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Abstract

Epidemiologic investigation has successively defined associations of air pollution exposure with 

non-malignant and malignant lung disease, cardiovascular disease, cerebrovascular disease, 

pregnancy outcomes, perinatal effects, and other extra-pulmonary disease including diabetes. 

Defining these relationships between air pollution exposure and human health closely parallels 

results of earlier epidemiologic investigation into cigarette smoking and environmental tobacco 

smoke (ETS), two other particle-related exposures. Humic-like substances (HULIS) have been 

identified as a chemical component common to cigarette smoke and air pollution particles. 

Toxicology studies provide evidence that a disruption of iron homeostasis with sequestration of 

host metal by HULIS is a fundamental mechanistic pathway through which biological effects are 

initiated by cigarette smoke and air pollution particles. As a result of a common chemical 

component and a shared mechanistic pathway, it should be possible to extrapolate from the 

epidemiology of cigarette smoking and ETS to predict associations of air pollution exposure with 

human disease which are currently unrecognized. Accordingly, it is anticipated that forthcoming 

epidemiologic investigation will demonstrate relationships of air pollution with COPD causation, 

peripheral vascular disease, hypertension, renal disease, digestive disease, loss of bone mass/risk 

of fractures, dental disease, eye disease, fertility problems, and extrapulmonary malignancies.
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Introduction

The field of epidemiology identified the relationship between human exposure to air 

pollution and morbidity and mortality [1,2]. Since that exceptional achievement, 

epidemiologic investigation has successively defined associations of air pollution exposure 

with non-malignant lung disease, malignant lung disease, cardiovascular disease, 

cerebrovascular disease, pregnancy outcomes, perinatal effects, and other extra-pulmonary 

disease including diabetes.
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The development of these breakthroughs into defining the relationships between air 

pollution exposure and human health closely parallels results of earlier epidemiologic 

investigation into cigarette smoking and environmental tobacco smoke (ETS), two other 

particle-related exposures. Humic-like substances (HULIS) have been identified as a 

chemical component common to cigarette smoke and air pollution particles. Toxicology 

studies provide evidence that a disruption of iron homeostasis with sequestration of host 

metal by HULIS is a fundamental mechanistic pathway through which biological effects are 

initiated by cigarette smoke and air pollution particles. As a result of a common chemical 

component and a shared mechanistic pathway, it should be possible to extrapolate from the 

epidemiology of cigarette smoking and ETS to predict associations of air pollution exposure 

with human disease which are currently unrecognized.

Particle exposures and humic-like substances

Humic substances (HS) are heterogeneous, amorphous organic materials found in all 

terrestrial and aqueous environments [3]. They include three different fractions: humic acid, 

fulvic acid, and humin. The humic acid fraction is not soluble in water under acidic 

conditions (pH<2) but is soluble at higher pH values. Humic acid is the major extractable 

component of soil HS. Fulvic acid is the fraction of HS which is soluble in water under all 

pH conditions and remains in solution after removal of humic acid by acidification. Humin 

is the fraction of HS that is not soluble in water at any pH value.

A substantial mass fraction of tropospheric aerosols (up to 90%) is comprised of natural 

organic matter which chemically resembles HS with a mixture of aromatic, phenolic, and 

acidic functional groups [4-6]. This material shares chemical characteristics with HS but 

differs in having a smaller molecular weight and lower aromaticity; it is designated HULIS 

[6]. In one study, about 3% of ambient air particulate matter (PM) was estimated to be 

HULIS [7]. Combustion products such as wood smoke and diesel exhaust particles (i.e. 

emission air pollution sources) similarly include HULIS at approximately 8% of wood 

smoke and 5% in diesel exhaust particles [7-9]. HULIS has also been isolated from cigarette 

smoke particle [8,9]. About 7-10% of tobacco smoke condensate can be characterized as 

HULIS [8,9].

As a result of having a variety of oxygen-containing functional groups (e.g. carboxylic and 

phenolic groups), both HS and HULIS complex metal cations [10-13]. The high content of 

oxygen-containing functional groups in HS and HULIS favors the formation of stable 

complexes with numerous metals but that with iron is the most favored [14]. The quantity of 

HULIS isolated from air pollution particles can be correlated with the metal concentration of 

ambient air PM [10]. Comparable to HS and HULIS, cigarette smoke condensate functions 

to bind transition metals [15]. The introduction of HULIS, isolated from cigarette smoke 

condensate, into the lungs of an animal model is followed by its phagocytosis and an 

intracellular accumulation of iron [9]. Likewise, a material with solubility properties and 

composition similar to HS can be isolated from smokers’ lungs and the retention of this 

material is associated with iron accumulation [9]. The sequestration of iron and an 

associated deficiency of cell metal after exposure to HULIS included in air pollution 

particles and cigarette smoke can initiate pathways leading to biological effect, injury, and 
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disease [16-23]. The effects of cigarette smoke and air pollution particles on human health 

can result from an inclusion of HULIS in both.

