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Sleep has been consistently linked to health outcomes in clinical studies, but only in recent years has sleep
become a focus in epidemiologic studies and public health. In particular, the sizable prevalence of insufficient
sleep in the population warrants well-designed epidemiologic studies to examine its impact on public health. As a
developing field, sleep epidemiology encounters methodological challenges similar to those faced by nutritional
epidemiology research. In this article, we describe a few central challenges related to assessment of sleep
duration in population-based studies in comparison with measurement challenges in nutritional epidemiology.
In addition, we highlight 3 strategies applied in nutritional epidemiology to address measurement challenges and
suggest ways these strategies could be implemented in large-scale sleep investigations.
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Despite consistent reports about the negative impact of
insufficient sleep on health (1), more than a third of Ameri-
can adults are sleep deprived (2), representing a major public
health burden. Indeed, insufficient sleep has been linked to
deleterious health outcomes such as cardiometabolic mor-
bidity (3—7), depression (8), and mortality risk (9) in addition
to motor vehicle accidents (10). To maintain optimal health,
the American Academy of Sleep Medicine recommends that
adults obtain at least 7 hours of sleep per night (11).

Sleep duration is not the only important construct as over
the last 70 years, the field of sleep medicine has made signif-
icant advances with the nosology of more than 80 sleep dis-
orders and the development of technology for diagnosis and
treatment of sleep disorders (12). More recently, the rapid
growth of sleep epidemiology has garnered attention from
wide audiences, even beyond the scientific community (13).
Yet population-based sleep research has methodological
challenges surrounding the assessment of sleep. These mea-
surement challenges, inherent in large studies, limit inter-
pretation of prior findings and comparison across studies.

Interestingly, the field of nutritional epidemiology has
faced similar methodological obstacles in the assessment of
diet. Beyond their mutual measurement challenges, sleep
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and nutrition are entwined via complex biological, behav-
ioral, and environmental pathways (14). The association
between sleep and nutrition is bidirectional; sleep duration
and quality affect macronutrient and caloric consumption
(15, 16), while intake of particular foods (e.g., tart cherries,
kiwi fruit, and fatty fish) (16, 17) and dietary patterns (18)
might affect sleep duration, quality, and timing. Sleep and
nutrition are influenced by circadian rhythms, socioeco-
nomic status, and physical activity, and both, independently
and jointly, contribute to cardiometabolic morbidity. Specifi-
cally, sleep duration, variability, and timing as well as dietary
composition, quantity, and mealtimes influence adiposity,
type 2 diabetes, and cardiovascular disease (19-21).

Population-based nutritional studies date back to the
1940s and have had an impact on dietary recommendations
worldwide (22). As nutritional epidemiology has expanded,
methods and tools have been developed and refined to
minimize the inherent measurement error in diet assessment.
We believe that the conceptual framework that guided the
evolution of these methods and tools in nutritional epidemi-
ology could inform the growing field of sleep epidemio-
logy, which includes both sleep clinicians and investigators
developing population-based sleep research.
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This article illustrates 3 parallel methodological chal-
lenges in sleep and nutritional epidemiology to guide
epidemiologists and clinicians with sleep-research pursuits
in large-scale samples. Sleep assessment and analytical
approaches are common limitations in population-based
sleep research. In particular, implementation of causal
frameworks in large-scale sleep research and addressing
systematic errors in sleep assessment could improve the
accuracy of effect estimates. Here, we provide a practical
perspective to address these challenges by implementing
methods to minimize bias that are commonly used in
nutritional epidemiology. Measurement errors are inevitable
in all epidemiologic studies, but careful consideration of
assessment instruments and causal pathways during the
planning stages could alleviate and perhaps avoid these
pitfalls. The aim of this paper is to increase awareness
among investigators with an interest in epidemiologic sleep
research about techniques widely used in the nutritional
epidemiology field that could be implemented primarily in
the assessment of sleep duration, either in new studies or
with preexisting data.

PARALLEL METHODOLOGICAL CHALLENGES IN
SLEEP AND NUTRITIONAL EPIDEMIOLOGY

Application of the causal framework in sleep and
nutrition research

Directed acyclic graphs, or causal diagrams, serve as a
visual presentation of a specified causal pathway. Causal
diagrams aid in the formalization of research questions
and identify confounding and mediating pathways between
the exposure, outcome, and third variables within a causal
framework.

