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A B S T R A C T

The sudden increase in coronavirus disease 2019 (COVID-19) cases puts high pressure on healthcare services
worldwide. At this stage, fast, accurate, and early clinical assessment of the disease severity is vital. In general,
there are two issues to overcome: (1) Current deep learning-based works suffer from multimodal data adequacy
issues; (2) In this scenario, multimodal (e.g., text, image) information should be taken into account together to
make accurate inferences. To address these challenges, we propose a multi-modal knowledge graph attention
embedding for COVID-19 diagnosis. Our method not only learns the relational embedding from nodes in a
constituted knowledge graph but also has access to medical knowledge, aiming at improving the performance
of the classifier through the mechanism of medical knowledge attention. The experimental results show that
our approach significantly improves classification performance compared to other state-of-the-art techniques
and possesses robustness for each modality from multi-modal data. Moreover, we construct a new COVID-19
multi-modal dataset based on text mining, consisting of 1393 doctor–patient dialogues and their 3706 images
(347 X-ray + 2598 CT + 761 ultrasound) about COVID-19 patients and 607 non-COVID-19 patient dialogues
and their 10754 images (9658 X-ray + 494 CT + 761 ultrasound), and the fine-grained labels of all. We hope
this work can provide insights to the researchers working in this area to shift the attention from only medical
images to the doctor–patient dialogue and its corresponding medical images.
. Introduction

The pandemic of the coronavirus disease 2019 (COVID-19) has
rought unprecedented disaster to humans’ lives. Facing the ongoing
utbreak of COVID-19, viral nucleic acid diagnoses using real-time
olymerase chain reaction (RT-PCR) is the accepted standard diagnostic
ethod to find the crowd of infestor [1–4]. However, due to political

nd economic reasons, many hyper-endemic regions and countries
annot use the RT-PCR method to detect tens of thousands of suspected
atients. On the other hand, due to its high false-negative rate, repeat
esting of RT-PCR might be needed to achieve an accurate diagnosis
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of COVID-19. The chest X-ray, ultrasound, and computed tomography
(CT) of imaging tools frequently have been used for diagnosing other
diseases. It is fast and easy to operate and has become a widely
used diagnostic tool [5,6]. Researchers are studying how to distinguish
COVID-19 from chest X-ray, ultrasound images, or CT scans to solve the
lack of reagents [7–10]. Also, medical COVID-19 data [11–14] consists
of chest X-ray images, ultrasound images, and CT images (i.e., slices)
and mostly multi-modal.

The great success of deep learning methods in pneumonia diagnosis
tasks has inspired many researchers [15–18]. The deep-learning-based
vailable online 1 June 2021
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COVID-19 diagnosis methods are emerging one after another. Never-
theless, extensive medical data is typically required to train these high-
quality deep learning-based models. Typically, deep learning models
for training this high-performance classification require large amounts
of medical COVID-19 data. Besides, medical data on patients with
confirmed or suspected COVID-19 might infrequently appear in the
public dataset. Thus, it is tough to exploit limited and restricted medical
data to train reliable diagnostic models.

On the other hand, in the real world, doctors recommend that
physicians communicate with patients (i.e., doctor–patient dialogues)
before performing radiological examinations and obtain the patient’s
past medical history, current medical history, etc. doctor–patient di-
alogue is one of the most common forms of consultation [19–22].
However, this information is not included in the existing medical
image dataset. Moreover, in the COVID-19 epidemic, most patients
have a past medical history, and chronic medical history [23,24]. For
example, the physician needs to learn about the patients’ history of
previous exposure and previous symptoms through a dialogue between
the patient and the physician. Also, the physician and the government
need to identify relevant close contacts of this patient based on dialogue
with the patient and the patient’s recollections to implement effective
prevention and control measures.

During the COVID-19 pandemic, even though traditional doctor–
patient conversations are at risk of close contact, doctor–patient con-
versations through Internet video calls and real-time Internet chats are
on the rise. The doctor–patient dialogue over the Internet is gradually
becoming one of the primary instruments of consultation. Therefore,
it is urgent and essential that the deep-learning-based model shifts the
attention from only medical images to the doctor–patient dialogue and its
corresponding medical images.

In short, there are two main challenges in the task of COVID-19
diagnosis:

(1) Multi-modal information of COVID-19 infestors, including
doctor–patient dialogue and different modality medical images, must
be jointly considered to make accurate inferences about COVID-19;

(2) Limited multi-modal data makes it challenging to design effec-
tive diagnostic models.

Inspired by the success of graph-based attention models (e.g., graph
attention network [25]), which capture entities (i.e., nodes) as well
as their relationships (i.e., edges) with each other, we focus on the
strategy of graph-based attention models to solve these above two
issues [26–28]. While existing work about graph attention mechanisms
all considers knowledge graphs, which is a type of heterogeneous
graph from multi-modal data and aims to make the full & joint use
of multi-modal data, they do not differentiate between the different
kinds of links and nodes. This is important as approaches based on
heterogeneous graphs have been shown to outperform approaches that
assume that graphs only have a single type of link/edge. Therefore,
how can attention mechanisms be designed to leverage and jointly exploit
the multi-modal data?

Moreover, data and feature representations of a priori knowledge
focus on projecting data and relationships between data into a low-
dimensional continuous space [29]. Most approaches aim to learn
representations with a priori knowledge that represent relationships
between data [30]. In this way, we may use the limited multimodal
data to train robust deep networks [31,32]. Why not use knowledge-based
representation learning to make representations of attentional mechanisms
as joint representations of a priori medical knowledge and deep network?

Motivated by these observations, to tackle all the problems men-
tioned above, in this paper, we propose a novel multi-modal knowledge
embedding-based graph attention model for the COVID-19 diagnosis
task. During this process, the model makes use of medical knowledge.
Notably, we firstly propose the multimodal attention mechanism that
is able to learn the medical knowledge-based representations about
the prior multimodal information. Secondly, we get the multimodal
169
medical information embeddings. Thirdly, we create the temporal con-
volutional self-attention network and obtain the pivotal features of
prior multimodal information. Finally, our framework relates feature
maps to the embeddings about multimodal medical and explains the
classification of COVID-19 diagnosis. Experimental results demonstrate
that the proposed approach has higher performance expressively than
the state-of-the-art methods in the COVID-19 diagnosis task.

