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WHAT YOU NEED TO KNOW

BACKGROUND AND CONTEXT

Pancreatic cancer (PC) remains a highly lethal malignancy
with few successful therapeutic options. There is a
growing list of novel agents that target DNA replication
and repair, which may offer treatment options for
patients with PC.

NEW FINDINGS

A subset of PC demonstrate evidence of high replication
stress. This is enriched in the squamous transcriptomic
subtype of PC. A novel transcriptomic signature of
replication stress predicts response to novel ATR and
WEE1 inhibitors. High replication stress and DNA
damage response (DDR) deficiency are separate entities
that can exist independently and be targeted with
different agents.

LIMITATIONS

This study is limited that the novel therapeutic data is
based on preclinical models of patient derived cell lines
and organoid responses. Human PC response data is
not yet available, as the ATR and WEE1 inhibitors are at
early stages of therapeutic development in PC.

IMPACT

High replication stress and DDR deficiency exist
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BACKGROUND & AIMS: Continuing recalcitrance to therapy
cements pancreatic cancer (PC) as the most lethal malignancy,
which is set to become the second leading cause of cancer death
in our society. The study aim was to investigate the association
between DNA damage response (DDR), replication stress, and
novel therapeutic response in PC to develop a biomarker-
driven therapeutic strategy targeting DDR and replication
stress in PC. METHODS: We interrogated the transcriptome,
genome, proteome, and functional characteristics of 61 novel
PC patient–derived cell lines to define novel therapeutic stra-
tegies targeting DDR and replication stress. Validation was
done in patient-derived xenografts and human PC organoids.
RESULTS: Patient-derived cell lines faithfully recapitulate the
epithelial component of pancreatic tumors, including previ-
ously described molecular subtypes. Biomarkers of DDR defi-
ciency, including a novel signature of homologous
recombination deficiency, cosegregates with response to plat-
inum (P < .001) and PARP inhibitor therapy (P < .001) in vitro
and in vivo. We generated a novel signature of replication
stress that predicts response to ATR (P < .018) and WEE1
inhibitor (P < .029) treatment in both cell lines and human PC
organoids. Replication stress was enriched in the squamous
subtype of PC (P < .001) but was not associated with DDR
deficiency. CONCLUSIONS: Replication stress and DDR defi-
ciency are independent of each other, creating opportunities for
therapy in DDR-proficient PC and after platinum therapy.
independently of each other, offering therapeutic
opportunities in DDR proficient PC with high replication
stress using ATR or WEE1 inhibitors. It also provides a
potential therapeutic strategy in the acquired platinum
resistance setting.
Keywords: Pancreatic Cancer; DNA Damage Response; Replica-
tion Stress; Personalized Medicine.

ancreatic cancer (PC) has recently overtaken breast
§ Authors share co-senior authorship.

Abbreviations used in this paper: DDR, DNA damage response; DMSO,
dimethyl sulfoxide; EC50, median effective concentration; GO, Gene
Ontology; HR, homologous recombination; HRD, homologous recombi-
nation deficiency; ICGC, International Cancer Genome Consortium; MTS,
3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-
sulfophenyl)-2H-tetrazolium; PC, pancreatic cancer; PDAC, pancreatic
ductal adenocarcinoma; PDCL, patient-derived cell line; PDX, patient-
derived xenograft; RNAseq, RNA sequencing; RPPA, reverse-phase pro-
tein array; siRNA, small interfering RNA; SV, structural variation; TOM,
topological overlap measure.
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Pcancer to become the third leading cause of cancer
death in the United States,1 and it is predicted to become the
second within a decade.2 Pancreatic ductal adenocarcinoma
(PDAC), the more common form of PC, is dominated by
mutations in 4 well-known cancer genes (KRAS, TP53,
CDKN2A, and SMAD4). Only a few genes are mutated in 5%–
15% of cases, amidst an ocean of infrequently mutated
genes in the majority of patients.3–11 This diversity may
explain the lack of progress with targeted therapies, because
actionable genomic events being targeted therapeutically
are present in only a small proportion of unselected par-
ticipants in clinical trials.12 To better select patients to
clinical trials, biomarkers that predict response to novel and
established treatments are urgently needed and must
extend beyond the detection of point mutations in coding
genes and low-prevalence actionable genomic events.

Although molecular subtyping of cancer based on biolog-
ical attributes can facilitate drug discovery, to be clinically
relevant, the optimal taxonomy must inform patient manage-
ment through prognostication or, more importantly, treatment
selection.13 Recent studies have subtyped PC in various
ways,5,9,14–18 grouping similarities based on structural attri-
butes of genomes, genes mutated in pathways, or molecular
mechanisms inferred through messenger RNA expression. We
recently defined 4 transcriptomic subtypes of PC,5,19 with 2
distinct primary lineages, termed classical pancreatic (which
can be further divided into pancreatic progenitor,
immunogenic, and aberrantly differentiated endocrine
exocrine subtypes) and squamous.5 Despite discrepancies in
nomenclature, 1 molecular class (variably termed quasi-
mesenchymal, basal-like, or squamous) is consistently defined
and is associated with a poor prognosis.19,20 A key distinction
is the epigenetic profile of the squamous subtype, with chro-
matin modification and methylation orchestrating the loss of
pancreatic endodermal transcriptional networks and, as a
consequence, suppressing transcripts that designate a
pancreatic identity.5 These biologically based molecular tax-
onomies of PC, although associated with differences in
outcome, have yet to inform treatment decisions.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
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DNA damage response (DDR) deficiency is a hallmark of
cancer, including PC,8 and is thought to render some tumors
preferentially sensitive to DNA-damaging agents such as
platinum and PARP inhibitors. There is a growing com-
pendium of novel therapeutics that target DNA damage
response mechanisms and the cell cycle, such as ATR and
WEE1 inhibitors.21 Genomic instability, a key feature of
many cancers, typically secondary to defects in DNA repli-
cation and repair during the cell cycle, often results in
replication stress.22,23 Oncogene activation drives replica-
tion stress, particularly through RAS and MYC signaling,
both of which are prevalent molecular features of PC.22,24,25

The platinum-containing regimen, FOLFIRINOX, has become
the standard of care for all stages of PC, yet it is suitable
only for patients with good performance status; however,
the majority of patients unfortunately do not respond.26–28

Consequently, many patients experience the morbidity,
and even mortality, of systemic platinum chemotherapy
with little or no survival benefit or quality of life.
Biomarker-driven patient selection strategies and novel
therapeutics that build on platinum response or disease
stabilization that target DDR mechanisms provide a sub-
stantial opportunity to improve outcomes.

Building on previous work on DDR mechanisms and PC,
we aim to expand the indications for novel DDR inhibitors
beyond patients with defects in homologous recombination
(HR) mechanisms. We aim to refine proposed DDR bio-
markers of platinum response to be tested in prospective
clinical trials and to correlate and overlap this with cell
cycle inhibitor response to identify patients who will
respond to novel agents, such as ATR and WEE1 inhibitors.

Here, we used 61 patient-derived cell lines (PDCLs) of
PC (Supplementary Tables 1 and 2) to define subtype-
specific molecular mechanisms and identify opportunities
for molecular subtype–directed treatment selection that
targets DDR mechanisms. We performed messenger RNA
expression analysis (RNA sequencing [RNAseq]) (n ¼ 48)
complemented by whole genome sequencing (n ¼ 47),
which was further enhanced with reverse phase protein
arrays (RPPAs), functional screenings using small inter-
fering RNA (siRNA) and targeted functional analysis. To our
knowledge, we identify novel biomarkers of DDR deficiency
and replication stress with potential clinical utility that
associate with therapeutic sensitivity. We show that DDR
deficiency exists independently of replication stress, the
previously identified poor-prognostic squamous subtype is
enriched for replication stress, and transcriptomic readouts
of replication stress confer sensitivity to therapeutics that
target the cell cycle checkpoint machinery.
Materials and Methods
The full methods and additional references can be found in

the Supplementary Material.
Human Research Ethics Approvals
Ethical approval was obtained for all human samples and

data (Supplementary Materials).
Cell Culture
PDCLs were generated as previously described.4,29–31

PDCLs were cultured in conditions specifically formulated
for each individual line based on growth preferences and
those resulting in cell lines that most closely resembled
physiologic cells from the initial tumor. Cells were grown in a
humidified environment with either 5% or 2% CO2 at 37�C. All
cell lines were profiled by short tandem repeat DNA profiling
as unique (CellBankaustralia.com). Cell lines were tested
routinely for mycoplasma contamination by using the
MycoAlert PLUS Mycoplasma Detection Kit (Lonza, Basel,
Switzerland; LT07–318).