Interaction of air pollution particles and ozone

Comparable to air pollution particles, exposure to ambient ozone has been associated with 

increased human mortality (including non-accidental and cardiovascular mortality) [24-27]. 

This relationship between ozone exposure and human mortality may be non-linear, a 

threshold is not recognized, and its basis remains unknown.

After reacting with ozone, carbonaceous compounds demonstrate increased surface 

functionalization (Figure 1A) [28-32]. As indicated by both high-resolution X-ray 

photoelectron spectroscopy and Fourier transform-infrared spectroscopy, the surface oxygen 

introduced on these compounds after reaction with ozone is most frequently present in 

carboxylic acid groups but phenol, lactone, and quinone formation are also observed [33,34]. 

Soot, a mixture of elemental carbon and organic compounds, is oxidized in the atmosphere 

leading to the formation of carboxylates [35]. This reaction increases the polarity of soot 

surfaces and water-solubility of the particles [36-38]. This reaction between ozone and 

carbon-containing particles appears to generate either HULIS itself or a product which 

chemically is similar to HULIS; the material includes numerous oxygen-containing 

functional groups (e.g. carboxylates) and can be water-soluble. Therefore, it can be expected 

that some portion of the health effects of ozone, including associated mortality, are mediated 

through its impact on the content of either HULIS itself or a product which chemically is 

similar to HULIS in air pollution particles. It is possible that other components of air 

pollution (e.g. nitrogen oxides) also participate in modifying the functional groups at the 

ambient PM surface and subsequently impact human health through the same pathway [39].

Mechanism of biological effect after particle exposure

In the respiratory tract, PM has consistently demonstrated a capacity to accumulate iron 

from available cell sources reflecting the particle surface’s ability to complex host iron 

[40,41]. Following exposure to PM containing carbonaceous compounds, this response will 

also be observed in the lungs [9,42]. Endogenous iron, essential for host function, is 

complexed by the polyanionic particle surface including both carboxylic and phenolic 

functional groups [43]. Comparable to other compounds with a capacity to appropriate cell 

iron, the response to the functional metal deficiency associated with particle exposure will 

include oxidative stress, activation of cell signaling and transcription factors, and release of 

pro-inflammatory mediators prior to apoptosis [44-52]. This eventually culminates in the 

development of tissue inflammation and fibrosis [43,53]. Exposure to other xenobiotic 

agents with an equivalent capacity to coordinate metal cations impacts comparable 

inflammatory and fibrotic injuries in humans [54-56].

Interaction between air pollution particles and ozone is suggested to impact human health 

effects (Figure 1A). Air pollution particles can include a significant concentration of HULIS 

(i.e. polycarboxylates), and investigation predicts further carboxylation of this PM following 

ozone exposure. This results in a particle with a greater capacity to impact 1) iron 
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sequestration resulting in an increased disruption in metal homeostasis and 2) subsequent 

inflammation and fibrosis. Such interaction between particles and ozone is supported by 

epidemiological, controlled exposure, animal, and in vitro investigation [57-64].

HULIS in the atmosphere has a significant overlap with water-soluble organic compounds 

(WSOC) [6]. This soluble component of ambient air PM contains compounds more similar 

to fulvic acid than humic acid and includes many lower molecular weight organic and 

inorganic species. As a result of their solubility, these compounds can permeate the blood 

vessels to be distributed systemically (Figure 1B). The capacity to initiate iron sequestration 

will impact oxidative stress, cell signaling, transcription factor activation, release of pro-

inflammatory mediators, apoptosis, inflammation, and fibrosis in exposed cells and tissues 

predicting a capacity of cigarette smoking, ETS, and air pollution in initiating extra-

pulmonary disease.

Predicting the epidemiology of air pollution particles

Particles in cigarette smoke, ETS, and air pollution have a common chemical component 

(i.e. HULIS) and a shared mechanistic pathway (i.e. disruption of iron homeostasis). The 

common chemical component and shared mechanistic pathway predict comparable 

consequences of exposure including biological effects, tissue injuries, and disease. 

Accordingly, investigation of one of these particles is applicable to the others; morbidity and 

mortality after cigarette smoking and ETS exposure is expected to be relevant to the impact 

of air pollution particle exposure on human health.