Moreover, we propose a new multi-modal information dataset about
COVID-19, which contains 2000 doctor–patient dialogue and their cor-
responding multi-modal medical images (9998 X-ray images, 3092 axial
CT images, and 1360 ultrasound images) with the text-mined fine-
grained disease labels during the ongoing outbreak of COVID-19, mined
from the text radiological reports. All in all, the main contributions of
this paper are summarized as follows:

☼ We propose a robust and end-to-end multimodal knowledge
mbedding-based graph attention model to classify COVID-19 multi-
odal data. To the extent of our knowledge, it is the first attempt

o investigate multimodal attentional mechanisms based diagnostic
pproach about COVID-19.

☼ We construct an effective multi-modal attention mechanism that
ramatically improves the performance of the proposed approach.
hat is more, we design a novel cross-level modality attention to

ombine single-modality and multiple-modality information.
☼ We present a novel temporal convolutional self-attention network

o extract and learn the discriminative features on the datasets. The
ualitative discussion demonstrates that this strategy achieves com-
etitive performance over other temporal convolutional network-based
ethods.
☼ A new dataset about multi-modal information is constructed for

he task of COVID-19 diagnosis. This dataset contains 1393 doctor–
atient dialogues and their 3706 images (347 X-ray + 2598 CT + 761
ltrasound) about COVID-19 patients and 607 non-COVID-19 patient di-
logues and their 10754 images (9658 X-ray + 494 CT + 761 ultrasound),
nd the fine-grained labels of all.

. Previous COVID-19 diagnosis

Radiological diagnosis is a convenient medical technique for pa-
ients with COVID-19 who are suspected of urgently needing a risk
rea diagnosis [33,34]. X-ray CT scans and ultrasonography are widely
sed to provide compelling evidence for the analysis of radiologists. To
chieve higher accuracy for radiological diagnosis, using either X-ray
r CT as the acquisition method, many works have been proposed for
OVID-19 diagnosis. Also, benefit from ultrasonography convenience,
ome works have been proposed for COVID-19 diagnosis via ultrasound
mages.

Based on chest X-ray images, there are many discussions of the clas-
ification between COVID-19 and other non-COVID-19 subjects, includ-
ng other pneumonia subjects and healthy subjects. Zhang et al. [35]
resent a ResNet based model to classify COVID-19 and non-COVID-
9 X-ray images for COVID-19 diagnose. They use X-ray images from
eventy COVID-19 patients and one thousand and eight non-COVID-
9 pneumonia patients, and they achieve 96.0% sensitivity and 70.7%
pecificity along with an AUC of 0.952. A deep CNNs based architecture
alled COVID-Net [36] is presented for COVID-19 diagnosis from X-
ay images. Utilizing their self-built COVIDx dataset, the COVID-Net
chieves the testing accuracy of 83.5%. Considering the difficulty of
systematic collection of chest X-ray images for deep neural network

raining, s patch-based convolutional neural network approach that
equires a relatively small number of trainable parameters for COVID-
9 diagnosis is proposed by Oh et al. [37]. Also, there have been
fforts made for the classification of COVID-19 from non-COVID-19
ased on CT scans. Jin et al. [38] build a chest CT dataset consisting of
our hundred and ninety-six COVID-19 positive cases and one thousand
hree hundred and eighty-five negative cases. They propose a two-
imensional CNN-based model for lung segmentation and a COVID-19
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Table 1
Basic statistics of the image subset in our proposed multi-modal COVID-19 pneumonia
dataset.

X-ray CT Ultrasound Total

COVID-19 340 2598 761 3706
Non-COVID-19 9658 494 599 10754

9998 3092 1360 14450

diagnosis model. Experimental results show that the proposed model
achieves a sensitivity of 94.1%, a specificity of 95.5%, and an AUC of
0.979. To comprehensively explore the description of multiple features
of CT images from different perspectives, Shen et al. [39] propose
a method for learning a unified potential representation that fully
encodes information from different facets of the features and has a
promising class structure that enables detachability. Ouyang et al. [40]
propose a 3𝐷 convolutional network (CNN) with a new online attention
module to target the region of lung infection when reaching diagnostic
decisions. Based on multi-centre CT data for COVID-19, their algorithm
can identify the COVID-19 images with the F1-score of 0.82, the
specificity of 0.901, the sensitivity of 0.869, the accuracy of 0.875,
and the AUC of 0.944. Furthermore, ultrasonography is another useful
technique for diagnosing COVID-19, which is non-invasive, cheap,
portable, and available in almost all medical facilities. Roy et al. [41]
present a spatial transformer style network with weakly-supervised
learning, which localizes the pathological artefacts and predicts the
disease severity score. Besides several deep models, they release a novel
ultrasound image dataset with fully-annotated labels at a frame-level,
video-level, and pixel-level to represent the degree of disease severity.

In summary, lots of studies have been proposed for X-ray-based, CT-
based, and ultrasound-based COVID-19 diagnosis. However, most of the
recent works only focus on diagnosis tasks in one medical imaging modality
and consider less about the doctor–patient conversations before radiological
examinations, which also is the crucial part for disease diagnosis through
the whole medical healing procedures.

3. Multi-modal COVID-19 pneumonia dataset

In this section, we first describe how to build our proposed Multi-
odal COVID-19 Pneumonia Dataset and introduce the structure of our

roposed dataset. Then we make a comparison with existing public
vailable COVID-19 datasets.

.1. Dataset creation and structure

Medical dialogues are part of the traditional medical procedure
hen potential patients come to the hospital for professional consulta-

ion. Commonly, to avoid a failed diagnosis, doctors always ask patients
o make more detailed examinations after necessary doctor–patient
170
dialogues. However, most recent works for COVID-19 diagnosis only
pay attention to medical images of COVID-19 without any dialogues,
which may lead to biased diagnostic results when information is incom-
plete. To address this issue, in this paper, we propose a multi-modal
dataset for COVID-19 pneumonia, which consists of both images and
doctor–patient dialogues.

