution. In this case, users can either (i) increase the 

number of coordinate points (which will also increase computing time) or (ii) use more 

suitable morphological analyses that directly quantify cell protrusions9 or take better account 

of cell protrusions30. Since users have the option to perform VAMPIRE analysis on cells 

and/or their corresponding nuclei to generate results for both, VAMPIRE analysis needs to 

be run separately on cell contours and nuclear contours. This allows users to specify 

different parameters (i.e., number of shape modes) to accurately describe both cell and 

nuclear shapes, since cell shapes tend to be more complex than nuclear shapes.

To allow users to evaluate the goodness of the shape mode classification, we have provided 

the ability to gauge the distance between the computationally assigned shape modes and the 

actual cell shapes within the given data set. This metric is called ‘distance from cluster 

center’ (see Box 1). It is provided as part of the standard output data provided in “VAMPIRE 
datasheet c1.csv” under Supplementary Data 1. If this distance is large, the VAMPIRE 

model has failed, and the model should be re-assessed. In addition, this depends on the 

parameters used in the VAMPIRE model, which can be improved by increasing the number 

of shape modes, or by eliminating ‘outlier’ cells (see ‘Experimental design’).

Another limitation is that the shape modes determined by VAMPIRE are only as good as the 

dataset with which the model is trained. This means that, to obtain the best results, the 

training set should be expansive enough and include cell types and conditions of interest. As 

VAMPIRE uses a data-driven approach to identify dominant cell and/or nuclear shapes, rare 

shape populations may not be well classified, especially if the training data set is small. 

However, to gain insights into rare or less frequent shapes, the number of shape modes can 

be increased and optimized to suit. Lastly, if the new dataset includes a subpopulation of cell 

shapes that is nonexistent in the dataset used for training, this would also result in 

misclassification of cells, and a large distance-from-cluster-center error for cells classified 

within each predefined shape mode.

Comparison with other methods

In this section, we briefly describe and compare other methods used to characterize the 

morphology of cells. The most common approach to quantify cell/nuclear shape morphology 

is to use scalar descriptors such as shape factor, curvature, and roughness14,30,40. This type 

of analysis is based on discriminative methods that try to capture just enough information to 

distinguish and investigate biological states17. Two commonly used tools for these types of 

cell shape analysis are CellProfiler31 and MorpholibJ55 (a plugin for ImageJ33). These tools 

extract an extensive list of features, such as shape factor, eccentricity, and Zernike 

polynomials. For instance, CellProfiler provides a set of ~1,500 morphological features to 
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describe the morphology of cells, including features that describe size, shape, intensity, and 

texture14. While the pure magnitude of the features assessed increases the likelihood of 

identifying differences among cell populations, this large number of descriptive features 

could limit the interpretation, visualization and integrative view of shape changes.

In many cases, methods to reduce the dimensions of cell shapes can be applied directly to 

binary images. Furthermore, these data-driven approaches and deterministic decomposition 

methods, such as Zernike polynomials and Fourier descriptors, are available to decompose 

the binary images of shapes and represent shapes with fewer dimensions. However, both 

methods are less effective in representing the cell shapes in lower dimension forms than 

PCA44.

Discriminative methods of using scalar shape features are limited in their ability to describe 

cell shapes. Alternatively, methods that reduce the dimensionality of cell shapes can be used 

to reconstruct the cell shapes in a lower dimension for further clustering analysis. 

Particularly, principal component analysis (PCA) has been used to qualitatively and 

quantitatively identify novel insights in the relationship between cell morphology and 

physiology43. One key step of VAMPIRE is the reconstruction of cell shapes based on a 

lower-dimensional representation of cell shapes. This step involves the use of PCA on the 

aligned outlines of cell shapes, thereby retaining most of the cell shape information and 

variation within a given dataset. In VAMPIRE, the PCA step identifies the linear 

combination of shape vectors to regenerate the original cell shapes56,57. Nonlinear methods 

such as shape component analysis (SCA)58 are also used in the field. SCA aims to preserve 

the distance (i.e., Euclidean) metrics between different shapes in a lower-dimensional shape 

space, to avoid potential distortion using non-Euclidean distances. However, in recent 

studies, SCA did not show significant improvement in reconstructing the cell shapes over 

PCA17.

Recent advances in image modeling with neural networks have provided a way to derive 

lower-dimensional representations of cell shapes. Unsupervised learning approaches such 

autoencoder59 and generative adversarial networks60 have been extended to analyze the 

morphology of cells61,62. A recent study examining the performance of various autoencoder 

algorithms found that while outlined-based autoencoder methods perform similar to PCA in 

terms of shape representation accuracy at a lower dimension (d = 7), they underperform at a 

higher dimension (d = 100)59. Expectedly, the autoencoder methods take a lot more 

computational time to process compared to PCA. However, since the field of deep learning 

evolves rapidly, there is a strong potential for enhanced approaches representing cell shapes 

based on neural network methodologies.