In Vitro Cytotoxicity Assays
Cells were seeded on 96-well plates (Costar, Corning,

Corning, New York) and allowed to adhere for 24 hours. Cells
were treated with increasing doses of cisplatin (Accord
Healthcare, London, UK), AZD6738 (AstraZeneca, Cambridge,
UK), AZD1775 (AstraZeneca), and AZD7762 (AstraZeneca) for
72 hours. Cells were treated with BMN-673 (Pfizer, New York,
NY), Rucaparib (Clovis Oncology, Boulder, CO), CFI-400945
(Cayman Chemical, Ann Arbor, MI), and Palbociclib (Pfizer)
for a total of 9 days, with repeated dosing every 72 hours in
conjunction with changing cell media. Actinomycin D (Sigma-
Aldrich, St Louis, MO), drug vehicle (dimethyl sulfoxide
[DMSO]), and media-only controls were performed on each
individual plate. For all other cytotoxicity assays, cells were
plated in 96-well plates and treated with serial dilutions of
indicated inhibitors 24 hours after plating for the indicated
timepoints. Cell viability was determined by using the Cell-
Titer 96 Aqueous nonradioactive cell proliferation assay
(PROMEGA, United Kingdom) composed of solutions of
a tetrazolium compound (3-[4,5-dimethylthiazol-2-yl]-5-[3-
carboxymethoxyphenyl]-2-[4-sulfophenyl]-2H-tetrazolium, in-
ner salt; [MTS]) and an electron-coupling reagent (phenazine
methosulfate) (Promega, Madison, WI). The assay was per-
formed at an absorbance of 490 nm using an enzyme-linked
immunosorbent assay plate reader (Tecan Trading AG, Män-
nedorf, Germany). Background absorbance was corrected for
by wells containing medium alone, and the absorbance was
normalized to a scale of 0% (complete cell death by actino-
mycin D (5–10 mg/mL) to 100% (no drug). At least 3 biological
repeats were performed for each experiment. Median effective
concentration calculation and dose response curves were
generated with GraphPad Prism 6 (GraphPad Software, La Jolla,
CA).

Organoid Drug Screening
Therapeutic sensitivity in the organoids was assessed as

previously described.32 Organoids were dissociated into single
cells. One thousand viable cells were plated per well in 20 mL
10% Matrigel/human complete organoid media (Corning Life
Sciences, United Kingdom). Increasing concentrations of
AZD6738 (AstraZeneca) and AZD1775 (AstraZeneca) were
added 24 hours after plating, after the reformation of organoids
was visually verified. Compounds were dissolved in DMSO, and
all treatment wells were normalized to 0.5% DMSO content.
After 7 days, cell viability was assessed by using CellTiter-Glo
(Promega) as per the manufacturer’s instructions on a Spec-
traMax I3 (Molecular Devices, San Jose, CA) plate reader. At

http://CellBankaustralia.com
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least 3 biological repeats were performed for each experiment.
Median inhibitory concentration calculation and dose response
curves were generated with GraphPad Prism 6.
Patient-Derived Xenografts
Patient-derived xenografts (PDXs) of PDAC were generated

and comprehensively characterized as part of the International
Cancer Genome Consortium (ICGC) project. BALB/c nude mice
were anesthetized, and a single PDX fragment was inserted
subcutaneously into the right flank according to standard
operating procedure. PDX models were grown to 150 mm3

(volume ¼ [length2 � width]/2); at this point, each PDX was
randomized to a different treatment regimen. Responsive PDXs
were treated once tumor size returned to 150 mm3, up to a
maximum of 3 rounds. Resistant models were treated after a
treatment break of 2 weeks in accordance with current clinical
treatment regimes, up to a maximum of 2 rounds. Each
experiment was terminated once tumor volume reached the
endpoint (750 mm3), in accordance with home office animal
welfare regulations. Full methods can be found in
Supplementary Materials.
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gH2AX and pRPA Foci Formation Assay
PDCLs were cultured as standard and seeded in 96-well

plates at a concentration of 104 cells per well. At 24 hours af-
ter seeding, cells were either left untreated or exposed to 4 Gy
of ionizing radiation and processed for analysis at 2, 4, and 20
hours after exposure. Cells were stained with primary anti-
bodies at a dilution of 1:1000 with anti-pRPA32 (S4/S8; Bethyl
Laboratories, Montgomery, TX) and anti-gH2AX (Ser139;
Merck, Kenilworth, NJ). Secondary antibodies used were Alexa
488 anti-mouse IgG (green) and Cy3 anti-rabbit IgG (Sigma-
Aldrich). 40,6-Diamidino-2-phenylindole (Life Technologies,
Rockville, MD) was used as a nuclear stain. Confocal imaging
was performed by using the Opera Phenix high-content
screening system (PerkinElmer, Waltham, MA) at �63 magni-
fication using a water objective, at wavelengths of 405 nm (40,6-
diamidino-2-phenylindole), 488 nm (Alexa), and 561 nm (Cy3).
A minimum of 320 cells (median, 980; range, 322–1886), in 2
separate experiments, were analyzed for each time point. Image
analysis was performed by using the Columbus Image data
storage and analysis system (PerkinElmer). Statistical analysis
was performed with GraphPad Prism 6.
TR
A

Nucleic Acid Extraction
DNA and RNA extraction were performed by using previ-

ously published methods.4
Whole-Genome Library Preparation
Whole-genome libraries were generated by using either the

Illumina (San Diego, CA) TruSeq DNA LT sample preparation kit
(part nos. FC-121–2001 and FC-121–2001) or the Illumina
TruSeq DNA PCR-Free LT sample preparation kit (Illumina, part
nos. FC-121–3001 and FC-121–3002) according to the manu-
facturer’s protocols with some modifications (Illumina, part no.
15026486 Rev. C July 2012 and 15036187 Rev. A January 2013
for the 2 different kits, respectively). Full methods can be found
in the Supplementary Materials.
RNA Sequencing Library Generation and
Sequencing

RNA-seq libraries were generated by using the Illumina
TruSeq Stranded Total RNA (part no. 15031048 Rev. D April
2013) kits on a Perkin Elmer Sciclone G3 NGS Workstation
(product no. SG3-31020-0300). Full methods can be found in
the Supplementary Material.

Library Sequencing
All libraries were sequenced by using the Illumina HiSeq

2000/2500 system with TruSeq SBS Kit v3-HS (200 cycles)
reagents (part no. FC-401-3001) to generate paired-end 101–
base pair reads.

Copy Number Analysis
Matched tumor and normal patient DNA was assayed by

using Illumina SNP BeadChips as per manufacturer’s in-
structions (HumanOmni1-Quad or HumanOmni2.5–8 Bead-
Chips) and analyzed as previously described.

Identification and Verification of Structural
Variants

The somatic structural variant pipeline was identified by
using the qSV tool. A detailed description of its use has been
recently published.4,33

Identification of and Verification of Point
Mutations

Substitutions and insertions/deletions were called by using
a consensus calling approach that included qSNP, GATK, and
Pindel. The details of call integration and filtering and verifi-
cation using orthogonal sequencing and matched sample ap-
proaches are as previously described.4,33,34

Mutational Signatures
Mutational signatures were defined for genome-wide so-

matic substitutions, as previously described.4

HRDetect
HRDetect scores were calculated as previously described

for the PDCLs.35

Small Interfering RNA Screening and Analysis
Full siRNA screening and analysis were performed with

established methods and are described in the Supplementary
Material.

Reverse-Phase Protein Array
RPPA was performed to investigate proteomic differences

between PDCLs by using established methods and is fully
described in the Supplementary Materials.