The image subset mainly contains three medical imaging modalities:
X-ray, CT, and ultrasound by collecting them from public radiology
medical reports and patient follow-up records. In detail, X-ray images,
CT images, and ultrasound images of COVID-19 are collected from
radiological reports published by online hospitals and radiology med-
ical centres in China [15]. All X-ray images are posteroanterior (PA)
or anteroposterior (AP) views, and salient axial slices of different CT
volumes are collected for CT images. Most of the ultrasound images
are in a convex view, and the rest are in linear view. Following the
work of Chest-X-ray-8 [42], we use the technology of text mining
and natural language processing (NLP) to get disease findings and
decide the labels of all images. The dialogue subset is assembled from
the same websites [11], and the labels of all dialogues are extracted
from the disease description part by using natural language processing
(NLP) toolkit [43]. Also, we provide text-mined fine-grained disease
labels of each image in our dataset, including patient sex, patient
age, which can be found in our Supplemental Materials. The image
subset has 14450 2D images including 9998 X-ray images, 3092 axial CT
images and 1360 ultrasound images. In particular, 347 X-ray images,
2598 CT images, and 761 ultrasound images of COVID-19 have been
assembled in our proposed image subset. Basic statistics for each class
of our proposed image subset are shown in Table 1. Besides, the
dialogue subset contains more than 100 thousand sentences between
doctors and patients. For both image subset and dialogue subset, two
main categories are shared: COVID-19 and Non-COVID-19. The Non-
COVID-19 label means other different types of community-acquired
pneumonia (CAP) except normal case [40]. We use this strategy to
collect a total of 2000 doctor–patient dialogues, of which there are
1393 doctor–patient dialogues about COVID-19 patients and 607 non-

OVID-19 patient dialogues. We use the NLP toolkit [43] to count the
requency of the keywords of the two kinds of dialogues and formed
wo kinds of word clouds for the top 19 words, which are shown in

Fig. 1. From Fig. 1, we can clearly see that the symptoms of COVID-
19 patients and non-patients are significantly different. Different from
these existing public datasets or challenges, we focus on the analysis
of different patterns between types of pneumonia with diverse causes;
that is why there are no normal cases in our dataset.

Both medical images and doctor–patient dialogue are tools for
physicians to know their patients. For patients with a certain type of
disease, their disease characteristics are statistical characteristics [44–
46]. For example, as shown in Fig. 1, the disease characteristics of
two diseases are different. Such statistical characteristics are also the
basis for physicians to judge the disease [47,48]. In this way, machine

learning models essentially capture these statistical characteristics to
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Table 2
Comparison of COVID v2.0 dataset [36] and X-ray part of the image subset in our
proposed multi-modal COVID-19 pneumonia dataset.

COVIDx
Normal Pneumonia COVID-19

8066 8614 190

Proposed
image subset

Normal Non-COVID-19 COVID-19

– 9658 340

be able to classify effectively. The model is trained with the infor-
mation of a particular individual, not a group of individuals. It is
also challenging to capture statistical characteristics with a model that
uses this training strategy for classification. Moreover, considering the
emergency of diagnosis and different situations for potential patients,
the examinations cannot be very comprehensive in a short time when
medical resources are extremely saturated [49,50]. In other words, in a
COVID-19 pandemic, medical resources are precious and limited. Most
patients do not have medical images of all three modalities (i.e., X-ray,
CT, ultrasound). Thus, to simulate this urgent state, the relationship
between our proposed image subset and dialogue subset is unpaired. To
validate the validity of our proposed dataset, experienced radiologists
in our team check all images, including comparing the label of the
patient’s medical images with the results of the patient’s RT-PCR, and
eliminating images with errors.

3.2. Dataset comparison

For COVID-19, a new type of coronavirus disease that crosses the
world, it is essential to collect data for machine learning applications.
In recent months, a number of works have been presented on the
COVID-19 public dataset [15,51].

Cohen et al. [52,53] create an image collection containing 329
images from 183 patients, most of which are chest X-ray images for
COVID-19. Based on an early version of the COVID-19 image dataset
constructed by the above work, COVID v2.0, and its enriched ver-
sion [36] adds more bacterial pneumonia chest X-ray images and stan-
dard chest X-ray images. Zhao et al. [54] present a publicly available
COVID-CT dataset consisted of COVID-19 CT axial images collected
from preprinted publications from medRxiv and bioRxiv. They ex-
tract figures and captions in conjunction, judging whether a patient
is positive for COVID-19 from the associated captions. Besides the X-
ray-based image dataset and CT-based image dataset, ultrasound-based
image datasets are also reported recently. Jannis et al. [55] propose
a lung ultrasound dataset, called POCUS, consisting of one thousand
six hundred fifty-four COVID-19 images, two hundred seventy-seven
bacterial pneumonia images, and one hundred and seventy-two healthy
controls images, which are sampled from sixty-four videos assembled
from various online sources. COVIDGR-1.0 dataset is proposed [56]
and is organized into two classes: positive and negative. This dataset
includes 852 images (426 positive and 426 negative cases). Existing
ublic image datasets only focus on diagnosis tasks using one medical
maging modality but hardly explore the possibility of utilizing different
edical imaging modalities together. Furthermore, there are not doctor–
atient dialogues in existing public image datasets for precise diagnosis, and
he image numbers of existing public image datasets are not enough. To
pprove the advancement of the image subset in our proposed Multi-
odal COVID-19 Pneumonia Dataset, the X-ray-based part of the image

ubset is compared to COVID v2.0 dataset [36], the CT-based part is
ompared to COVID-CT dataset [54] and the ultrasound-based part
s compared to POCUS [55]. All of three comparisons are shown in
ables 2–4.

As for other formats of the COVID-19 dataset. [57] propose a
edical dialogue dataset about COVID-19 and other related pneumo-
ia, which contains more than 1000 consultations. Yet, existing public
ialogue datasets only crawl relevant conversations from websites, and there
s no precisely fine-grained label for each dialogue.
171
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Table 3
Comparison of COVID-CT dataset [54] and CT part of the image subset
in our proposed multi-modal COVID-19 pneumonia dataset.