Sleep is a multidimensional state represented by its dura-
tion, architecture (sleep stages), timing, continuity, quality,
and intraperson night-to-night variability; thus, determining
which aspects of sleep to measure in a particular study
can be a challenge. Depending on the research question,
the different dimensions of sleep might confound, interact
with, or mediate one another in relation to a health outcome
(7). Here, we use causal diagrams to illustrate the role of
sleep duration as a confounder or a mediator in 2 separate
research questions (23, 24). In older adults with poor sleep
quality, long sleep duration is associated with cardiovascular
mortality, suggesting that sleep quality modifies the relation-
ship between sleep duration and cardiovascular mortality
(25). Alternatively, sleep duration might be confounded by
concurrent sleep disorders such as insomnia, obstructive
sleep apnea (OSA), or restless leg syndrome. Indeed, a
population-based cohort reported that untreated OSA was
associated with high mortality risk, independent of sleep
duration (Figure 1A) (24). Sleep architecture, specifically,
the percentage time in slow wave sleep, has been inversely
associated with body mass index in older men, independent
of OSA and total sleep duration (26). Finally, sleep duration
might be an intermediate variable on a pathway between
an exposure and an outcome. For example, in a large study
among employed workers, sleep duration mediated the asso-
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ciation between working long hours per week and occupa-
tional injury risk (Figure 1B) (23).

There is a parallel in nutritional epidemiology. Diet is sim-
ilarly a multifaceted behavior that represents quantity, com-
position, and timing of nutrient intake. In relation to health
outcomes, diet can be a predictor, a source of confounding,
a mediator, or an effect modifier. For example, total energy
intake often confounds the association of red meat intake and
cardiovascular morbidity. Thus, nutritional epidemiologists
routinely measure and account for total energy intake as
a potential confounder with regression techniques (i.e., the
residual method or by directly including total energy intake
in model adjustment) (27). However, in certain scenarios,
total energy intake acts as a mediator on the causal pathway
between an exposure and an outcome and thus should not be
handled as a confounder due to the risk of overadjustment
(28).

To illustrate, associations of sugar-sweetened beverage
intake and weight gain might be mediated by total energy
intake, in that consumption of sugary beverages can lead to
excessive caloric intake that, in turn, can cause weight gain.
Further, nutrients might interact with one another in relation
to health outcomes. To capture these interactions, nutritional
epidemiologists analyze diet patterns, rather than specific
foods, to associate food combinations in the diet with dis-
ease. These examples highlight the essential role of causal
diagrams in diet research as a conceptual framework that
guides statistical analysis and collection strategies. A con-
temporary epidemiologic tool, causal diagrams could also
aid investigators in the formulation of research questions,
inform collection of sleep measures and other data, guide
the statistical analysis, and control for bias. Specifically,
causal diagrams allow investigators to assess the role of
a sleep variable in the primary study question: a potential
confounder (e.g., OSA is an independent predictor of sleep
duration and hypertension), a mediator (e.g., sleep quality is
on the pathway from shift work to weight gain), or an extra-
neous source of variation. If sleep confounds the investi-
gated association, adjustment for sleep in the analysis would
eliminate the resulting bias. In contrast, if the sleep variable
mediates this association, statistical adjustment for this vari-
able will induce overadjustment bias (28). Causal diagrams
have been underutilized in epidemiologic sleep research.
A recent systematic review (7) has examined the role of
diet in the relationship between sleep and cardiometabolic
health. This review found numerous studies that considered
diet as a confounder rather than a mediator, an analytical
strategy that resulted in overadjustment of reported effect
estimates.