RNA-Sequencing Analysis
RNA-seq read mapping was performed by using the bcbio-

nextgen project RNAseq pipeline (https://bcbio-nextgen.
readthedocs.org/en/latest/). Briefly, after quality control and

https://bcbio-nextgen.readthedocs.org/en/latest/
https://bcbio-nextgen.readthedocs.org/en/latest/


366 Dreyer et al Gastroenterology Vol. 160, No. 1

BASIC
AND

TRANSLATIONAL
PANCREAS
adaptor trimming, reads were aligned to the GRCh37 genome
build by using STAR counts for known genes, which were
generated with the function featureCounts in the R (R Foun-
dation for Statistical Computing, Vienna, Austria)/Bioconductor
package Rsubread. The R/Bioconductor package DESeq2 was
used to normalize count data among samples and to identify
differentially expressed genes. Expression data were normal-
ized by using the rlog transform in the DESeq2 package, and
these values were used for all downstream analyses.

Weighted Gene Coexpression Network Analysis
Weighted gene coexpression network analysis was used to

generate a transcriptional network from rlog-normalized
RNAseq data. Briefly, weighted gene coexpression network
analysis clusters genes into network modules by using a to-
pological overlap measure (TOM). The TOM is a highly robust
measure of network interconnectedness and essentially pro-
vides a measure of the connection strength between 2 adjacent
genes and all other genes in a network. Genes are clustered by
using 1 – TOM as the distance measure, and gene modules are
defined as branches of the resulting cluster tree using a dy-
namic branch-cutting algorithm. Full methods can be found in
the Supplementary Materials.

Identification of Significant Subtype-Specific
Changes in Pathways and/or Processes

The R package clipper was used to identify pathways and/
or processes showing significant change between PDCL sub-
types. clipper implements a 2-step empirical approach, using a
statistical analysis of means and concentration matrices of
graphs derived from pathway topologies, to identify signal
paths having the greatest association with a specific phenotype.

Pathway Analysis
Ontology and pathway enrichment analysis was performed

by using the R package dnet and/or the ClueGO/CluePedia
Cytoscape plugins, as indicated. Visualization and/or genera-
tion of network diagrams was performed using either Cyto-
scape or the R package RedeR.

Glasgow Precision Oncology Laboratory
Homologous Recombination Deficiency Test

Signature generation was done by using whole-genome
sequencing data as previously described.36,37 A positive test
was defined when the following criteria were met.

1. There were more than 50 structural variants in total.

2. Greater than 70% of the structural variants were de-
letions, duplications, or translocations.

3. The structural variation (SV) pattern was not focal, as
defined by a large number of structural variants due to
chromothripsis or amplifications.

4. If the predominant variant types were deletions and
translocations, the median deletion size was <10 kilo
base pairs.

OR

5. If the predominant variant type was duplication, the
median duplication size was <50 kilo base pairs.
Replication Stress Signature Generation
Differentially expressed genes were compared to genes

associated with Gene Ontology (GO) terms using the R
package dnet. Significantly expressed GO terms involved in
DNA damage response and cell cycle control were selected.
Differential expression of each selected GO term was applied
to each individual PDCL and patient derived organoid that
underwent RNAseq. This, in turn, was used to generate a
composite score by totaling the score for each selected GO
term sig.score. The function from the R package genefu was
used to calculate a specific signature score in a given sample
using the signatures generated for each pathway and/or
process. This was termed the replication stress signature.
Generation of the signature score for bulk tumor samples
followed the same methodology.

Bulk Expression Sets and Immune Signature
Scores

Bulk RNAseq expression data, subtype assignments, and
immune signature scores were obtained from Bailey et al.5

Gene Set Enrichment of Pancreatic Ductal
Adenocarcinoma Subtypes

Gene set enrichment was performed by using the R package
GSVA. Gene sets representing PDAC subtypes were generated
as previously described.

Clustering and Subtype Assignment
The package ConsensusClusterPlus was used to classify

PDCLs according to the expression signatures defined by Mof-
fitt et al18 and Bailey et al.5 Gene sets representing PDAC
subtypes were generated as previously described.

Statistical Analysis
A Kruskal-Wallis test was applied to the indicated stratified

scores to determine whether distributions were significantly
different. Fisher exact tests were used to evaluate the associa-
tion between dichotomous variables.

Plot Generation
Heatmaps and oncoplots were generated by using the R

package ComplexHeatmap. Dot charts, density plots, and box-
plots were generated using the R package ggpubr. Violin plots
were generated with the Python package Seaborn. Biplot was
generated with the R package ggfortify. All other plots were
generated with the R package ggplot2.

Results
Patient-Derived Cell Lines Recapitulate
Pancreatic Cancer Subtypes

Hierarchical clustering of RNAseq data from the 48
PDCLs recapitulated the 2 primary classes of PC
(Figure 1A, Supplementary Figure 1, and Supplementary
Tables 3-5). Twenty-eight (58%) of the PDCLs were clas-
sified as squamous, and 20 (42%) were classical
(Supplementary Table 4). The preservation of the 26
transcriptional networks (Gene Programs) we previously
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described in bulk PC5 was compared to PDCL-derived gene
programs (Supplementary Figure 1 and Supplementary
Tables 6 and 7). In total, 17 of the 26 gene programs
were closely recapitulated in the PDCLs (Supplementary
Figure 1), with the expected absence of immune
infiltrate–related transcriptional networks (Supplementary
Table 7). The lack of stroma permitted higher resolution
of epithelial transcriptomic networks, showing key mech-
anisms that are difficult to discern from biopsy samples.
Differential expression of genes related to DNA damage
response, cell cycle control, and morphogenic processes
were observed between subtypes and correlated in both
PDCLs and bulk tumor samples (Figure 1A). These findings
suggest that PDCLs are representative of bulk PC and can
be used to develop novel DDR therapeutic strategies for
the clinic and that epithelial cell purity can provide greater
sensitivity in detecting aberrant mechanisms.
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Biomarkers of DNA Damage Response
Deficiency in Pancreatic Ductal Adenocarcinoma
of Pancreatic Cancer

Various biomarkers of DDR deficiency associated with
therapeutic response have been proposed but not validated
clinically in PC. High-ranking Catalogue of Somatic Muta-
tions in Cancer (COSMIC) Breast Cancer gene (BRCA) point
mutational signature cosegregates with a high prevalence of
structural variants, termed the unstable genomic subtype,
and deleterious mutations in HR repair pathway genes such
as BRCA1 and 2 and PALB24 (Figure 1B and Supplementary
Tables 8-10). We previously showed that these signatures
are associated with retrospective clinical response to plat-
inum in PC.4 More recently, early data also suggest a ther-
apeutic signal using PARP inhibitors; however, efficacy is
not well defined beyond BRCA1/2 mutations.36,37 To
address this, we defined PDCLs as DDR deficient based on
the presence of any of 4 putative biomarkers: (1) SV number
and pattern (>200 SVs ¼ unstable genome), (2) a high
COSMIC BRCA mutational signature (ranked within top
quintile), (3) a positive GPOL HR deficiency (HRD) test,38,39

and (4) mutations in key DDR genes (BRCA1, BRCA2, ATM,
ATR, RPA1, RAD51, RAD54, and FANCA) (Figure 1B,
Supplementary Figure 2, and Supplementary Table 11). Out
of 47 PDCLs with whole-genome sequencing data, 6 (13%)
had a positive GPOL HRD test result; 9 (19%) had >200 SVs
(unstable genome); and 10 (21%) had mutations in DDR
genes, of which 2 were germline variants (both in BRCA2)
(Figure 1B, and Supplementary Table 12). There were 4
PDCLs with homozygous mutations in either BRCA1, BRCA2,
or RPA1; these were all associated with unstable genomes,
and 3 of these were positive on GPOL HRD test (Figure 1B
and )Supplementary Table 3. Significant overlap existed
among these, with n ¼ 3 PDCLs with all 4 biomarkers
present; n ¼ 1 had 3 (unstable genome, GPOL HRD test,
BRCA mutational signature) biomarkers positive, n ¼ 4
were positive for 2 biomarkers, and the remaining n ¼ 8 had
1 biomarker positive (Supplementary Table 13). There was
no association between transcriptomic subtype and DDR
status (P ¼ .706).
DNA Damage Response Deficiency
Cosegregates With Response to Platinum and
PARP Inhibitor Treatment

To investigate the relationship between these putative
biomarkers of DDR deficiency and platinum and PARP in-
hibitor response, cell viability assays were performed on 15
PDCLs. PDCLs defined as DDR deficient were more sensitive
to both cisplatin therapy (P ¼ .031) and PARP inhibition (P
< .001) compared to DDR-proficient PDCLs (Figure 2 and
Supplementary Table 11). The DDR-deficient PDCLs all had
median effective concentrations (EC50s) to platinum of
below the sensitivity threshold (10 mmol/L) set by large-
scale pancancer cell line drug screenings (n ¼ 880) using
cisplatin (cancerrxgene.org [COSMIC]).