COVID-CT
COVID-19 Non-COVID-19

349 397

Proposed
image subset

COVID-19 Non-COVID-19

2598 494

Table 4
Comparison of POCUS dataset [55] and ultrasound part of the image subset in our
proposed multi-modal COVID-19 pneumonia dataset.

POCUS
Normal Bacterial pneumonia COVID-19

172 277 654

Proposed
image subset

Normal Non-COVID-19 COVID-19

– 599 761

From the comparisons and the analysis mentioned above, it is
evident that our proposed dataset is better than others, the advantages
of which can be summarized as follows:

• Our proposed Multi-Modal COVID-19 Pneumonia Data-set consid-
ers the exploit of utilizing different medical imaging modalities
together.

• With precise labels, our proposed Multi-Modal COVID-19 Pneumo-
nia Dataset considers the fusion of information both from images
and doctor–patient dialogues.

• Compared to existing public available COVID-19 data-sets, our
proposed Multi-Modal COVID-19 Pneumonia Data-set can be seen
as the largest dataset with fine-grained labels.

4. Methodology

In this section, we first describe the notations and the structure
of our COVID-19 data. Then, we propose the details of our proposed
multi-modal knowledge embedding graph attention model.

4.1. Basic notations

Multimodal Information We suppose there are four kinds of mul-
imodal data: X-ray images, CT images, ultrasound images, and text
escription of diagnose. The training data is denoted as 𝒟𝑡𝑟𝑎𝑖𝑛 =

{𝒟𝑋−𝑟𝑎𝑦
𝑡𝑟𝑎𝑖𝑛 ,𝒟𝐶𝑇

𝑡𝑟𝑎𝑖𝑛,𝒟
𝑈𝑙
𝑡𝑟𝑎𝑖𝑛,𝒟

𝑇
𝑡𝑟𝑎𝑖𝑛}, where 𝒟𝑋−𝑟𝑎𝑦

𝑡𝑟𝑎𝑖𝑛 = {𝑖𝑋−𝑟𝑎𝑦
𝑝𝑋−𝑟𝑎𝑦 , 𝑦𝑝𝑋−𝑟𝑎𝑦}

𝑛𝑋−𝑟𝑎𝑦
𝑡𝑟𝑎𝑖𝑛
𝑝𝑋−𝑟𝑎𝑦=1

,

𝒟𝐶𝑇
𝑡𝑟𝑎𝑖𝑛 = {𝑖𝐶𝑇

𝑝𝐶𝑇
, 𝑦𝑝𝐶𝑇 }

𝑛𝐶𝑇𝑡𝑟𝑎𝑖𝑛
𝑝𝐶𝑇 =1

, 𝒟𝑈𝑙
𝑡𝑟𝑎𝑖𝑛 = {𝑖𝑈𝑙

𝑝𝑈𝑙
, 𝑦𝑝𝑈𝑙}

𝑛𝑈𝑙𝑡𝑟𝑎𝑖𝑛
𝑝𝑈𝑙=1

, and 𝒟 𝑇
𝑡𝑟𝑎𝑖𝑛 =

𝑡𝑝𝑇 , 𝑦𝑝𝑇 }
𝑛𝑇𝑡𝑟𝑎𝑖𝑛
𝑝𝑇 =1

; 𝑖𝑋−𝑟𝑎𝑦
𝑝𝑋−𝑟𝑎𝑦 denotes the 𝑝𝑋−𝑟𝑎𝑦-th X-ray image, 𝑖𝐶𝑇

𝑝𝐶𝑇
denotes

he 𝑝𝐶𝑇 -th CT image, 𝑖𝑈𝑙
𝑝𝑈𝑙

denotes the 𝑝𝑈𝑙-th Ul image, and 𝑡𝑝𝑇 denotes
he 𝑝𝑇 -th text data; instead of 𝑝𝑋−𝑟𝑎𝑦, 𝑝𝐶𝑇 , 𝑝𝑈𝑙 and 𝑝𝑇 , they are
implified as 𝑝⋅; 𝑦𝑝𝑋−𝑟𝑎𝑦 , 𝑦𝑝𝐶𝑇 , 𝑦𝑝𝑈𝑙 , and 𝑦𝑝𝑇 mean their corresponding
abels are from the set {Non-COVID-19, COVID-19}; 𝑛𝑋−𝑟𝑎𝑦

𝑡𝑟𝑎𝑖𝑛 , 𝑛𝐶𝑇𝑡𝑟𝑎𝑖𝑛, 𝑛
𝑈𝑙
𝑡𝑟𝑎𝑖𝑛,

𝑇
𝑡𝑟𝑎𝑖𝑛 denote the number of corresponding training data and are simply
ritten as 𝑛⋅𝑡𝑟𝑎𝑖𝑛;Testing data is denoted as 𝒟𝑡𝑒𝑠𝑡 = {𝒟𝑋−𝑟𝑎𝑦