Cell shapes are highly heterogeneous, even for cells within the same population. In 

VAMPIRE analysis, we utilize an unsupervised machine-learning clustering method in the 

reduced shape space from PCA to obtain subtypes of cells (shape modes). K-means 

clustering is an effective solution that works for various geometries of datasets with a simple 

input parameter (the number of clusters). However, K-means clustering could perform 

poorly on elongated clusters or irregular shapes of clusters63. Other clustering methods such 

as DBscan48 and OPTICS49 generate clusters based on the density of the data and better 
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handle complex geometry. However, the clustering results from these methods could be 

sensitive to clustering parameters.

To summarize, each user should decide the appropriate software solution for their 

morphology quantification based on the questions at hand.

Experimental design

Example image datasets—To help users explore the software and all its functionalities, 

we provide two small image datasets in the “Example images” folder of Supplementary Data 

1. Note that users can also download Supplementary Data 1 from the GitHub repository 

(https://github.com/kukionfr/VAMPIRE_open/releases/download/v1.0/

Supplementary.Data.zip). See the directory of Supplementary Data 1 in Supplementary Fig. 

1 to locate example images and workflow. Results from the VAMPIRE analysis using 

provided image datasets are also included in Supplementary Fig. 2 and Supplementary Data 

1 under “Example output”. Before applying VAMPIRE analysis to new image datasets, we 

recommend that users first perform VAMPIRE analysis using the image datasets provided 

and follow the detailed procedure in the Procedure. In ‘Anticipated Results’, we also 

illustrate the utility of VAMPIRE analysis by analyzing the morphology of (i) mouse 

embryonic fibroblasts (MEFs) confined to adhesive micropatterns (akin to spatial restriction 

of cells in tissue) in the presence and absence of nuclear protein Lamin A/C, (ii) dermal 

fibroblasts derived from healthy individuals with increasing age, and (iii) for cells embedded 

within tissue sections.

Sample preparation and imaging—One of the most common ways to image the 

morphology of cells and nuclei is through fluorescent labeling of nuclear and cellular 

regions of cells using typical fixed and stain methods1,64. For 2D culture, the cell samples to 

be imaged should be first placed on an optical-compatible substrate such as a glass bottomed 

or transparent plastic dish or plates. Once desired experimental conditions of cell sample are 

achieved, cells should be fixed to preserve their structures. In general, we use 

paraformaldehyde (PFA) as a fixative to fix cell samples. However, alternative fixatives 

should be considered if subsequent dyes or stains to be used are not compatible with PFA. 

After fixation, the sample often needs a membrane permeabilization step, such as treatment 

with Triton X-100, to allow fluorescent probes to pass through the cell and nucleus 

membrane. We typically label the cell nuclei with H33342 and label F-actin with phalloidin 

to image cell cytoplasm. Other types of nuclear or cytosolic stain can also be used as long as 

they can provide clearly labeled nuclei or cell images. If there are cellular structures or 

molecular targets of interest, their corresponding fluorescent probes can be used together 

with cell or nuclei stain as long as these do not interfere with the signal of the nuclear or 

cellular stain. Imaging for VAMPIRE analysis is compatible with multicolor fluorescent 

images.

After cell samples are stained, a fluorescent microscopy system that can perform filter-based 

sequential multicolor imaging should be used to image the samples. We typically aim to 

acquire ~1,000 cells per condition replicate to ensure the subtype analysis in VAMPIRE can 

provide more statistically meaningful results. Hence, it is recommended to use a motorized 
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stage system on a microscope to allow for a more rigid and effective acquiring of images of 

samples at multiple points. Our typical acquisition routine is performed with a 10× objective 

lens scanning a 9 by 9 continuous field of view that covers approximately 6 mm by 6 mm 

regions. To acquire the fluorescent images, we maximize the power of excitation light and 

then minimize the exposure time to a level that produces a substantial but nonsaturated 

intensity signal relative to background intensity to improve the throughput of image 

acquisition. In our workflow, the cell sample to be imaged typically has a density of ~30 

cell/mm2. If imaging a sample with higher cell density, fewer scanning points may be 

considered to improve throughput while obtaining sufficient cell counts. A higher 

magnification objective lens can also be used (i.e., 20× or higher) for deriving better 

spatially resolved cell images. In this case, the number of scanning points may need to be 

increased to obtain sufficient cell numbers for VAMPIRE analysis.

For cells in a 3D culture system, such as cells embedded in collagen gel, a similar process to 

that described above can be applied to obtain the images for VAMPIRE analysis. Special 

consideration should be given to the diffusion of staining dyes and molecules within the 3D 

gel. Therefore, the duration of incubation steps will be lengthened, see published 

literature65-67. Also, in image acquisition, since cells are randomly distributed within the 3D 

space, single focal plane acquisition, as typically performed on 2D samples, is likely to 

capture images containing substantial cells that are not in focus. Thus, it is better to acquire 

multi-focal planes (i.e., multi z-steps) for each field of view. The z-projected images can 

produce cell images with more boundary resolved detail. For tissue section, samples are 

prepared based on standard fluorescence or immunohistochemistry(IHC) staining protocols 

for tissue sections68,69

Segmentation of cells and nuclei—We note that VAMPIRE GUI does not provide a 

segmentation tool; it analyzes cell and/or nuclear shapes that are already detected and 

segmented. The segmentation can be performed using software platforms such as ImageJ/

Fiji33 or CellProfiler31, with easy integration of the segmentation results into VAMPIRE 

GUI. For simplicity, we have chosen to demonstrate how to perform VAMPIRE analysis 

using cell and nuclear segmentations generated using CellProfiler (Step 1). However, note 

the additional steps may be needed if other segmentation software platforms are used.