To further define clinically applicable therapeutic
response biomarkers of DDR deficiency in vivo, bulk tumor
PDX models that represent both DDR-proficient (PDX 2133)
and -deficient (PDX 2179) PC were generated in balb/c
nude mice. The DDR-proficient PDX did not respond to DNA-
damaging agents, including cisplatin and the PARP inhibitor
olaparib combination (Figure 2). The DDR-deficient PDX
model, with a biallelic somatic loss-of-function BRCA1 mu-
tation, responded exceptionally to cisplatin and olaparib as
monotherapy and in combination (Figure 2), suggesting that
PARP inhibition can be as effective as platinum chemo-
therapy in DDR-deficient PC.

These results suggest that DDR deficiency, as defined by
these putative biomarkers, have potential clinical utility in
predicting response to platinum treatment. Importantly, this
included both somatic and germline mutations, suggesting
that therapeutic sensitivity extends beyond germline BRCA1
and 2 mutations (Figure 2 and Supplementary Table 12).
The most robust predictors appear to be biallelic loss-of-
function mutations in BRCA1 or BRCA2, or the presence of
a genomic scar indicating loss of HR, such as high SVs
(>200) and a positive GPOL HRD test. The COSMIC BRCA
mutational signature appears to be a poor predictor of
platinum response (Supplementary Figure 3).

Replication Stress Is a Feature of the Squamous
Subtype of Pancreatic Cancer

Replication stress has been described to be closely
related to DDR deficiency, and activation of cell cycle genes
is enriched in the squamous subtype. As a consequence, we
investigated targeting of replication stress as a novel ther-
apeutic strategy. We found significant subtype differences in
the expression of genes controlling cell cycle, including the
G2/M checkpoint in both PDCLs and bulk tumor PC
(Figure 1). Expression of WEE1 (P ¼ .006), CDK6 (P ¼ .02),
and CDK7 (P < .001) was enriched in the squamous subtype
in both PDCLs and bulk tumor (Figure 1A). We then used a
combination of DNA maintenance, replication, and cell cycle
regulation network–related transcriptional profiles from GO
and pathway enrichment analysis to define replication
stress using mechanisms associated with DNA replication
(ATR activation, chromosomal maintenance, E2F transcrip-
tional pathways, HR, Fanconi anemia, base-excision repair,
p53 signaling, endoplasmic reticulum stress, and RNA

http://cancerrxgene.org


Figure 1. Subtype specific
differences and DDR in
PDCLs of PC. (A) Heat-
maps of key genes in
pathways important in
carcinogenesis, grouped
into distinct molecular
processes related to
morphogenesis and cell
cycle control between
molecular subtypes of bulk
tumor and PDCLs of PC.
The degree of color satu-
ration is proportional to the
degree of enrichment in
the squamous (blue) and
classical pancreatic (or-
ange) subtypes. For all
samples within each sub-
type, genes are ranked by
the most differentially
expressed between sub-
types. (B) Surrogate bio-
markers of DDR
deficiency, defined by
large-scale sequencing
projects of PC, include (1)
unstable genome (>200
SVs), (2) the novel GPOL
HRD test, (3) high-ranking
BRCA mutational signa-
ture, and (4) deleterious
mutations in DDR pathway
genes. PDCLs are ranked
from left to right based on
the COSMIC BRCA muta-
tional signature, with SV
subtype, number of SVs,
and GPOL HRD test status
symbolized on the top bar.
Examples of circos plots
for 3 PDCLs are included,
representing unstable,
stable, and scattered sub-
types. SNV, single-
nucleotide variant; TGF,
transforming growth
factor.
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processing). This resolved into a transcriptomic signature
(termed the replication stress signature), which was applied
as a hypothetical biomarker of replication stress (Figure 3
and Supplementary Table 14).

PDCLs with high replication stress were more likely to be
of the squamous subtype (P < .001) (Figure 3) and had
significantly higher levels of pRPA at rest (a surrogate marker
of single-stranded DNA break accumulation that infers
replication stress) (P < .0001) (Figure 3). PDCLs with high
replication stress and concurrent HRD had a greater pro-
portion of gH2AX-positive cells at rest (Supplementary tables
15 and 16) (a marker of double-stranded DNA breaks) (P ¼
.0086) and had persistently high levels of pRPA- and gH2AX-
positive cells at 20 hours after ionizing radiation, when pRPA
and gH2AX should have returned to normal levels in cells
with no replication defects and competent at repairing this
level of DNA damage (Supplementary Figure 4). RPPAs
inferred functional consequences with differential
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phosphorylation and activation of key effectors of DDR and
cell cycle progression between the classical and squamous
subtypes (CHK1, CHK2, Rb, p21CIP1/WAF1, ATM/ATR sub-
strates, cyclin D1, histone H2AX) (Figure 3, Supplementary
Figure 4, and Supplementary Table 15). The squamous sub-
type is also enriched for the activation and transcription of
oncogenes including MYC and CCNE (Figure 3). Oncogene
activation is known to cause replication stress secondary to
genomic instability, leading to activation of cell cycle check-
point regulatory proteins involved in the replication stress
response, such as ATR, WEE1, and CHK125,40 (Supplementary
Figure 3).

An siRNA screening targeting genes controlling DNA
damage repair and replication showed a functional de-
pendency on DDR proteins, including ATM, ATR, and CHK1
in squamous PDCLs (Figure 3F, Supplementary Figure 2,
and Supplementary Table 17). This is in keeping with the
results from the immunofluorescent and RPPA analyses
suggesting higher baseline levels of proteins associated with
replication stress in the squamous PDCLs and a subsequent
dependency on these proteins and cell cycle checkpoints for
maintaining genomic integrity and cell survival.

Differential expression of genes regulating the G2/M
checkpoint in PDCLs and bulk tumors (such as WEE1 and
CHEK1) and the dependence on ATR activation in response
to replication stress (Figure 3A) suggest that selective in-
hibition of these mechanisms may confer efficacy in tumors
with high replication stress.
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Replication Stress Is Associated With Sensitivity
to Cell Cycle Checkpoint Inhibitors

Novel agents currently in early-phase clinical trial tar-
geting the cell cycle were used to generate a therapeutic
testing strategy (Supplementary Figure 3B).41–45 Based on
these data, in vitro sensitivity was assessed by using cell
viability assays after a selection of PDCLs were treated with
increasing doses of inhibitors of CHK1 (AZD7762), CDK4/6
(palbociclib), and PLK4 (CFI-400945), showing differential
sensitivity (Supplementary Figure 3 and Supplementary
Table 18). Based on promising early clinical trial results in
other cancer types,44–49 more extensive testing using in-
hibitors of ATR (AZD6738) and WEE1 (AZD1775) was
performed on 15 PDCLs defined as high and low replication
stress based on the replication stress signature score
(Figure 3A and Supplementary Figure 3). This showed that
PDCLs with high replication stress were more sensitive to
both ATR and WEE1 inhibition (Figure 4A–D). To validate
these findings, we used a panel of human PC-derived
organoids,32 which are deemed as the current criterion
standard 3-dimensional model for pharmacotyping
(Supplementary Tables 19 and 20). As seen in the PDCLs,
organoids within the top quintile of high replication stress
predicted response to both ATR and WEE1 inhibition with
sensitivity to both agents in all organoids classified as high
replication stress (Figure 4E–H). Importantly, these re-
sponses were independent of DDR status or molecular
subtype, with responses seen in only high replication stress
PDCLs (Supplementary Figure 3), suggesting that high
replication stress signature is a more reliable biomarker of
ATR inhibitor or WEE1 inhibitor response than squamous
subtype or DDR deficiency.