𝑡𝑒𝑠𝑡 ,𝒟𝐶𝑇
𝑡𝑒𝑠𝑡 ,𝒟

𝑈𝑙
𝑡𝑒𝑠𝑡,

𝑇
𝑡𝑒𝑠𝑡}, where 𝒟𝑋−𝑟𝑎𝑦

𝑡𝑒𝑠𝑡 = {𝑖𝑋−𝑟𝑎𝑦
𝑝𝑋−𝑟𝑎𝑦}

𝑛𝑋−𝑟𝑎𝑦
𝑡𝑒𝑠𝑡

𝑝𝑋−𝑟𝑎𝑦=1
, 𝒟𝐶𝑇

𝑡𝑒𝑠𝑡 = {𝑖𝐶𝑇
𝑝𝐶𝑇

}𝑛
𝐶𝑇
𝑡𝑒𝑠𝑡
𝑝𝐶𝑇 =1

, 𝒟𝐶𝑇
𝑡𝑒𝑠𝑡 =

𝑖𝑈𝑙
𝑝𝑈𝑙

}𝑛
𝑈𝑙
𝑡𝑒𝑠𝑡
𝑝𝑈𝑙=1

, 𝒟 𝑇
𝑡𝑒𝑠𝑡 = {𝑡𝑝𝑇 }

𝑛𝑇𝑡𝑒𝑠𝑡
𝑝𝑇 =1

; 𝑛𝑋−𝑟𝑎𝑦
𝑡𝑒𝑠𝑡 , 𝑛𝐶𝑇𝑡𝑒𝑠𝑡, 𝑛

𝑈𝑙
𝑡𝑒𝑠𝑡, 𝑛𝑇𝑡𝑒𝑠𝑡 mean the number

f corresponding training data and are simply written as 𝑛⋅𝑡𝑒𝑠𝑡.
Knowledge Graph We suppose the heterogeneous knowledge graph
= (𝒱 ,ℰ ) is built, in which ℰ is a link set as well as 𝒱 is an object

et, by utilizing the training data. Distinctly, as shown in Fig. 2, the
consists of multiple types(i.e., X-ray image, CT image, ultrasound

mage, and text) and multiple types of links (e.g., X-ray image → text
X-ray image, X-ray image → text → CT image). We define a node

ype mapping function as 𝜙 ∶ 𝒱 → 𝒜 and the function about link type
apping as 𝜓 ∶ 𝒱 → ℛ, in which 𝒜 and ℛ are predefined object types
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Fig. 2. An illustrative example of a multi-modal knowledge graph. From left to right,
these are the four types of nodes (i.e., X-ray, CT, ultrasound, and text description
of diagnose), six meta-paths involved in the given knowledge graph, a multi-modal
knowledge graph.

and the sets of link types, respectively. 𝒢 is associated with two these
functions, i.e., |𝒜 | + |ℛ| > 2. We define 𝛷 in 𝒢 as meta-path, where
the path can be in the style of 𝒜1

𝒜1
←←←←←←←←←←←←→ 𝒜2

𝒜2
←←←←←←←←←←←←→ ⋯

𝒜𝑙
←←←←←←←←←←←→ 𝒜𝑙+1 and can

be abbreviated as 𝒜1𝒜2 ⋯𝒜𝑙+1. We use the 𝛷 to describe a composite
relation ℛ = 𝒜1◦𝒜2 ⋯𝒜𝑙 between objects 𝒜1 and 𝒜𝑙+1, where ◦ means
the composition operator on relations. We suppose the nodes set is
related with meta-path 𝛷 and node 𝑖. We define the nodes set, which is
the meta-path based neighbours 𝒩 𝛷

𝑖 of node 𝑖 including themselves.
Multimodal Graph Attention We denote projected node feature as

𝐡′ and initial node feature as 𝐡. We denote the type-specific transforma-
tion matrix as 𝐌𝜙 and features of different types of nodes are projected
into the same feature space [58]. We design our attention mechanism
to deal with all kinds of nodes with type-specific projection operations.

We denote the meta-path based node pair’s weight as 𝑒𝛷𝑖𝑗 to obtain
the weight value between node 𝑗 and node 𝑖, which is associated with
𝛷 (meta-path). We bespeak the single-level modality attention vector
about 𝛷 (meta-path) as 𝑎𝑡𝑡𝛷. We acquire the importance between pairs
of nodes based on meta-paths, and then aim to acquire the meta-path-
based node pair ’s weight 𝛼𝛷𝑖𝑗 , these node pairs are normalized. We
bespeak 𝑎𝑡𝑡𝛷 as single-level modality attention vector about 𝛷 (meta-
path). The weight value between pairs of nodes based on meta-paths
is learned, and we can obtain the 𝛼𝛷𝑖𝑗 denoted as the meta-path based
node pair ’s important. This process is also called the normalization of
these nodes. We use the weight of the single-level modality attention
to describe the similarity [59] of transformed embedding, denoted as a
multiple-level modality attention vector 𝐪.

Similarly, the weight of each meta-path 𝛷 is defined and denoted
as 𝑤multiple−level

𝛷𝑖 . We can get the each meta-path ’s weight, and ob-
tain the meta-path ’s importance 𝛽𝛷. This process is also called the
normalization of these meta-paths.

From these above notations, we input the multimodal knowledge
graph 𝒢 , multimodal data {𝑖𝑋−𝑟𝑎𝑦

𝑝𝑋−𝑟𝑎𝑦 , 𝑖
𝐶𝑇
𝑝𝐶𝑇

, 𝑖𝑈𝑙
𝑝𝑈𝐿

, 𝑡𝑝𝑇 }
𝑛⋅𝑡𝑟𝑎𝑖𝑛
𝑝⋅=1 , 𝐾 is defined as

the number of attention head, the given meta-path set {𝛷0, 𝛷1,…𝛷𝐶}
where the number of the given meta-paths are denoted as 𝐶, and the
node feature {𝐡𝑖,∀𝑖 ∈ 𝒱 }. As a result, we get the knowledge-based
attention feature vector 𝐟 .

4.2. Building multi-modal knowledge graphs

Built upon Pezeshkpour et al.’s work [60–62], we use a triple of the
head, relation, and tail, in order to represent our knowledge graph 𝒢 .
Similar to the multi-modal knowledge bases [63], we take advantage
of recent advances in deep learning to build embedding layers for these
nodes to represent them, in essence offering embeddings for different
types of nodes. As shown in Fig. 3, we use different embedding layers
to represent each specific data type.
172
Fig. 3. Architecture of multi-modal knowledge graph model.

Structured Knowledge Considering a triplet of the head, relation,
and tail as independent embedding vectors, we generate dense vectors
through embedding layers.

Images A wide variety of models have been devised to repre-
sent the semantic information in images compactly and have been
successfully applied to tasks such as classification [64], and visual
reasoning [65]. To represent the images, we employ the last hidden
layer of VGG-16[66] as an embedding layer, which is pre-trained by
ImageNet [67].