Selection of parameters for VAMPIRE analysis—Within the VAMPIRE interface, a 

key input parameter for establishing the model is the number of shape modes. We encourage 

the user to tune this parameter to obtain optimal results. Here, we briefly present the 

underlying basis for the selection of the number of shape modes. During the dimensional 

reduction steps, we implement K-means clustering to relate individual cells to the centroid 

of each cluster (shape mode), where the distance from the cluster centroid is stored as the 

“distance from centroid” (see Box 1). This K-means clustering classifies cells on the 

principle of minimizing a parameter known as the inertia. This inertia is calculated as the 

sum of the squared distance between the cluster centroid and each data point within the 

cluster (Fig. 4a). Inertia can be thought of as the metric that defines how internally-coherent 

clusters are, with the optimal inertia value being zero.
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Fundamentally, increasing the number of clusters reduces the inertia and improves cluster 

coherence. To illustrate the effect of the number of clusters on the inertia, we plotted the 

number of clusters as a function of the inertia for cells cultured on adhesive micropatterns 

(Fig. 4b). We observed an elbow-shaped decay function, at which point there was only a 

minimal benefit to increasing the number of clusters.

Control experiments—Examining cells of pre-defined shapes is the most straightforward 

way to validate VAMPIRE analysis. Using adhesive micropatterning techniques70, users can 

evaluate the morphologies of cells confined to pre-defined adhesive shapes (see ‘Anticipated 

results’). As a result, cells cultured on circular and triangular adhesive micropatterns should 

exhibit shape modes that are predominantly circular and triangular, respectively.

Materials

Equipment

• A computer with at least 8 GB of RAM running Microsoft Windows 10 (64 bit)

Software

• VAMPIRE executable software (https://github.com/kukionfr/VAMPIRE_open/

releases/download/v1.0/vampire.exe).

• CSV editor (e.g., Microsoft Excel, Numbers)

• Choice of a standard segmentation tool: CellProfiler 3.1.9 software (https://

cellprofiler.org/releases/), ImageJ/FIJI (https://imagej.net/Fiji/Downloads), or 

MATLAB (https://www.mathworks.com/downloads)

• Example dataset: Micropattern Data: https://github.com/kukionfr/

Micropattern_MEF_LMNA_Image; Aging Data: https://github.com/kukionfr/

Aging_human_dermal_fibroblast_nucleus. For a smaller example dataset, see 

Supplementary Data 1.

Procedure

▲ CRITICAL To demonstrate the VAMPIRE analysis procedure, we provide sample 

images of fluorescently tagged cells in Supplementary Data 1 under the “Example images” 

folder and the corresponding results from the VAMPIRE analysis procedure. Two sample 

sets—MEF_LMNA-- and MEF_wild type stained with Alexa Fluor 488 Phalloidin (Thermo 

Fisher Scientific)—are provided and correspond to mouse embryonic fibroblast cells having 

wild-type expression of Lamin A or Lamin A knockout, respectively (Fig. 5a). Throughout 

this Procedure, refer to the directory of Supplementary Data 1 in Supplementary Fig. 1 to 

locate example data and results.

Segment images of cells or nuclei ● Timing 10–60 min

▲ CRITICAL The segmentation procedure described in Steps 1 and 2 is designed 

specifically for CellProfiler (see https://cellprofiler.org/tutorials for more information). 

Alternatively, cells can also be segmented using ImageJ (https://imagej.net/Segmentation) or 
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MATLAB (https://www.mathworks.com/help/images/detecting-a-cell-using-image-

segmentation.html).

1. Segment the fluorescence or bright-field images to identify the boundaries of 

cells and/or nuclei. The VAMPIRE GUI does not segment cells. Navigate to the 

CellProfiler website (https://cellprofiler.org/) to download the installer of version 

3.1.9. After installing and launching the CellProfiler, the user should create and 

customize the pipeline for image segmentation following the instructions (https://

cellprofiler.org/tutorials) that are best suited for their images. The pipeline that is 

customized for the provided example data is provided in Supplementary Data 1 

(CellProfiler segmentation pipeline.cppipe). To use the provided pipeline, load 

the CellProfiler segmentation pipeline.cppipe in CellProfiler software under 

menu bar>File>Import>Pipeline from File. The provided pipeline consists of 

nine modules. Once the pipeline file is loaded, the pipeline will appear on the left 

panel of the CellProfiler main window. The user can use this pipeline to process 

the provided example fluorescence images, starting with loading the downloaded 

images by dragging and dropping to the “image module”. Once the pipeline (i.e. 

set of modules) is set up successfully, click the “Analyze image” button in the 

CellProfiler software to obtain segmented image of cells.