Replication Stress Is Independent of DNA
Damage Response Deficiency in Pancreatic
Cancer

To investigate the relationship of replication stress and
DDR deficiency and the alignment of these therapeutic seg-
ments, a comparison was performed with the PDCL cohort.
By using the described biomarkers of DDR deficiency and
replication stress, a 2-by-2 grid was constructed to compare
replication stress ranking and DDR deficiency (Figure 5). This
showed that signatures of DDR deficiency and replication
stress are largely independent of each other, yet high repli-
cation stress is enriched in the squamous subtype (P ¼ .007)
(Figure 5). Therapeutic response data were overlapped based
on previously described experiments by using ATR/WEE1
inhibitors and platinum, generating biomarker hypotheses for
therapeutic responsiveness (Figure 5). PDCLs that are DDR
deficient with high replication stress respond to both DDR
targeting agents (eg, platinum and PARP inhibitors) and cell
cycle checkpoint inhibitors (eg, ATR and WEE1 inhibitors),
DDR-deficient PDCLs with low replication stress respond to
DDR agents only, DDR-proficient PDCLs with high replication
stress respond to cell cycle checkpoint inhibitors only, and
DDR-proficient PDCLs with low replication stress respond to
neither class of agent (Figure 5).

Potential Clinical Utility of the Replication Stress
Signature

To assess the potential clinical validity and utility of
these preclinical data, the relationship between the repli-
cation stress signature score and molecular subtypes in bulk
tumor samples was assessed by using published tran-
scriptomic data sets of PC.5,9 This included whole tran-
scriptome sequencing sets acquired through the ICGC
totaling 94 patients with primary resected PC
(Supplementary Figure 5). This recapitulated the associa-
tion between squamous molecular subtype and high repli-
cation stress (P ¼ .006) (Supplementary Figure 5), with
50% of squamous tumors in the top quartile of tumors
ranked by the replication stress score.

The replication stress signature was then applied to The
Cancer Genome Atlas9 high epithelial cellularity set (ABSO-
LUTE purity �0.2), and the ICGC microarray transcriptomic
data sets (Supplementary Figure 6). Again, the top-ranking
quartile of replication stress signature was significantly
enriched with squamous subtype PC (The Cancer Genome
Atlas set, P ¼ .009; microarray set, P ¼ .037)
(Supplementary Figure 6). We then examined the potential
clinical utility of the replication stress signature in biopsy
material acquired through the Precision-Panc endoscopic
ultrasound fine-needle biopsy training cohort (n ¼ 54),
recruited and collected during the development of the
Precision-Panc (Supplementary Figure 5B).50 As in the other
cohorts, this showed enrichment of the squamous subtype
with high replication stress (P ¼ .027) and provides proof-



Figure 2. Targeting DDR-deficient PC with platinum and PARP inhibitors. (A) Cell viability after 72 hours of cisplatin treatment
in PDCLs. The dotted line indicates that EC50 in the most sensitive PDCL was approximately 15 times more sensitive than the
most resistant PDCLs. (B) Boxplot of mean cisplatin EC50 in PDCLS stratified by DDR status. The boxes represent the 95%
confidence interval, and whiskers show the minimum and maximum range. P was calculated by using the Mann-Whitney test
between the mean EC50 in each group. (C) PARP inhibitor (BMN-637 and rucaparib) response in PDCLs. The dotted lines
indicate the EC50 between the most sensitive and most resistant PDCLs. P indicates the statistical difference between TKCC
10 (GPOL HRD test positive) and TKCC15 (DDR proficient) using nonlinear regression analysis. (D) PDX 2133 and (E) PDX 2179
(DDR deficient) treated with a panel of DNA-damaging agents and gemcitabine. The colored arrows indicate redosing of
specific agents. M, mol/L.
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of-principle clinical validity that the signature can be
generated from fine-needle biopsy material and used as a
putative biomarker in the clinical setting.
Discussion
Identifying responsive patient subgroups is crucial to

therapeutic development and improving outcomes for PC.
Genomic sequencing studies and the development of novel
therapeutic agents has made DDR mechanisms one of the
most attractive therapeutic opportunities in PC.4,8 Using
surrogate markers of DDR deficiency (GPOL HRD test,
structural variation, the COSMIC BRCA mutational signa-
ture, and mutations in HR pathway genes) we show that
DDR-deficient PCs respond preferentially to both platinum
and PARP inhibitors in PDCLs (n ¼ 15) and long-lasting
complete and near-complete responses in a DDR-deficient
PDX model with single-agent PARP inhibition with ola-
parib. This was as effective as cisplatin monotherapy or
combination treatment with cisplatin and Olaparib,



Figure 3. Replication stress in PDCLs of PC. (A) Heatmap of pathways and molecular processes (GO terms) involved in DNA
maintenance and cell cycle regulation activated in replication stress and DNA damage response. PDCLs are ranked from right
to left based on the decreasing novel transcriptomic signature score of replication stress, and molecular subtype is indicated in
the top bar showing the association between activation of replication stress and the squamous subtype (P < .001, chi-square
test, low vs high). (B, C) Immunofluorescent quantifications of (B) gH2AX and (C) pRPA at normal conditions are elevated in the
squamous (blue) but not the classical pancreatic (orange) PDCLs. (D) Proteomic analysis using RPPA of a panel of PDCLs
showed that replication stress response proteins are differentially activated in the squamous subtype. (E) Heatmap showing
oncogene expression in PDCLs ranked from right to left by replication stress signature. Squamous PDCLs are enriched for
oncogene activation and replication stress. (F) siRNA screening showing transcriptome functional interaction subnetwork,
showing preferential dependencies of cell cycle control and DNA maintenance genes in the squamous subtype. Different node
colors represent dependencies in different molecular subtypes, and the size of each node is relative to the number of siRNA
hits. FC, fold change.
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Figure 4. Targeting replication stress in PC. Dose response curves (EC50 shift) for (A) ATR and (B) WEE1 inhibitors calculated
by using MTS assay in PDCLs after 72 hours of drug treatment. (C, D) Mean relative EC50 for PDCLs stratified by replication
stress score. Patient-derived organoid drug screening dose response curves (EC50 shift) for (E) ATR and (G) WEE1 inhibitors
calculated by using MTS assay after 72 hours of drug treatment. (F, H) Mean relative EC50 for PDCLs stratified by replication
stress score. Each boxplot represents mean EC50, and box and whiskers represent minimum and maximum EC50 with 95%
confidence interval. P calculated by using Mann-Whitney test between mean EC50 in each group.
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Figure 5. Relationship between DDR deficiency, replication stress, and therapeutic response in PDCLs of PC. PDCLs are
ranked based on a novel transcriptomic signature of replication stress (y-axis) and a composite genomic readout of DDR
deficiency (x-axis). DDR deficiency is a hierarchical score that incorporates the COSMIC BRCA mutational signature (signature
3), the number of structural variants distributed across the genome, and the GPOL HRD test associated with BRCA deficiency.
Relative HRDetect score is indicated by colored scale. The combination of high/low states of each characteristic results in 4
groups. Squamous subtype PDCLs (blue squares) are associated with high replication stress (P ¼ .007, chi-square test).
PDCLs tested are identified and encircled in blue. DDR deficiency and the replication stress signature predicted differential
therapeutic response.
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suggesting that in appropriately selected patients, PARP
inhibitor monotherapy can potentially induce clinically
relevant responses similar to platinum. This provides po-
tential therapeutic options for patients with poor perfor-
mance status or after intolerance or acquired resistance to
platinum has developed.36 Predicting platinum response is
more complex than using point mutations in DDR genes
alone. In keeping with other studies,51 biallelic loss-of-
function mutations in HR genes, structural variation
signatures, including >200 SVs,4 and the GPOL HRD test
appear to be robust, but they require testing in clinical
settings. However, the COSMIC BRCA mutational signature
is a poor predictor of platinum response in isolation.
Selecting robust biomarkers for platinum response is
crucial for clinical testing. The GPOL HRD test in
conjunction with mutations in DDR genes has been
selected as the biomarker of platinum response to inves-
tigate in PRIMUS-001 (ISRCTN75002153) and PRIMUS-002
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(ISRCTN34129115), 2 phase 2/3 clinical trials on the
Precision-Panc platform.