Texts The doctor–patient dialogues are highly relevant to the text
content and can capture the disease status of patients. For these texts,
we apply a BERT model [68] to get the weighted word vectors of the
sentences as an embedding layer to represent the text features. In this
way, it is simple and efficient compared to the conventional LSTM [69].

Finally, as illustrated in Fig. 3, we use dense layers to unify all
embedding layers into the same dimension to construct the multi-modal
knowledge graph.

4.3. The proposed approach

In this paper, the overall framework of our proposed approach is
illustrated in Fig. 4. Given knowledge graph 𝒢 , we define the em-
bedding matrix of single-level modality attention as {𝐟𝑘𝑛𝑜𝑤𝑙𝑒𝑑𝑔𝑒𝛷𝑖 , 𝑖 =
0, 1,… , 𝐶}. Similarly, we define the matrix of multiple-level modality
attention embeddings as 𝐟multiple

𝑘𝑛𝑜𝑤𝑙𝑒𝑑𝑔𝑒, following the work of graph-
based multimodal attention mechanism [58]. Secondly, we create a
cross-level modality attention mechanism to fuse the information of
single-level modality and multiple-level modality attentions. By this
process, we can get the embedding matrix 𝐟𝑘𝑛𝑜𝑤𝑙𝑒𝑑𝑔𝑒. Thirdly, we pro-
pose the Temporal Convolutional Self-Attention Network (TCSAN) to
handle the inputted multimodal data and get the multimodal sentence
vectors 𝐟𝑛𝑒𝑡𝑤𝑜𝑟𝑘. As a result, we get the knowledge-based attention
feature vector 𝐟 , utilizing attention embedding vectors and multimodal
sentence vectors, to classify information of the labels, i.e., 𝑦̂𝑝. Also, our
approach only focuses on the interaction between the text of dialogues
and the images of three different medical imaging modalities, which
means that one dialogue can be combined with two different modality
images.

4.3.1. The multimodal attention mechanism
In this sub-subsection, an exquisite and novel multi-modal attention

mechanism with domain knowledge is proposed to deal with multi-
modal medical data. Our model consists of three part: Single-Level
Modality Attention, Multiple-Level Modality Attention, Cross-Level
Modality Attention. Single-level modality attention [58] is designed
to obtain the importance of meta-path based neighbours, which can
be assembled to obtain the embedding {𝐟𝑘𝑛𝑜𝑤𝑙𝑒𝑑𝑔𝑒𝛷𝑖 , 𝑖 = 0, 1,… , 𝐶}
of the single-level modality attention. Similarly, the multiple-level
modality attention [58] is utilized to obtain the difference between
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Fig. 4. The proposed multi-modal knowledge graph attention embedding model. Given multimodal knowledge graph 𝒢 , we propose the multimodal attention mechanisms including
three parts: ➀ the single-level modality attention and its results denoted as {𝐟𝑘𝑛𝑜𝑤𝑙𝑒𝑑𝑔𝑒𝛷𝑖

, 𝑖 = 0, 1,… , 𝐶}; ➁ the multiple-level modality attention and its embedding denoted as
𝐟multiple

𝑘𝑛𝑜𝑤𝑙𝑒𝑑𝑔𝑒; ➂ cross-level modality attention mechanism that fuse the information of single-level modality and multiple-level modality attentions, and its the embedding matrix
denoted as 𝐟𝑘𝑛𝑜𝑤𝑙𝑒𝑑𝑔𝑒. Meanwhile, we propose the Temporal Convolutional Self-Attention Network (TCSAN) to handle the inputted multimodal data and get the multimodal sentence
vectors 𝐟𝑛𝑒𝑡𝑤𝑜𝑟𝑘. Then, we get the knowledge-based attention feature vector 𝐟 . Finally, we use the classifier (in this paper, we use the ResNet-34 [70]) to gain the labels, i.e., 𝑦̂𝑝.
single-level modality attentions. As a result, we can obtain the em-
bedding 𝐟multiple

𝑘𝑛𝑜𝑤𝑙𝑒𝑑𝑔𝑒 of the multiple-level modality attention. For
each modality, the multiple complementary separate representations
𝐟𝑘𝑛𝑜𝑤𝑙𝑒𝑑𝑔𝑒𝛷𝑖 and 𝐟multiple

𝑘𝑛𝑜𝑤𝑙𝑒𝑑𝑔𝑒 are obtained and describe the informa-
tion of the single modality and multiple modality. We design the cross-
level modality attention mechanism to fuse the separate representations
hierarchically, and get the attention embedding 𝐟𝑘𝑛𝑜𝑤𝑙𝑒𝑑𝑔𝑒.

Single-Level Modality Attention Due to the heterogeneity of
nodes, there are different feature spaces which contain different types
of nodes. Before we aggregate the information from the meta-path
neighbours of each node (e.g.,node with type 𝜙𝑖), it has been recognized
that different meta-path-based neighbours of each node have varying
roles and differing levels of importance in terms of learning embedding.
Here, we design single-level modality attention to gain, for each node
in 𝒢 , its meta-path-based neighbours’ importance, and fuse these
eloquent representations of the neighbours to form the embeddings:

𝐡′
𝑖 = 𝐌𝜙𝑖 ⋅ 𝐡𝑖,𝐡

′
𝑗 = 𝐌𝜙𝑗 ⋅ 𝐡𝑗

𝑒𝛷𝑖𝑗 = 𝑎𝑡𝑡single−level(𝐡
′
𝑗 ,𝐡

′
𝑖;𝛷)

𝛼𝛷𝑖𝑗 = 𝑠𝑜𝑓𝑡max(𝑒𝛷𝑖𝑗 )

=
exp(𝜎(𝑎𝑡𝑡𝛷𝑇 ⋅ 𝐶𝑜𝑛𝑐𝑎𝑡(𝐡′

𝑗 ,𝐡
′
𝑖)))

∑

𝑘∈𝒩 𝛷𝑖
exp(𝜎(𝑎𝑡𝑡𝛷𝑇 ⋅ 𝐶𝑜𝑛𝑐𝑎𝑡(𝐡′

𝑖,𝐡
′
𝑘)))

𝐟𝑘𝑛𝑜𝑤𝑙𝑒𝑑𝑔𝑒𝛷𝑖 = 𝜎(
∑

𝑗∈𝒩 𝛷𝑖

𝛼𝛷𝑖𝑗 ⋅𝐡
′
𝑗 )

(1)

where 𝑎𝑡𝑡single−level(⋅) are performed by the deep neural network, and
𝐶𝑜𝑛𝑐𝑎𝑡(⋅) denotes the concatenate operation.