▲ CRITICAL STEP The current pipeline only supports a single channel of 

fluorescence. For multi-channel images see (https://cellprofiler.org/tutorials) for 

more information. We provide segmented example images using CellProfiler 

(Fig. 5a), as well as a sample CellProfiler segmentation pipeline in 

Supplementary Data 1. Note that the example workflow is designed using 

CellProfiler version 3.1.9, and may need to be adapted for compatibility with 

later versions of CellProfiler. The user modified pipeline file can be saved by 

navigating to File>Export>Pipeline from the menu bar.

? TROUBLESHOOTING

2. Convert the segmented image data to the required format that is compatible with 

VAMPIRE analysis, if needed. To prepare images for VAMPIRE analysis, 

images should be stored as binary TIFF files, where the area of each cell must 

have a nonzero integer value. Segmented images for the same condition or those 

having multiple fluorescence channels should be placed in the same folder. To 

properly store images, the segmented images must have filenames that 

distinguish objects by channel (i.e., xy001c1.tif and xy001c2.tif).

▲ CRITICAL STEP A sample format of segmented images is provided in 

Supplementary Data 1 for reference.

Build shape-analysis VAMPIRE model (model training) ● Timing 3–10 min

3 Generate a CSV file to specify the location of the segmented image sets for use 

in constructing a VAMPIRE model. In this CSV file, the first row contains 

column headings specifying the information to be entered. Each column 

specifies information about the specific segmented images. From the second 
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row, each column should be filled with information of a specific segmented 

image set with the following order:

• “set ID”: row index number. “set ID” and “condition name” will be 

part of the VAMPIRE output filename (i.e. Shape mode 
distribution_1_wildtype.png).

• “condition name”: description of an image set.

• “set location”: the location/path of the folder containing segmented 

images

• “tag”: a string of text. Only segmented images in the set location with 

filenames containing the tag will be identified and analyzed. For 

example, if “tag” is set as “c1”, for an image set location containing 

segmented images from multiple channels (i.e. xy001c1.tif, 
xy001c2.tif, xy002c1.tif, xy002c2.tif) only image filenames containing 

“c1” (i.e. xy001c1.tif and xy002c1.tif) will be analyzed.

• “note”: any information about the image sets needed for the user’s 

record. This information is not used in the VAMPIRE analysis.

For more explanation in selecting the image sets for model training and 

application in Steps 3 and 11, please refer to Selecting image sets in 

building and applying the model section in ‘Overview of the 

procedure’.

▲ CRITICAL STEP An example CSV file named “Segmented image 
sets to build model.csv” can be found in Supplementary Data 1. Users 

can download and directly modify the example CSV files using Excel 

or other CSV editors. To use the example segmented images provided 

in the Supplementary Data 1 for the following analysis, the user needs 

to update the set location column in the example CSV file with the 

actual location of the example segmented images.

4 Download VAMPIRE stand-alone software named “vampire.exe” from GitHub 

(https://github.com/kukionfr/VAMPIRE_open/releases/download/v1.0/

vampire.exe). Launch VAMPIRE Graphical User Interface (GUI) by opening the 

VAMPIRE.exe file.

▲ CRITICAL STEP The current version of VAMPIRE GUI is only available 

for Windows 10 users. Source codes are available on GitHub (https://

github.com/kukionfr/VAMPIRE_open) and PyPI (https://pypi.org/project/

vampireanalysis). These repositories will be continuously updated and 

maintained.

? TROUBLESHOOTING

5 Locate the CSV file generated in Step 3 to build a VAMPIRE model in the 

“Build Model” section of the VAMPIRE GUI. Click “Load CSV”. This will 

open a popup window for the user to select the CSV file.
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6 Specify the number of coordinates to extract from the cell contours in the Build 

Model section of VAMPIRE GUI under the “number of coordinates” box. The 

default value is 50. A higher number of coordinates will better represent the 

object boundary at the expense of analysis speed. A lower number of 

coordinates may not capture the details of the object boundary and the result of 

analysis may under-represent the actual cell morphology.

7 Determine the number of shape modes in the “Build Model” section of the 

VAMPIRE GUI under the “number of shape modes” box. The default value is 

10. To optimize this number, refer to the ‘Selection of parameters for VAMPIRE 

analysis’ section in the ‘Experimental design’.

8 Specify where the output model should be saved. This information can be 

entered in the “Build Model” section of VAMPIRE GUI under the “Model 

output folder” box.

9 Name the model in the “Build Model” section of the VAMPIRE GUI under the 

“Model name” box. This name will be used to generate a pickle file that contains 

model parameters.

10 Click “Build Model” in the VAMPIRE GUI to generate a VAMPIRE model 

based on the specified parameter values provided in Steps 6 and 7. Once the 

model is generated, it will be saved in the output folder specified in Step 8. 

Within this new folder, the VAMPIRE model data will be saved into a subfolder 

“[model name]” that contains:

• A VAMPIRE model file that is named “[model name].pickle”.

• A subfolder named “[model name] figures” that contains:

• The overlay of 20 randomly selected raw shapes classified into each 

shape mode named “registered objects.png”.