We define a novel replication stress signature which is
associated with the squamous subtype in PDCLs and bulk
tumors from multiple PC cohorts (n ¼ 383 patients).
Elevated replication stress, as defined by this signature, is
associated with functional deficiencies in DNA replication,
leading to a therapeutic vulnerability to novel agents as
demonstrated by cell viability assays, organoid drug
screenings, and siRNA functional screening. This molec-
ular feature is independent of DDR status, platinum
response, or molecular subtype. This suggests that mo-
lecular signatures, such as the replication stress signa-
ture, can be used as biomarkers for predicting response
to ATR or WEE1 inhibitors and offer patients with DNA
replication defects alternative therapeutic options to the
standard-of-care platinum chemotherapy. Tumors that are
DDR deficient can be targeted with platinum-based ther-
apy or, in the context of a patient with reduced perfor-
mance status or as the second line, PARP inhibitors.
Patients with high replication stress can be targeted with
ATR or WEE1 inhibitors, which can be combined with
PARP inhibitors or platinum if concurrent DDR deficiency
exists or after platinum resistance develops. This hy-
pothesis will be tested in the PRIMUS-004
(ISRCTN16004234) clinical trial on the Precision-Panc
platform, with the secondary endpoint of replication
stress signature as a biomarker of response.

In summary, we developed and performed preclinical
testing on novel biomarkers of DDR deficiency and repli-
cation stress that have potential clinical utility. Well-
designed precision oncology platforms, such as Precision-
Panc (precisionpanc.org), will enable biomarker-driven
clinical testing and allow refinement of biomarkers pre-
dicting meaningful responses and potential translation into
clinical practice.
Supplementary Material
Note: To access the supplementary material accompanying
this article, visit the online version of Gastroenterology at
www.gastrojournal.org, and at https://doi.org/10.1053/
j.gastro.2020.09.043.
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Supplementary Materials and Methods

Australian Pancreatic Cancer Genome Initiative
Sydney South West Area Health Service Human

Research Ethics Committee, western zone (protocol number
2006/54); Sydney Local Health District Human Research
Ethics Committee (X11-0220); Northern Sydney Central
Coast Health Harbour Human Research Ethics Committee
(0612-251M); Royal Adelaide Hospital Human Research
Ethics Committee (091107a); Metro South Human Research
Ethics Committee (09/ QPAH/220); South Metropolitan
Area Health Service Human Research Ethics Committee
(09/324); Southern Adelaide Health Service/Flinders Uni-
versity Human Research Ethics Committee (167/10); Syd-
ney West Area Health Service Human Research Ethics
Committee (Westmead campus) (HREC2002/3/4.19); The
University of Queensland Medical Research Ethics Com-
mittee (2009000745); Greenslopes Private Hospital Ethics
Committee (09/34); North Shore Private Hospital Ethics
Committee. Johns Hopkins medical institutions: Johns
Hopkins Medicine institutional review board
(NA00026689). Ethikkommission an der Technischen Uni-
versität Dresden (approval numbers EK30412207 and
EK357112012). University of Michigan institutional review
board (HUM00025339). Mayo Clinic institutional review
board (no. 66-06)

PRECISION-Panc Endoscopic Ultrasound
Training Cohort

Ethical approval was obtained for collecting additional
research biopsy samples from patients undergoing endo-
scopic ultrasound-guided biopsies for investigation of
possible PC (ethical approval number: 17/WS/0085). Fully
informed consent was obtained for all patients from whom
additional biopsy samples were taken. Samples were ano-
nymized at the point of collection, with only the PhD
candidate being able to identify patients from research
samples.

Whole-Genome Library Preparation
Whole-genome libraries were generated by using either

the Illumina TruSeq DNA LT sample preparation kit (part
nos. FC-121–2001 and FC-121–2001) or the Illumina
TruSeq DNA PCR-Free LT sample preparation kit (part
nos. FC-121–3001 and FC-121–3002) according to the
manufacturer’s protocols with some modifications (Illu-
mina, part nos. 15026486 Rev. C July 2012 and 15036187
Rev. A January 2013 for the 2 different kits, respectively).
For the TruSeq DNA LT sample preparation kit, 1 mg of
genomic DNA was used as input for fragmentation to
approximately 300 base pairs (bp), followed by an Solid
Phase Reversible Immobilization (SPRI)-bead cleanup with
the AxyPrep Mag PCR Clean-Up kit (Corning, part no.
MAG-PCR-CL-250). After end repair, 30 adenylation, and
adaptor ligation, the libraries were size-selected by using a
double SPRI-bead method to obtain libraries with an insert
size of approximately 300 bp. The size-selected libraries

were subjected to 8 cycles of polymerase chain reaction
(PCR) to produce the final whole-genome libraries ready
for sequencing. For the TruSeq DNA PCR-Free LT sample
preparation kit, 1 mg of genomic DNA was used as input
for fragmentation to approximately 350 bp, followed by an
end-repair step and then a size selection using the double
SPRI-bead method to obtain libraries with an insert size of
approximately 350 bp. The size-selected libraries then
underwent 30 adenylation and adaptor ligation to produce
final whole genome libraries ready for sequencing. Before
sequencing, whole-genome libraries were qualified via the
Agilent (Santa Clara, CA) BioAnalyzer 2100 with the High
Sensitivity DNA Kit (Agilent, part no. 5067-4626). Quan-
tification of libraries for clustering was performed using
the KAPA Library Quantification Kit–Illumina/ Universal
(KAPA Biosystems, part no. KK4824) in combination with
the Life Technologies Viia 7 real-time PCR instrument.

RNA-Sequencing Library Generation and
Sequencing

RNA-seq libraries were generated by using TruSeq
Stranded Total RNA (part no. 15031048 Rev. D April 2013)
kits on a PerkinElmer Sciclone G3 NGS Workstation
(product no. SG3- 31020-0300). Ribosomal depletion step
was performed on 1 mg of total RNA by using Ribo-Zero
Gold before a heat fragmentation step aimed at producing
libraries with an insert size between 120 and 200 bp.
Complementary DNA was then synthesized from the
enriched and fragmented RNA by using Invitrogen (San
Diego, CA) SuperScript II Reverse Transcriptase (catalog no.
18064) and random primers. The resulting cDNA was
further converted into double-stranded DNA in the pres-
ence of deoxyuridine triphosphate to prevent subsequent
amplification of the second strand and thus maintain the
strandedness of the library. After 30 adenylation and
adaptor ligation, libraries were subjected to 15 cycles of
PCR to produce RNAseq libraries ready for sequencing.
Before sequencing, exome and RNAseq libraries were
qualified and quantified via the Caliper LabChip GX (part no.
122000; East Lyme, CT) instrument using the DNA High
Sensitivity Reagent kit (product no. CLS760672). Quantifi-
cation of libraries for clustering was performed with the
KAPA Library Quantification Kits for Illumina sequencing
platforms (kit code KK4824) in combination with Life
Technologies Viia 7 real-time PCR instrument.

Weighted Gene Coexpression Network Analysis
Weighted gene coexpression network analysis (WGCNA)

was used to generate a transcriptional network from rlog-
normalized RNAseq data.1 Briefly, WGCNA clusters genes
into network modules by using a TOM. The TOM is a highly
robust measure of network interconnectedness and essen-
tially provides a measure of the connection strength be-
tween 2 adjacent genes and all other genes in a network.
Genes are clustered by using 1 – TOM as the distance
measure, and gene modules are defined as branches of the
resulting cluster tree using a dynamic branch-cutting
algorithm.
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The module eigengene is used as a measure of module
expression in a given sample and is defined as the first
principal component of a module. To relate sample traits of
interest to gene modules, sample traits were correlated to
module eigengenes, and significance was determined by a
Student asymptotic P value for the given correlations. To
relate gene modules to PDCL subtypes, module eigengenes
were stratified by subtype, and subtype significance was
determined by the Kruskal-Wallis test.