We can get the learned embeddings with repeated the above process
for 𝐾 times. These embeddings concatenated and the results is our
single-level modality attention embedding:

𝐟𝑘𝑛𝑜𝑤𝑙𝑒𝑑𝑔𝑒𝛷𝑖 = 𝐶𝑜𝑛𝑐𝑎𝑡𝐾 (𝜎(
∑

𝑗∈𝒩 𝛷𝑖

𝛼𝛷𝑖𝑗 ⋅𝐡
′
𝑗 )) (2)

We input the meta-path set {𝛷0, 𝛷1,…𝛷𝐶}, and obtain the single-
𝑘𝑛𝑜𝑤𝑙𝑒𝑑𝑔𝑒
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level modality attention embedding {𝑓 𝛷𝑖 , 𝑖 = 0, 1, 2, 3,… , 𝐶}.
Multiple-Level Modality Attention Each node in a heterogeneous
graph 𝒢 includes multiple kinds of semantic information, thus, single-
level modality embedding is only able to consider the information
of nodes in one way. To this end, we have to integrate multiple
semantics with representation of meta-paths. In order to obtain a more
widespread embedding, we use the multiple-level modality attention
to automatically understand the different meta-path’s importance and
fuse them together, as follows:

𝑤multiple−level
𝛷𝑖 =

1
|𝒱 |

∑

𝑖∈𝒱
𝐪𝑇 ⋅ tanh(𝐖1 ⋅ 𝐟𝑘𝑛𝑜𝑤𝑙𝑒𝑑𝑔𝑒𝛷𝑖 + 𝐛)

𝛽𝛷𝑖 =
exp(𝑤multiple−level

𝛷𝑖 )
∑𝐶
𝑖=1 exp(𝑤multiple−level

𝛷𝑖 )

𝐟multiple
𝑘𝑛𝑜𝑤𝑙𝑒𝑑𝑔𝑒 =

𝐶
∑

𝑖=1
𝛽𝛷𝑖 ⋅𝐟

𝑘𝑛𝑜𝑤𝑙𝑒𝑑𝑔𝑒
𝛷𝑖

(3)

in which 𝐖1 represents a weight matrix as well as 𝐛 represents the bias
vector.

Cross-Level Modality Attention For multimodal information in the
heterogeneous graph 𝒢 , we realize that it is fundamental to consider
the balance between the each node’s importance and the meta-paths
’importance. It is apparent that each modality plays a different role,
and therefore, a model of the relation between each modality is needed.
To address this problem, we propose cross-level modality attention.
We firstly, for different node kinds, fashion single-level modality and
multiple-level modality embeddings to learn the well-rounded repre-
sentation, by a nonlinear transformation (for example, one-layer MLP
(Multi-Layer Perception)). Moreover, the weight of all nodes of single-
level modality and multiple-level modality embeddings is averaged and
is explained as the weight of each modality. We identify the weight of
each node as 𝑤𝑐𝑟𝑜𝑠𝑠𝛷𝑖 , is calculated as follows:

𝑤𝑐𝑟𝑜𝑠𝑠
𝛷𝑖

= 1
|𝒱 |

∑

𝑖∈𝒱
tanh(𝐖1 ⋅ 𝐟𝑘𝑛𝑜𝑤𝑙𝑒𝑑𝑔𝑒𝛷𝑖

+ 𝐖2 ⋅ 𝐟𝑘𝑛𝑜𝑤𝑙𝑒𝑑𝑔𝑒) (4)

where two weight matrices 𝐖1 and 𝐖2. It is worth mentioning that
this kind method follows Ref. [71] However our methodology is based

on node types rather than entity types.
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We express the each node ’s weight as 𝛿𝛷𝑖 . To this end, we normalize
the above weights for all nodes using the softmax function.

𝛿𝛷𝑖 =
exp(𝑤𝑐𝑟𝑜𝑠𝑠𝛷𝑖 )

∑𝐶
𝑖=1 exp(𝑤𝑐𝑟𝑜𝑠𝑠𝛷𝑖 )

(5)

where the above equation could be interpreted as a node’s contribution
to a particular task. Each node could have varying weights for different
tasks. In addition, the higher 𝛿𝛷𝑖 , the more important node is.

By fusing the following embeddings, we can obtain the weight of
learning as a factor to obtain the final embedding 𝐟𝑘𝑛𝑜𝑤𝑙𝑒𝑑𝑔𝑒:

𝐟𝑘𝑛𝑜𝑤𝑙𝑒𝑑𝑔𝑒 =
𝐶
∑

𝑖=1
𝛿𝛷𝑖 ⋅ tanh(𝐟

𝑘𝑛𝑜𝑤𝑙𝑒𝑑𝑔𝑒
𝛷𝑖 + 𝐟multiple

𝑘𝑛𝑜𝑤𝑙𝑒𝑑𝑔𝑒) (6)

4.3.2. The Temporal Convolutional Self-Attention Network
Inspired by the success of temporal convolutional network (TCN)

[72–74] and the self-attention mechanism [75], we design a novel con-
volutional network, named Temporal Convolutional Self-Attention
Network (TCSAN). Similar to most competitive neural sequence trans-
duction models [27,28,75], we use the encoder and decoder structure
in our network. Encoder maps the input data 𝐱 = {𝑖𝑋−𝑟𝑎𝑦