Validation of sleep instruments

In epidemiologic studies, self-reported instruments are
often used because they are quick, affordable, and feasible
to administer in large samples. Sleep questionnaires are
designed to measure various sleep characteristics, including
duration, timing, and sleep quality (e.g., Pittsburgh Sleep
Quality Index) (29), or to screen for specific sleep disorders,
such as OSA and insomnia. While objective instruments
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Figure 1. Causal diagrams showing different pathways involving sleep duration. A) Causal diagram representing potential confounding by sleep
duration of the association between treatment of obstructive sleep apnea and mortality risk. B) Causal diagram representing potential mediation
by sleep duration of the association between working hours per week and occupational injury risk.

are often used for diagnosis of many sleep disorders, self-
reported tools are essential for evaluation of some sleep
characteristics (e.g., sleep quality) that cannot be measured
otherwise. Further, subjective tools have established associa-
tions between sleep and chronic disease (30—32), and despite
being prone to systematic and random error, these tools have
high sensitivity and moderate to high specificity (33).

Objective assessment of total sleep duration is accom-
plished during polysomnography (PSG) via electroen-
cephalography that measures sleep onset, awakenings, total
sleep time, and sleep stages. While PSG is considered the
gold standard for measurement of sleep architecture, its
utilization in research settings is often not financially or
logistically feasible. Moreover, a night in a sleep laboratory
might not be typical of a person’s usual sleep duration, given
that bedtimes and wake times are often related to laboratory
practices rather than personal routines. In response to
these limitations, wearable devices have been designed and
optimized to approximate total sleep duration in clinical
and research settings. These devices use accelerometry, in
addition to temperature and heart rate in some devices,
to quantify sleep duration and sleep timing by recording
movement as a proxy for sleep according to the individual
device’s algorithm. Despite their objective assessment of
sleep and wake patterns, these instruments might produce
both systematic and random measurement errors in different
subpopulations (34, 35). For example, in individuals with
insomnia, the use of wearable devices to measure sleep can
introduce systematic bias if prolonged inactive wake periods
during the night are recorded as sleep time. The resulting
overestimation of sleep time could produce systematic
misclassification of sleep duration. Further, even in the ab-
sence of sleep disorders, occasional inactivity could induce
random error when sleep duration is recorded through
objective devices.

While wearable devices and questionnaires are useful
instruments in sleep research, investigators must interpret
them with caution and use validated instruments when avail-
able. Yet even “standard” sleep questionnaires are not neces-
sarily validated in all populations, likely due to the dearth of
studies that concurrently collected data from questionnaires
and gold standard—assessed sleep.

Comparisons of subjective and objective tools to assess
sleep duration have demonstrated a moderate correlation
between self-reported sleep duration questions (habitual
bedtime, wake time on weekdays and weekends), sleep
diary, and 7-night actigraphy (36-38). However, these cor-
relations vary by sex, age, and the reported day of the week
(36, 38). Associations between sleep duration and self-
rated health have been examined across 3 sleep assessment
tools (39). For example, a U-shaped relationship has been
observed between a single self-reported sleep duration
question and self-rated health. Yet the U-shaped association
between self-rated health and 3-night sleep logs was
significantly attenuated, and it disappeared with actigraphy-
based sleep duration (39).

The field of nutritional epidemiology has encountered
similar challenges in that dietary questionnaires are not
always validated for the specific population under study, and
gold standard measurements of diet are often not available.
Two of the solutions utilized to address these problems—
method of triads and calibration—warrant attention for their
potential application to the assessment of sleep duration.

In nutritional epidemiology, the logical parallel to PSG
(in which a person’s sleep is directly observed and quan-
tified) is researcher-observed food intake (with weighted
portions and known nutrient composition) in a laboratory
setting. Yet this assessment strategy is infeasible except in
small studies. More commonly, self-reported food intake
through questionnaires (food frequency questionnaires, 24-
hour recall, or food diaries) is used as a diet measure in nutri-
tion research. Food frequency questionnaires face similar
issues as with sleep questionnaires: Both sleep and eating
are daily occurrences, but people might find it difficult to
recall these behaviors with accuracy and precision. Due to
these systematic and random measurement errors, which can
vary by population, each study population might need its
own validated and culturally appropriate questionnaire. To
validate self-reported nutrients without the use of a true gold
standard (i.e., direct observation of food intake of known
nutrient composition), nutritional epidemiologists might use
the method of triads.

The method of triads is used primarily in nutritional
epidemiology but has been applied to other fields as well
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Figure 2. Representation of the method of triads in nutritional epidemiology. Application of the method of triads to evaluate the performance of
food frequency questionnaires and biomarkers as indicators of long-term dietary intake. This figure is reprinted with permission from Kabagambe

et al. (42).