Module preservation as implemented in WGCNA detects
the conservation of gene pairs between 2 networks (eg,
PDCL and bulk). Two composite measures were used to
assess module preservation, namely, median rank and
Zsummary. Median rank was used to identify module pres-
ervation, and Zsummary was used to assess the significance of
module preservation via permutation testing. Permutation
was performed 200 times; modules with a Zsummary score of
>10 indicate preservation, 2–10 indicates weak to moder-
ate preservation, and <2 indicates no preservation in the
permutations.

Reverse Phase Protein Array. Samples were lysed in
RIPA lysis buffer (50mM Tris-HCL at pH7.4, 150mM Sodium
Chloride, 5mM EGTA, 0.1% SDS, 1% NP40, 1% Deoxy-
cholate, supplemented protease and phosphatase inhibitor
tablets; Roche Applied Science Cat. #: 05056489001 and
04906837001) for 30 min on ice and cleared by centrifu-
gation at 14K for 15 min at 4�C. Protein concentration was
determined using a Bradford assay (Sigma) and all samples
were normalized to 2mg/ml. 4x SDS sample buffer (40%
Glycerol, 8% SDS, 0.25M Tris-HCL, pH 6.8. 1/10th vol/vol 2-
mercaptoethanol) was added to each sample, followed by
incubation at 80�C for 5 mins. Serial dilutions (1, 0.5, 0.25,
0.125) were then prepared by diluting samples in PBS.
Samples were printed onto Avid nitrocellulose coated glass
slides (Grace Biolabs) using an Aushon 2470 microarrayer
(Aushon Biosystems), with 2 technical replicates per sam-
ple. Slides were processed as follows: 4 x 15 min washes
with dH20, incubated with antigen retrieval agent (Reblot
strong, Millipore) for 15 min, 3 x 5 min washes with PBST,
incubated with superblock TBST (ThermoFisher Scientific)
for 10 min, 3 x 5 min washes with TBST, incubated with
primary antibodies (all 1:200) diluted in superblock TBST
for 60 mins, 3 x 5 min washes with TBST, blocked with
superblock TBST for 10 mins, 3 x 5 min washes with TBST,
incubated with anti-rabbit dylight 800 secondary Ab
(1:2000 in superblock TBST)(Cell Signalling Technologies)
for 30 mins, 3 x 5 min washes with TBST, 1 x 5 min wash
with dH20, slides spun at 2000rpm for 5mins and allowed
to air dry in the dark. An additional slide was stained with
FAST Green FCF for normalization against total protein: 3 x
5min washes with dH20, incubated for 15 mins in 1%
NaOH, slides rinsed 20 x in dH20, incubated for 10 min in
dH20, incubated in de-stain (30% methanol, 7% glacial
acetic acid, 63% dH20) for 15 min, incubated for 3 mins in
FAST green staining solution (0.0025%w/v FAST green in
de-stain), rinsed 20 x in dH20, incubated for 15 mins in de-
stain solution, rinsed 20 x in dH20, spun at 2000rpm for 5
mins and allowed to air dry in the dark. All steps were
performed at room temperature with agitation. Slides were

visualized using an Innopsys 710AL infra-red microarray
scanner and signals quantified using MAPIX microarray
image analysis software (Innopsys). Non-specific signals
were determined by omitting the primary antibody incu-
bation step. All signals were within the linear range of
detection with an R2 value >0.9. Final output is the median
value for each dilution series as fentogram, background
subtracted and normalized for protein loading.

Small Interfering RNA Screening
Before siRNA screening, the optimal cell number per

well and optimal reverse transfection reagents for each
PDCL were identified by assessing transfection efficiency
using 6 different transfection reagents (Dharmafect 1-4,
RNAimax, Lipofectamine 2000; Invitrogen, ThermoFisher),
based on the manufacturers’ instructions. Experimental
conditions were selected that met the following criteria: (1)
compared to a mock control (no lipid, no siRNA), the
transfection of nonsilencing negative control siRNA caused
no more than 20% cell inhibition; (2) compared to non-
silencing negative control siRNA, the transfection of PLK1–
targeting siRNA caused more than 80% cell inhibition; and
(3) cell confluency reached 70% within the range of 4–7
days.2 The last criterion allowed assays to be terminated
while cells were in the growth phase. Once optimal condi-
tions were established, each PDCL was reverse transfected
in a 384-well plate format with a custom siGENOME siRNA
library (Dharmacon, Lafayette, CO) designed to target 714
kinase-coding genes, 256 protein phosphatase-coding
genes, 722 genes implicated in energy metabolism, 73 tu-
mor suppressor genes, and 166 genes involved in the repair
of DNA damage (see Supplementary Table 19 for a list of
genes covered in the siRNA library). Each well in the 384-
well plate arrayed library contained a SMARTpool of 4
distinct siRNA species targeting different sequences of the
target transcript. Each plate was supplemented with non-
targeting siCONTROL and siPLK1 siRNAs (Dharmacon). Cell
viability was estimated 5 days after transfection by using a
luminescent assay detecting cellular ATP levels (CellTitre-
Glo, Promega). Luminescence values were processed by
using the cellHTS2 R package.3 To evaluate the effect of
each siRNA pool on cell viability, we log2 transformed the
luminescence measurements and then centered these to the
median value for each plate. The plate-centered data were
scaled to the median absolute deviation of the library as a
whole to produce robust Z scores. All screenings were
performed in triplicate. Screenings judged to have poor
dynamic range (Z0 factor < 0)4 or poorly correlated repli-
cates (r < 0.7) were excluded during an evaluation of
screening quality. Z scores were adjusted using a quantile
normalization.5

Small Interfering RNA Screening Analysis
siRNA hits were identified by calculating the median

absolute deviation of normalized Z scores for a given siRNA
across all samples and identifying sample Z scores greater
than or equal to 2 � the median absolute deviation. This
analysis generated a seed matrix (n siRNA hits � m
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samples), which was used as the starting input for the
random walk with restart algorithm as implemented by the
R package dnet.6 This algorithm was used to identify func-
tionally important subnetworks associated with cell
viability from a curated protein-protein interaction network,
STRING, version 10.7 Considering the complex nature of
topologic features of human interactome data, we introduce
a randomization-based test to evaluate the candidate
interactors using 1000 topologically matched random net-
works. Candidate interactors that remain significant (ie,
Pedge < .05) were identified, and a consensus subnetwork
was constructed by collapsing all sample-specific results.
The resulting network was visualized by using RedeR.8

RNA-Sequencing Analysis
RNAseq read mapping was performed by using the

bcbio-nextgen project RNAseq pipeline (https://bcbio-
nextgen.readthedocs.org/en/latest/). Briefly, after quality
control and adaptor trimming, reads were aligned to the
GRCh37 genome build using STAR9 counts for known genes
were generated by using the function featureCounts in the
R/Bioconductor package Rsubread.10 The R/Bioconductor
package DESeq2 was used to normalize count data between
samples and to identify differentially expressed genes.11

Expression data were normalized using the rlog transform
in the DESeq2 package, and these values were used for all
downstream analyses.

Weighted Gene Coexpression Network Ana-
lysis. WGCNA was used to generate a transcriptional
network from rlog-normalized RNAseq data.1 Briefly,
WGCNA clusters genes into network modules using a TOM.
The TOM is a highly robust measure of network intercon-
nectedness and essentially provides a measure of the
connection strength between 2 adjacent genes and all other
genes in a network. Genes are clustered by using 1 – TOM as
the distance measure and gene modules are defined as
branches of the resulting cluster tree using a dynamic
branch-cutting algorithm.

Identification of Significant Subtype-Specific
Changes in Pathways and/or Processes

The R package clipper12 was used to identify pathways
and/or processes showing significant change between PDCL
subtypes. clipper implements a 2-step empirical approach,
usinga statistical analysis ofmeans andconcentrationmatrices
of graphs derived from pathway topologies, to identify signal
pathshaving thegreatest associationwitha specificphenotype.