• The dendrogram showing the level of correlation between shape modes 

named “shape mode dendrogram.png”.

▲ CRITICAL STEP Example output files of this step are provided in 

Supplementary Data 1, under “Example output”. These files are 

generated from the example segmented images provided in Step 2, 

using the default values of parameters from Steps 6 and 7.

? TROUBLESHOOTING

Analyze cell shapes with VAMPIRE model (model application) ● Timing 1-10 min

11 Repeat Step 3 to specify the sets of segmented images to apply the VAMPIRE 

model to. If you need to prepare new sets of segmented images, repeat Steps 1 

and 2. The format of the CSV file remains the same. Once the user generates the 

CSV file, go back to the VAMPIRE GUI. In the “Apply Model” section of the 

VAMPIRE GUI, click “load CSV”. This will open a popup window for the user 

to select the CSV file.
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12 Specify the previously built model to analyze the segmented images. Click the 

“load model” button to choose the pickle file generated in Step 10. Refer to 

Supplementary Fig. 1 to locate the pickle file.

13 Perform VAMPIRE analysis on the specified images by clicking the “Apply 

Model” in the VAMPIRE GUI. When this process is finished, a new folder will 

be created named “Result based on [model name]” within the VAMPIRE model 

folder. This new folder contains a collection of distributions showing the 

fractional abundance for cells within each shape mode, with the percentage of 

cells within each shape mode denoted on the top of each bar (Figs. 5b, 6b, 7a). 

Each distribution is saved with the naming convention: “Shape mode 
distribution_[condition].png”. Clicking the “Apply Model” button also generates 

a VAMPIRE datasheet CSV file in each segmented image set folder. Each 

datasheet CSV contains:

• Filename: name of the segmented image file that contains the object

• ImageID: ID number of the segmented image file

• ObjectID: ID number of the object within the segmented image file

• X and Y: location of the object’s center of mass within the segmented 

image

• Area: area of the object

• Perimeter: length of object’s circumference

• Lengths of the major and minor axes

• Circularity: shape factor calculated by 4πA
P2 . Its value varies from 0 to 1. 

The circularity of a perfect circle is 1.

• Aspect ratio: is calculated as the major axis length divided by the minor 

axis length.

• Shape mode ID number: a number that represents the shape mode 

where each cell belongs to.

• Distance from cluster center: a metric to determine the goodness of the 

classification into shape modes defined as the distance between the 

cluster centroid and the selected object centroid.

▲ CRITICAL STEP Example output files for this step are provided 

in Supplementary Data 1, under “Example output”. These files are 

generated using the VAMPIRE model provided in Supplementary Data 

1 under the same folder “Example output”. See the directory of 

Supplementary Data 1 in Supplementary Fig. 1 to locate the output 

files. A compiled example of shape parameters of the VAMPIRE 

datasheet is shown in ‘Anticipated results’ (Fig. 6b).
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Troubleshooting

Troubleshooting advicecan be found in Table 1.

Timing

The timing information below is estimated based on the analysis of 10,000 cells using an 

i7-8700k Intel CPU with 5.0 GHz clock speed on Windows 10 pro OS. This time 

corresponds to the time it takes an experienced VAMPIRE user to perform analysis. More 

time may be required when using VAMPIRE for the first time.

Steps 1 and 2, segment images of cells or nuclei, 10–60 min

Steps 3–10, build shape-analysis VAMPIRE model, 3–10 min

Steps 11–13, analyze cell shapes with VAMPIRE model, 1–10 min

Total (Steps 1–13), complete VAMPIRE analysis, 14–80 min

Anticipated results

To demonstrate the utility of VAMPIRE, we examined the shapes of mouse embryonic 

fibroblasts (MEFs) in response to different surface topographies. These cells are either wild-

type (MEF LMNA+/+) or deficient in lamin A/C (MEF LMNA−/−). Cells were seeded onto 

three different 2D substrates: 1. circular or 2. triangular shaped fibronectin-coated islands, 

surrounded by polyethylene glycol passivated regions, and 3. Uniform fibronectin-coated 

surfaces. Cells were incubated overnight on each substrate then fixed and stained with DAPI 

and Alexa Fluor 488 Phalloidin, highlighting nuclear DNA and F-actin fibers respectively. 

Cells and their corresponding nuclei were segmented using CellProfiler, then the contours 

were analyzed using VAMPIRE with 10 shape modes and 50 contour points (Fig. 6a).

We quantified the shape mode distribution for each of the probed conditions and examined 

whether cells on patterns exhibited associations with particular shape modes that resembled 

circles and triangles (Fig. 6b). As expected, results showed that both LMNA+/+ and LMNA
−/− cells seeded on unpatterned surfaces exhibited mixed shape profiles i.e., similar 

abundance in all identified cellular shape modes, as opposed to the cells seeded on the 

patterned substrates. Cells seeded on circular patterns exhibited enrichment in the circular 

shape mode (mode 4) with an average abundance of 55 and 52% of the total cell populations 

for LMNA+/+ and LMNA−/−, compared to 8.1 and 21% of those seeded on an unpatterned 

substrate. Cells seeded on triangular patterns were primarily classified into two triangular 

shape modes, the “sharp” (mode 1) and “blunted” vertex (mode 2) triangles, with decreased 

abundance in the remaining shape modes (modes 6–9) (Fig. 6b).