(e.g., validation of self-reported pubertal stages) (40). In
nutritional epidemiology, the method of triads assesses the
validity of a self-reported nutrient measurement by conduct-
ing 3-way comparisons between nutrient data derived from
independent assessments (e.g., biomarker, 24-hour recall,
and food frequency questionnaire) (41). The primary utility
is that measurement errors between self-reported dietary
assessments are often correlated (e.g., participants might
misremember their intake of a particular food item in the
same way on a 24-hour recall as in a food frequency ques-
tionnaire), which can lead to a biased estimation of the
correlation coefficients of a given nutrient. In contrast, trian-
gulation analyses evaluate the correlations between nutrients
assessed with 3 methods simultaneously, and through a
series of equations, the correlation coefficients between each
measure and the underlying “true value” of a nutrient can
be estimated (Figure 2—figure and equations adapted with
permission from Kabagambe et al. (42)).

In sleep research, the method of triads could be similarly
used to assess the validity of sleep duration when PSG
measurements (the gold standard) are not available; the 3
independent assessment methods could be questionnaires
on typical sleep habits, prospective sleep diaries, and sleep
assessed by wearable devices (Figure 3). Although many
studies evaluate the correlation between 2 independent mea-
sures of sleep duration, using 3 independent measures simul-
taneously will provide more accurate validity coefficients. If
data from all 3 methods are not available on all subjects, it is
acceptable to perform the triangulation analysis within a ran-
domly selected subset of the population. Of note, utilizing
the method of triads might actually be more feasible in epi-
demiologic sleep studies than in dietary studies, given that
self-reported sleep questions and diaries take considerably
less time than dietary recalls or prospective dietary records.
Further, there might be some epidemiologic sleep studies
that have already collected all 3 types of data and could
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easily utilize the method of triads (Figure 4). This method
might be best suited for assessing the validity of typical sleep
duration rather than other aspects of sleep.

Calibration method for correction of systematic errors
in sleep duration assessment

Systematic errors (consistent, repeatable errors as op-
posed to random errors) have often been detected in the
assessment of sleep when comparing questionnaire-derived
sleep estimates with objective measurements (i.e., PSG or
actigraphy).

In comparison with objective amount of sleep, self-
reported sleep duration has been over-estimated in adult
(43), pediatric (44), pregnant (45), and older (46) popula-
tions. In addition, differential misreporting of subjective
sleep duration according to the actual amount of sleep
obtained has been shown. Short sleepers (<6 hours per
night) tended to underestimate sleep duration, and those
who slept >6 hours per night overestimated sleep duration
in relation to actigraphy data (36, 47). In contrast to medical-
grade devices, such as actigraphy, consumer wearables
that estimate heart rate in their sleep assessments have
not been well validated against PSG and thus have not
been an optimal choice for use in sleep research (48, 49).
These wearable devices might have proprietary algorithms
that hamper validation efforts (50). However, recent de-
velopment of mathematical models that incorporate an
estimate of circadian phase and utilize raw acceleration
and heart rate data from the Apple Watch has shown great
promise for the identification of sleep parameters across
different device platforms (51). These findings open up the
possibility of using consumer-wearable devices to measure
sleep on a large scale.

Concurrent sleep disorders, diagnosed or undiagnosed,
might also affect self-reported sleep duration in a systematic
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Figure 3. Method of triads adapted for sleep research from Kabagambe et al. (42). Application of the method of triads to evaluate the
performance of food frequency questionnaires and biomarkers as indicators of long-term dietary intake. PSG, polysomnography.

way (52). Individuals with OSA or insomnia might under-
estimate sleep duration; in one study, those with insomnia
underestimated total sleep time by 81 minutes (53-55).
Finally, an overestimate of sleep duration is expected in
responses of employees of industries that regulate sleep,
such as the transportation industry (56). While these sys-
tematic biases are well-described, we believe that few stud-
ies have attempted to correct the bias within the collected
data, as has been described in the nutritional epidemiology
field (57).