Pathway Analysis
Ontology and pathway enrichment analysis was per-

formed by using the R package dnet and/or the ClueGO/
CluePedia Cytoscape13,14 plugins as indicated. Visualization
and/or generation of network diagrams was performed
with either Cytoscape15 or the R package RedeR.8

Replication Stress Signature Generation
To define subtype-specific signatures that can inform

therapeutic development, differentially expressed genes

were compared to genes associated with GO terms by using
the R package dnet. Significantly expressed GO terms
involved in DDR and cell cycle control were selected. Dif-
ferential expression of each selected GO term was applied to
each individual PDCL that underwent RNAseq. This, in turn,
was used to generate a composite score by totaling the score
for each selected GO term. The sig.score function from the R
package genefu16 was used to calculate a specific signature
score in a given sample by using the signatures generated
for each pathway and/or process. This was termed the
replication stress signature. Generation of signature score
for bulk tumor samples followed the same methodology.

Bulk Expression Sets and Immune Signature
Scores

Bulk RNAseq expression data, subtype assignments, and
immune signature scores were obtained from Bailey et al.17

Gene Set Enrichment of Pancreatic Ductal
Adenocarcinoma Subtypes

Gene set enrichment was performed by using the R
package GSVA.18 Gene sets representing PDAC subtypes
were generated as previously described.17

Clustering and Subtype Assignment
The package ConsensusClusterPlus9 was used to classify

PDCLs according to the expression signatures defined in
Moffitt et al20 and Bailey et al.7 Gene sets representing PDAC
subtypes were generated as previously described.

Statistical Analysis
A Kruskal-Wallis test was applied to the indicated

stratified scores to determine whether distributions were
significantly different. Fisher exact tests were used to eval-
uate the association between dichotomous variables.

Plot Generation
Heatmaps and oncoplots were generated using the R

package ComplexHeatmap.21 Dot charts, density plots, and
boxplots were generated using the R package ggpubr. Violin
plots were generated with the Python package Seaborn.
Biplot was generated by using the R package ggfortify.22 All
other plots were generated using the R package ggplot2.23

Patient-Derived Xenograft Therapeutic Testing
PDX of PDAC were generated and comprehensively

characterized as part of the ICGC project.24–26 BALB/c nude
mice were anesthetized, and a single PDX fragment was
inserted subcutaneously into the right flank according to
standard operating procedure. PDX models were grown to
150 mm3 (volume ¼ [length2 � width]/2); at this point,
each PDX was randomized to a different treatment regime.
Responsive PDXs were treated once tumor size returned to
150 mm3, up to a maximum of 3 rounds. Resistant models
were treated after a treatment break of 2 weeks in accor-
dance with current clinical treatment regimes, up to a
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Supplementary Figure 1.Gene program dysregulation in PC PDCLs. (A) Comparison of gene programs (GP) of bulk tumor
previously described28 and GPs identified in PDCLs by WGCNA; ranked by GP module preservation on the x-axis. (B)
Heatmap of PDCLs classified into squamous (blue) and classical pancreatic (orange) subtypes showing GP module eigengene
(ME) values. (C) The expression of components of publicly curated molecular pathways and mechanisms in PDCLs related to
replication and DNA damage repair. GPs are grouped into key molecular processes that are important in carcinogenesis. ECM,
extracellular matrix; TGF, transforming growth factor.
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Supplementary Figure 2.Mutational landscape and subtype-specific siRNA screening dependencies of PC PDCLs. (A)
Oncoplot of somatic mutations of significantly mutated genes in PDCLs. Structural variations (green), nonsilent mutations
(blue), deletion (purple), and amplification of �8 copies (red). (B) Oncoplot of somatic and germline mutations in key genes
known to contribute to DDR and its mutation rate. (C) siRNA hits across all PDCLs grouped into molecular processes of DDR.
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Supplementary Figure 3. Targeting replication stress in PC PDCLs. (A) Replication stress can be induced by multiple factors,
including oncogenic activation (KRAS, MYC) and chemotherapeutics (eg, platinum). This results in stalled replication forks
when DNA polymerases (Pol) are separated from DNA helicase (HEL). This results in the coating of single-strand DNA by
replication protein A (RPA), which results in ATR activation. This, in turn, generates the replication stress response via CHK1
and WEE1, resulting in checkpoint activation and DNA repair. This safeguards the integrity of the genome by preventing entry
into mitosis with incompletely replicated genomes. (B) Agents currently in clinical trials or approved for use in other cancer
types that target cell cycle checkpoints. Cell viability curves for agents inhibiting (C) CDK4/6 (palbociclib), (D) PLK4 (CDI-
400945), and (E) CHK1 (AZD7762). PDCLs were classified by replication stress signature score as high (red), medium (orange),
and low (black). (F) Differences in sensitivity to ATR inhibitor (AZD6738) in squamous and classical cell lines. (G) Differences in
sensitivity to WEE1 inhibitor (AZD1775) in squamous and classical cell lines. (H) Response to DNA damaging agents and
agents targeting cell cycle checkpoint. Colored heatmap reflects replication stress signature score and relative HRDetect
score (red indicates high; blue indicates low) and drug sensitivity (green indicates most sensitive; red indicates resistant). In
general, PDCLs with high replication stress are more sensitive to ATR and WEE1 inhibition, irrespective of DDR status. In
general, platinum sensitivity is dependent on DDR status, irrespective of replication stress signature score. dNTP, deoxy-
nucleotide triphosphate.
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Supplementary Figure 4. Replication stress in PC PDCLs. (A) Immunofluorescent quantification of pRPA and yH2AX after 4
Gy of ionizing radiation (IR) in classical pancreatic (orange) and squamous (blue) PDCLs. pRPA- and gH2AX-positive cells are
defined as cells with >10 foci of pRPA and gH2AX per cell. (B) Immunofluorescent images of TKCC10 (squamous) and Mayo-
4636 (classical pancreatic) PDCLs at normal and at 4 and 20 hours after 4 Gy IR. (C) Violin plots of RPPA analysis showing
differential expression of (phospho-)proteins in, cell cycle, and DNA damage pathways between subtypes. Kruskal-Wallis test
was used for violin plot P values. FG, femtogram.

January 2021 DNA Damage Response and Replication Stress in Pancreatic Cancer 377.e10



377.e11 Dreyer et al Gastroenterology Vol. 160, No. 1



=
Supplementary Figure 5. Targeting replication stress and DDR deficiency in clinical cohorts of PC. (A) Bulk tumor samples
from the ICGC PC cohort that have undergone both whole-genome sequencing and RNAseq are ranked from left to right
based on the COSMIC BRCA mutational signature as a scale of DDR deficiency (x-axis) and top to bottom by the novel
transcriptomic signature of replication stress (y-axis). HR pathway gene mutations and source of tissue sequenced are marked
along the x-axis. Platinum response is marked along x-axis, and the related patient is encircled at individual points, where
green represents response, and red indicates resistance. An asterisk indicates PDX response data. Relevant molecular
subtype frequency (squamous vs classical pancreatic) is indicated for each quadrant, showing that squamous PC was
associated with high-ranking replication stress score (15 out of 41 vs 5 out of 42) (P ¼ .009, chi-square test). (B) The replication
stress signature in the Precision-Panc endoscopic ultrasonography fine-needle biopsy training cohort, showing its clinical
utility in the advanced disease setting (34% of cohort was locally advanced, and 37% was metastatic). The top-ranking
quartile of replication stress signature scored as high showed that 50% of squamous tumors were within this group,
compared to only 21% of the classical pancreatic tumors (P ¼ .027, chi-square test). EUS, endoscopic ultrasonography; SNV,
single-nucleotide variant.

January 2021 DNA Damage Response and Replication Stress in Pancreatic Cancer 377.e12



Supplementary Figure 6. Replication stress signature in published bulk tumor cohorts of PC. The association between
molecular subtype and replication stress in the (A) ICGC RNAseq (n ¼ 94), (B) TCGA (n ¼ 112), and (C) ICGC microarray (n ¼
232) cohorts. In the ICGC (P ¼ .006), TCGA (P ¼ .009), and ICGC microarray cohorts (P ¼ .037), high replication stress was
significantly enriched for the squamous subtype. High replication stress was defined as the top-ranking quartile in this cohort;
P was calculated using the chi-square test.
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