Interestingly, LMNA−/− cells seeded on triangular patterns were classified as “blunt” (mode 

2) three times more (abundance of 34%) than “shape” (mode 1) (abundance of 12%). We did 

not observe such a difference between the two shape modes in LMNA+/+ cells. This bias 

suggests that the deficiency in lamin A/C limits the ability of these cells to form acute angle 

vertices, potentially through defective nucleo-cytoskeletal connections51,71. Our results show 
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that cells can respond morphologically differently to the same shape constrains and 

VAMPIRE analysis can visualize and quantify the subtle differences.

We computed the Shannon entropy for the cell populations and observed no significant 

differences between LMNA+/+ and LMNA−/− within the same micropattern (Fig. 6b). 

However, looking across conditions, we observed a significant decrease in the population 

heterogeneity for both LMNA+/+ and LMNA−/− seeded on circular patterns, relative to cells 

seeded on unpatterned surfaces and triangular patterns. The aspect ratio of LMNA+/+ cells 

increased from 1.66 (no pattern) to 2.20 (triangle pattern), suggesting a more elongated 

shape for these cells. However, evaluating the shape factor in the same cells showed an 

increase from 0.34 (no pattern) to 0.51 (triangle pattern), suggesting rounder cell shapes on 

circular patterns. These seemingly contradictory results, measured by shape factor and 

aspect ratio, suggest that, compared with classical morphology parameters, VAMPIRE 

analysis can provide direct visual insight to better monitor the transition of cell morphology.

Using VAMPIRE analysis26 we also examined the association between cellular morphology 

and chronological ages of dermal fibroblasts derived from seven healthy individuals. While 

the morphology of mouse embryonic fibroblast was emphasized by artificial micropatterns, 

this example illustrates the sensitivity of VAMPIRE to classify subtle, biologically 

meaningful morphology changes. Previously, we demonstrated that cell and nuclear 

morphologies of dermal fibroblasts encode key information about the biological age for 

healthy individuals26. Using ten shape modes, VAMPIRE analysis shows a decrease in the 

frequency of cells having rounded shape modes with rounded morphologies, and an increase 

in cells having irregular nuclear morphologies with increasing age. This is measured by 

negative age correlations for shape modes 1 and 2 having rounded shapes, and positive age 

correlations for irregular nuclear shape modes 3, 4, and 7 (Fig. 7a). Correlation coefficients 

denote Pearson’s correlation. We also note that computing standard shape parameters, 

including shape factor and aspect ratio, yielded very similar values for the cells in different 

shape modes, (SF: 0.77–0.83, and AR: 1.51–1.64), even for shape modes having opposite 

trends in age correlations (R: −0.6 and +0.6), i.e. shape modes 1 and 3. Furthermore, circular 

shape modes 1 and 2 have very similar shape parameters (SF and AR) to ellipsoidal shape 

modes 9 and 10 (Fig. 7b). Again, this demonstrates the utility of VAMPIRE analysis to 

visually and quantitatively identify morphological changes that would otherwise go 

unnoticed using traditional morphological parameters.

Lastly, applying the utility of VAMPIRE analysis beyond cultured cells, we have 

successfully implemented VAMPIRE analysis for the analysis of tissue sections. Here, we 

compare the morphologies of cells derived from the human epidermis and reticular dermis 

based on hematoxylin and eosin (H&E) stained tissue sections (Fig. 8a). Note that we 

segmented nuclei within the tissue sections using a custom image analysis algorithm. To 

compare the morphology of cells in the epidermis and reticular dermis region, we built a 

VAMPIRE model using nuclei segmented from the scanned image of an H&E stained skin 

tissue biopsy from a 79 year old donor. We observed that shape modes 1–3 were more 

elongated (i.e., less circular) relative to modes 4–10 (Fig. 8b). As expected, VAMPIRE 

analysis was able to decipher differences between the two regions of the tissue section, with 
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nearly 50% of dermal cells being classified as modes 1–3, compared to only 6.4% for 

epidermal cells (Fig. 8b).

Reporting Summary

Further information on research design is available in the Nature Research Reporting 

Summary linked to this article.

Data availability

The datasets generated and/or analyzed during the current study are available from GitHub: 

Micropattern Data (https://github.com/kukionfr/Micropattern_MEF_LMNA_Image) and 

Aging Data (https://github.com/kukionfr/Aging_human_dermal_fibroblast_nucleus). A 

smaller example dataset is provided as Supplementary Data 1 and is also deposited on 

GitHub: https://github.com/kukionfr/VAMPIRE_open/releases/download/v1.0/

Supplementary.Data.zip.

Code availability

The VAMPIRE source code is available on GitHub: https://github.com/kukionfr/

VAMPIRE_open. The code can be accessed and used by readers without restriction.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Box 1 ∣

Glossary of geometric and statistical descriptors

Eigenshape vectors—mathematical descriptors used to describe cell shapes based on the 

principal component analysis (PCA) of cellular shape features. Once determined, a linear 

combination of Eigenshape vectors are used to reconstruct the original shape of each cell.