Epidemiological studies have more thoroughly described the relationships between cigarette 

smoking and ETS with respiratory morbidity and mortality, relative to air pollution [65-85] 

(Table 1). Cigarette smoking and ETS are frequently associated with respiratory symptoms 

(e.g. cough and phlegm) and individuals exposed to ambient air pollution levels can present 

with these same complaints. Cigarette smoking and exposures to ETS and ambient air 

pollution particles are all associated with loss of lung function. Cigarette smoking, ETS and 

air pollution have recurrently been demonstrated to cause asthma and precipitate its 

exacerbations. While smoking causes chronic obstructive pulmonary disease (COPD) and 

exacerbates its course, ETS and air pollution can precipitate aggravations; ETS and air 

pollution have not yet been strongly associated with COPD causation. Smoking, ETS, and 

air pollution all elevate the risk for both infections and lung cancers.

Systemic distribution of the water-soluble HULIS component in cigarette smoke will disrupt 

iron homeostasis at extrapulmonary sites and initiate pathways of inflammation and fibrosis. 

Accordingly, cigarette smoking influences cardiovascular disease (Table 2), non-malignant 

extrapulmonary disease (Table 3), fertility problems, pregnancy outcomes, effects on the 

newborn (Table 4), and malignant diseases outside the respiratory tract (Table 5). ETS 

similarly will impact cardiovascular disease, non-malignant extrapulmonary disease, 

pregnancy outcomes, and effects on the newborn (e.g. low birth weight). Differences 

between cigarette smoking and ETS in associations with these diseases likely reflect the 

lower dose of particle exposure following the latter (15 to 40 mg per cigarette smoked vs. 

hundreds to approximately 1000 μg/m3 respectively).
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Comparable to cigarette smoking and ETS, air pollution particles include HULIS, some of 

which is water-soluble, with a capacity to disrupt metal homeostasis and initiate 

inflammatory and fibrotic pathways. While the actual mass of particle air pollution a human 

is exposed to does not approach that of cigarette smoking (~1/100th or less) presumably 

resulting in less PM dose, the former may demonstrate a greater potential for impacting 

biological effect following interaction with ozone. Accordingly, investigations with air 

pollution exposure have demonstrated increases in cardiovascular disease (Table 2), non-

malignant extrapulmonary disease (Table 3), pregnancy outcomes, and effects on the 

newborn (Table 4) comparable to cigarette smoking and ETS exposure. The range of 

diseases which develops after air pollution closely approximates that observed after ETS 

exposure. The two cardiovascular diseases which epidemiological investigation has not yet 

associated with air pollution exposure are peripheral vascular disease and hypertension. The 

same is true with studies into relationships of air pollution exposure with non-malignant 

extrapulmonary disease, pregnancy outcomes, and effects on the newborn which parallel 

results after ETS exposure. Neither ETS nor air pollution exposures have convincingly been 

demonstrated to increase extrapulmonary malignancies.

As a result of a common chemical component and a shared mechanistic pathway, it should 

be possible to extrapolate from the epidemiology of cigarette smoking and ETS to predict 

associations of air pollution particle with human morbidity and mortality. While the total 

mass of air pollution particle a human will be exposed to will be lower than that of a 

cigarette smoker, the interactions with other oxidant components (e.g. ozone) will increase 

the impact. Accordingly, the range of human disease following air pollution potentially is 

predicted to approach that of a cigarette smoker. It is anticipated that forthcoming 

epidemiologic investigation will demonstrate a relationship of exposure to air pollution with:

1. COPD causation

2. Peripheral vascular disease

3. Hypertension

4. Renal disease

5. Digestive disease

6. Loss of bone mass/risk of fractures

7. Dental disease

8. Eye disease

9. Fertility problems

10. Extrapulmonary malignancies including breast cancer and leukemias

Epidemiologic research has already suggested associations of air pollution with several of 

these endpoints including COPD causation, peripheral vascular disease, hypertension, renal 

disease, digestive diseases, loss of bone, eye disease, breast cancer, and leukemias [86-94].
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Conclusions

Cigarette smoke, ETS, and air pollution have a common chemical component and a shared 

mechanistic pathway. A common chemical component and share mechanistic pathway allow 

an extrapolation of the results of the epidemiology of cigarette smoking to predict 

associations of air pollution exposure with human disease.
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Figures 1A and 1B. 
Numerous different sources contribute to the release of carbonaceous particles into the 

atmosphere (designated by black and brown particles) (Figure 1A). Some of the 

carbonaceous particles can include HULIS, a polycarboxylic, polyaromatic material 

(designated by brown particles). Exposure of the ambient air PM to ozone results in 

additional functionalization of the particle surface with introduction of more phenol, lactone, 

and quinone groups but especially further carboxylation. The formation of these products 

increases solubility of components of the PM with systemic distribution following (Figure 

1B). Respiratory disease, cardiovascular disease, non-malignant extrapulmonary disease, 

fertility problems, changes in pregnancy outcomes, effects on the newborn, and 

extrapulmonary diseases result from the impact of exposure of the tissues to this component 

of ambient air pollution particle.
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