Nutritional epidemiology also uses self-reported instru-
ments, and as in sleep research, systematic errors are often
present in self-reported dietary instruments. The source of
error could be the instrument itself, such as when a food
frequency questionnaire neglects to ask about consump-
tion of an important food, which could happen when short
food frequency questionnaires are administered or when
a population experiences rapid shifts in the food supply.
Systematic error can also be the result of social desirability
biases. For example, self-reported total energy intake is
often underestimated among overweight study participants
(58-60). Overestimation of fruit and vegetable intake and
underestimation of fat intake have also been shown to dif-
fer according to sex, type of dietary instrument used, and

dietary-intervention treatment status. While a systematic
error with the research instrument can be difficult to correct
after data collection, predictable under- or over-reporting by
the participants could be addressed by calibration studies
(61). In these studies, the following steps are undertaken:

1. Using a subset of the data, measurements of the exposure
of interest are taken subjectively (self-report) and objec-
tively (biomarker).

2. A linear regression model is fitted, with the objective
marker as the continuous dependent variable and the self-
report measure as the continuous independent variable.

3. The P estimate from the linear regression model is ap-
plied as a “correction factor” to the self-report measures
(i.e., each unit of self-reported nutrient is related to x
units of the objectively-assessed nutrient).

Once corrected, the new measurements can be used in data
analysis as a comparison with the results obtained without
correction.

To identify and correct systematic bias in sleep research,
small validation studies with objective measures of sleep
could be conducted in conjunction with larger cohorts with
self-reported measures. For example, a calibration study
could proceed as follows:

Full Population ———  Self-Reported Typical Sleep Duration

Subset of Population————>

Type of Data Collected
Seven-day prospective sleep diaries
Seven-day wearable sleep device,

concurrent with sleep diary

Figure 4. Sample checklist of data for method of triads for sleep research.

Am J Epidemiol. 2021;190(6):954-961
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Full Population———————— Self-Reported Typical Sleep Duration

Subset of Population——— Objective Sleep Duration (e.g., 7-Day

Wearable Sleep Device, PSG)

Figure 5. Sample checklist of data for calibration method for sleep research. PSG, polysomnography.

1. Collect self-reported sleep duration for 500 children. For
50 of them, conduct actigraphy at the same time.

2. Perform linear regression with objective sleep duration
as the outcome and subjective sleep duration as the
exposure.

3. Multiply self-reported sleep duration by the B value
from linear regression model to compute corrected sleep
duration.

Calibration studies might be an effective strategy to cor-
rect bias in already-existing large data sets, if validation
studies have been conducted within subsets of the data set
or in generalizable populations (Figure 5). Indeed, many
validation studies of self-reported sleep duration or timing
exist within particular populations (62—64), meaning their
estimates could be used to calibrate data sets in similar
populations.

FINAL REMARKS

As the field of sleep epidemiology moves forward, we
have reviewed and reflected on several methodological chal-
lenges it faces in comparison with similar obstacles in nutri-
tional epidemiology. In epidemiologic research, exposures
or outcomes are ideally assessed with objective tools, but
if such tools are unavailable, self-reported instruments are
used. While subjective sleep tools have uncovered the role
of poor sleep in morbidity and mortality, they are associated
with measurement error. Beyond assessment challenges,
analytical errors can stem from an unclear or absent con-
ceptual framework. To minimize these measurement errors
and their bias, we propose that investigators pursuing epi-
demiologic sleep studies borrow methodological approaches
used in nutritional epidemiology. Here, we have illustrated
the use of causal diagrams, method of triads, and calibration
techniques. These methods present a partial view of current
research challenges but could inspire future interdisciplinary
collaborations among investigators in these fields. For exam-
ple, self-reported sleep instruments have limited ability to
assess sleep physiology, a determinant of healthy aging.
This limitation has sparked the development of consumer
wearable devices and smartphone applications to mimic the
objective sleep assessment of medical devices that are used
in sleep laboratories, but methods to analyze these data are
constantly evolving. The nutrition field is also working on
methods to analyze real-time dietary data from apps.

Thus, as both disciplines advance, assessment and analyt-
ical methods developed by sleep researchers could inform
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nutrition investigators and strengthen collaborative efforts
across these disciplines.
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