Shape modes—mathematical descriptors of cell and nuclear shapes based on clustering 

analysis of user-generated eigenshape vectors. Once these shape modes are identified, the 

abundance of cells within each shape mode is assessed and the entropy to determine the 

extent of heterogeneity can be computed.

Shannon entropy—a mathematical description used to quantify the degree of diversity 

within a population of cells based on the number of shape modes and the abundance of 

cells within each shape mode. It is given by the general equation:

S = − ∑piln(pi)

S is the Shannon entropy and pi is the occurrence of cells in each shape mode.

Cellular heterogeneity—a property that describes the extent of cell-to-cell variations 

within a cell population.

Eccentricity—a measure of how similar a cell shape is to a circle or an ellipse, 

calculated as the ratio of the distance between the foci of the ellipse and its major axis 

length.

Solidity—ratio of cell area to convex hull area of the cell (convex hull area is the area of 

the smallest convex polygon that encloses the region).

Curvature—defined as the degree of deviation from a straight line. It is calculated as the 

reciprocal of the radius of a circle fitted at each boundary point40.

Roughness—defined as the variance in the length of a vector that is centered at the 

geometric centroid of an enclosed object as it rotates along with each boundary point.

Area—the number of pixels comprising the enclosed region. Since the size of each pixel 

is known, the area of cells and/or nuclei can be converted into various scales, including 

square microns (μm2).

Distance from cluster center—the Euclidean distance between the morphology 

parameters of a cell and the centroid of the cluster it belongs to. The morphology 

parameters of the cell are represented from the reduced number of the principal 

components from PCA.

Principal component analysis—abbreviated as PCA, is a mathematical technique for 

reducing the dimensionality of large datasets, increasing interpretability but at the same 

time minimizing information loss by finding new uncorrelated variables, principal 

components, from possibly correlated variables.
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Heritable morphological variations—cell-to-cell variations that are persistent along 

many cell generations.
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Fig. 1 ∣. Cells confined to narrow ranges of traditional morphological parameters still exhibit 
highly variable shapes.
Scatter plot showing the distributions of 37,750 mouse embryonic fibroblast cells confined 

to a 3D axis of aspect ratio, shape factor, and solidity. The subset of 10 cells highlighted in 

red display substantial morphological heterogeneity, despite highly similar values of aspect 

ratio, circularity, and solidity.
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Fig. 2 ∣. Overview of VAMPIRE analysis, from the extraction of contour coordinates to the 
automatic generation of shape modes.
a, The contour of a single cell described by 50 equidistant points along its contour. b, 

Unaligned (left) shapes of a set of cells are pooled, normalized by size, and aligned (right). 

c, Eigenshape vectors (i.e., principal components or PCs) are obtained from a principal 

component analysis (PCA) of the contour coordinates of aligned cells. d, Reconstructed cell 

shape from a reduced number of eigenshape vectors. The reduced number of eigenshape 

vectors was defaulted to the number of vectors that comprise 95% of the shape variations 

among all assessed cells. e, Representative cellular shape modes are obtained by applying a 

K-means clustering method to a set of cell morphology data described by the reduced 

number of eigenshape vectors.
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Fig. 3 ∣. Overview of VAMPIRE implementation with the VAMPIRE GUI.
a, The VAMPIRE Graphical User Interface (GUI). b, Flow diagram illustrating key steps in 

the implementation of VAMPIRE analysis with VAMPIRE GUI. Images of cells are first 

segmented into binary images that highlight the cellular region and/or nuclear region. The 

VAMPIRE GUI top section (highlighted in red) allows users to specify analysis parameters 

and the location of segmented images to be used to create a VAMPIRE analysis model. Once 

the VAMPIRE analysis model is established, the user can specify the sets of segmented 

images to be analyzed using the previously established model (highlighted in blue).
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Fig. 4 ∣. Determinants of cluster coherence in the shape mode distributions.
a, Schematic illustrating the concept of inertia in K-means clustering. The inertia is 

measured by total squared distances of all data points to the centroids of their corresponding 

subtype. A lower inertia value indicates better segregation of clusters indicating more 

intercluster coherence. b, The inertia in principle decays with an increasing number of 

clusters. The corresponding cluster number at the elbow point where the inertia decay rate 

starts to drop is the suggested cluster number to use in VAMPIRE for K-means clustering. 

The example inertia profile is calculated based on 17,093 MEF cells. The inertia value is 

calculated on ten separate runs of VAMPIRE analysis at each cluster number parameter 

value. In each run, the K-means clustering is by default repeated five times with different 

centroid seeds to find the initial seed that results in the lowest inertia value. The coefficient 

of variation of inertia between ten separate runs of VAMPIRE is less than 0.05% for this 

inertia profile, thus an error bar is not shown.
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Fig. 5 ∣. VAMPIRE analysis of LMNA+/+ and LMNA−/− mouse embryonic fibroblasts.
a, Images of phalloidin-stained (top) wild-type (LMNA+/+, left) and lamin-deficient (LMNA
−/−, right) mouse embryonic fibroblasts. Segmentation is obtained using CellProfiler. Scale 

bar, 100 μm. b, Bar plots showing the distribution of cell shape modes from the VAMPIRE 

analysis of the MEFs. Numbers above the bars represent the abundances (%) of cells in each 

shape mode.
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Fig. 6 ∣. VAMPIRE analysis of mouse embryonic fibroblasts seeded on adhesive micro-patterned 
surfaces.
a, Fluorescence microscopy images of wild-type (LMNA+/+) and lamin-deficient (LMNA
−/−) mouse embryonic fibroblasts cultured on circular (top row) and triangular (middle row) 

adhesive fibronectin-coated micropatterns72. Control cells (bottom row) are placed on the 

fibronectin-coated glass. Cells were fixed and stained for F-actin using Alexa Fluor 488 

Phalloidin (red) and nuclear DNA using DAPI (blue). Segmented fluorescence images 

(right). On the left are the raw images of cells and their nuclei with the segmented contours 

highlighted in yellow; on the right are the same cells color coded according to the shape 

mode to which they belong. Scale bar, 100 μm. Inserts are magnified views of cells; scale 

bar, 50 μm. The identified shape modes are located on the right of the panel. b, The table on 

the left shows the frequency of cells classified within each shape mode for LMNA+/+ and 

LMNA−/− cells cultured on circular or triangular micropatterns (top and middle rows) and 

unpatterned surfaces (bottom row). The table on the right displays the values for traditional 

morphological parameters, including average area, shape factor (SF), and aspect ratio (AR) 
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of cells, as well as the number of cells analyzed (#), lamin A/C status and the Shannon 

entropy of the cells. These results indicate that traditional morphological parameters 

insufficiently discriminate between the nuclear morphological responses of LMNA+/+ and 

LMNA−/− on different adhesive micropatterns (right table). By contrast, the differential 

morphological response of these cells is readily revealed when measured by shape mode 

distributions (left color-coded table). The reported values for each condition are the average 

abundance of cells based on two replicates of the same condition.
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Fig. 7 ∣. VAMPIRE analysis of human dermal fibroblasts from donors of different ages.
a, Distributions of nuclear shape modes for dermal fibroblasts from age 3 to 96. Each row 

shows the distribution of shape modes for each donor. The number of nuclei assessed are: # 

= 643, 420, 407, 531, 373, 575, 637, respectively. The sample numbers of nuclei for each 

cell line are from two distinct replicates. Cells from younger donors populate the rounder 

shape modes (modes 1 and 2), while cells from older donors have nuclei classified that 

populate the irregular shape modes (modes 3, 4, and 7). b, Table showing Pearson’s 

correlation (R), shape factor (SF), and aspect ratio (AR) of each nuclear shape mode. R is 

the age correlation based on the abundance of nuclei in a specific shape mode. SF and AR 

are calculated as the mean of all nuclei classified in each shape mode across all ages.

Phillip et al. Page 32

Nat Protoc. Author manuscript; available in PMC 2021 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 8 ∣. Analysis of nuclear shape in H&E stained tissue sections with VAMPIRE.
a, Images of a skin tissue section stained with hematoxylin and eosin (H&E) and obtained 

from the cancer genome atlas (TCGA case ID: TCGA-EE-A20I). Nuclei in the epidermis 

and the reticular dermis regions were segmented and analyzed with VAMPIRE. b, Bar 

graphs show the distribution of nuclei shape modes, comparing epidermal cells (N = 1,579) 

and dermal cells (N = 498) using VAMPIRE analysis. Numbers above the bars represent the 

abundances (%) of nuclei in each shape mode. Results also show a lower Shannon entropy in 

cells derived from the reticular dermis (S = 2.1) relative to cells from the epidermis (S = 

2.25), indicating lower heterogeneity in the reticular dermis.
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Table 1 ∣

Troubleshooting table

Step Problem Possible reason Solution

1 Cannot run the segmentation pipeline: the 
pipeline did not identify any image sets

The user did not load any images in 
the “Images” module

Drag and drop images into the “Images” 
module of CellProfiler

Subfolder under CellProfiler output folder is 
named “None”

The metadata extraction rule is 
incorrect

Modify the extraction rule under the 
“Metadata” module in CellProfiler

4 A warning is given that the MATPLOTLIBDATA 
environment variable is deprecated in Matplotlib 
3.1 and will be removed in 3.3

The executable file of VAMPIRE is 
created using software that uses a 
variable that will be removed in the 
future

Ignore this message since VAMPIRE is 
not affected by this warning

10 The following warning appears: “IndexError: 
arrays used as indices must be an integer”

Segmented images do not contain any 
cell or nucleus

Check if segmented images have a correct 
format as specified in Step 2 and that they 
have at least one cell or nucleus

The following warning appears: 
“RuntimeWarning: Mean of empty slice”

The number of objects is less than the 
number of clusters

Provide images with a greater number of 
cells than the number of clusters

The following warning appears: “Permission 
denied”

CSV file is open while the analysis is 
running

Close all open CSV files and repeat Step 
10
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