𝑝𝑋−𝑟𝑎𝑦 , 𝑖
𝐶𝑇
𝑝𝐶𝑇

, 𝑖𝑈𝑙
𝑝𝑈𝐿

,

𝑡𝑝𝑇 }
𝑛⋅𝑡𝑟𝑎𝑖𝑛
𝑝⋅=1 to its representations 𝐒0 = 𝑒𝑛𝑐𝑜𝑑𝑒𝑟(𝐱). Then we use the causal

convolutions as a hidden layer across 𝐿 layers, and the intermediate
variable at time step 𝑡𝑖𝑚𝑒 and level 𝑙 + 1 (𝐒𝑙+1)is divided to four steps,
illustrated in Fig. 4:

ep 1: We use encoder 𝑒𝑛𝑐𝑜𝑑𝑒𝑟(⋅) to encode the 𝐱;
ep 2: The 𝐒𝑙 is passed through Temporal Self-Attention Mechanism

(TSAM): 𝐒𝐚𝑙 = 𝑇𝑆𝐴𝑀(𝐒𝑙) where 𝐒𝐚𝑙 means an intermediate
variable that contains information, illustrated in Fig. 4;

ep 3: We apply causal convolution on the 𝐒𝐚𝑙: 𝐒𝐜𝑙 = 𝐶𝑜𝑛𝑣(𝐒𝐚𝑙) where
𝐒𝐜𝑙 indicates the output of causal convolution. For keeping the
same length of each layer, we add zero padding on the left, white
blocks in Fig. 4. In this way, the left relevant information of input
will gradually accumulate to the right;

ep 4: We can get 𝐒𝑙+1, when the 𝐒𝐜𝑙 is passed through the activation
function.

A full TCSAN is built by stacking 𝐿 layers of TCSAN block across
depth and time, and we use the decoder to decode the 𝐒𝐿, and get the
output sequence 𝐟𝑛𝑒𝑡𝑤𝑜𝑟𝑘 : 𝐟𝑛𝑒𝑡𝑤𝑜𝑟𝑘 = 𝑑𝑒𝑐𝑜𝑑𝑒𝑟(𝐒𝐿).

Temporal Self-Attention Mechanism Temporal Self-Attention
Mechanism (TSAM) is illustrated as Fig. 4. Inspired by self-attention
structure [75], we use three linear transformations 𝐾(⋅), 𝑄(⋅), and 𝑉 (⋅)
to three different vectors: key 𝐊𝑙 = 𝐾(𝐒𝑙), query 𝐐𝑙 = 𝑄(𝐒𝑙), value
𝐕𝑙 = 𝑉 (𝐒𝑙), and the dimension 𝑑𝑘𝑙. For computing the weight matrix
𝐖𝐚𝑙, we compute the vectors 𝐊𝑙 and 𝐐𝑙, and divided each by

√

𝑑𝑘𝑙:

𝐖𝐚𝑙 = 𝐊𝑙𝑇 ×𝐐𝑙
√

𝑑𝑘𝑙
(7)

here ⋅𝑇 means the transpose of the matrix ⋅.
Given the weights 𝐖𝐚𝑙, we can get the weighted output by:

𝐚𝑙 = 𝐖𝐚𝑙 × 𝐕𝑙 (8)

Causal Convolutions TCNs are a peculiar kind of 1D convolutional
eural network (CNN), which is a natural way to encode information
rom a sequence [72]. A 1D convolutional layer can be written as

𝐶𝑜𝑛𝑣(𝐒𝐚𝑙 𝑡𝑖𝑚𝑒) = (𝐒𝐚𝑙 ∗ 𝑓𝑖𝑙𝑡)(𝑡𝑖𝑚𝑒) =
𝑚−1
∑

𝑗=0
𝑓𝑖𝑙𝑡𝑗

𝑇 𝐒𝐚𝑙 𝑡𝑖𝑚𝑒−𝑗 ,

𝑡𝑖𝑚𝑒 ⩾ 𝑚

𝐒𝐜𝑙 = (𝐶𝑜𝑛𝑣(𝐒𝐚𝑙𝑚), 𝐶𝑜𝑛𝑣(𝐒𝐚𝑙𝑚+1),… , 𝐶𝑜𝑛𝑣(𝐒𝐚𝑙𝑛⋅𝑡𝑟𝑎𝑖𝑛 ))

(9)

where we define the 𝑚 size convolution filter as 𝑓𝑖𝑙𝑡(⋅), and the input
sequence data as 𝐒𝐚𝑙. However, when applied to model sequences [76],
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Algorithm 1: Overall Process of Our Approach
Input: Multimodal Dataset 𝒟𝑡𝑟𝑎𝑖𝑛; Multimodal Knowledge Graph

𝒢 ; Node Feature ℋ = {𝐡𝑖,∀𝑖 ∈ 𝒱 }; Meta-Path Set
𝚯 = {𝛷0, 𝛷1,⋯𝛷𝐶}; The Attention Head Number 𝐾

Output: Knowledge-attention representation vector 𝐟
1 repeat
2 {𝑖𝑋−𝑟𝑎𝑦

𝑝𝑋−𝑟𝑎𝑦 , 𝑖
𝐶𝑇
𝑝𝐶𝑇

, 𝑖𝑈𝑙
𝑝𝑈𝐿

, 𝑡𝑝𝑇 }
𝑛⋅𝑡𝑟𝑎𝑖𝑛
𝑝⋅=1 ← random selection from 𝒟𝑡𝑟𝑎𝑖𝑛,

𝐱 ← {𝑖𝑋−𝑟𝑎𝑦
𝑝𝑋−𝑟𝑎𝑦 , 𝑖

𝐶𝑇
𝑝𝐶𝑇

, 𝑖𝑈𝑙
𝑝𝑈𝐿

, 𝑡𝑝𝑇 }
𝑛⋅𝑡𝑟𝑎𝑖𝑛
𝑝⋅=1 ;

3 𝐟𝑛𝑒𝑡𝑤𝑜𝑟𝑘 = T-C-Self-Attention-Networks(𝐱);
4 𝐟𝑘𝑛𝑜𝑤𝑙𝑒𝑑𝑔𝑒 =

Multimodal-Graph-Attention(𝒢 ,ℋ ,𝚯, 𝐾);
/* ⊙ means the function of the element-wise

multiplication operation, 𝜎 is the function
of logistic sigmoid, Gate is a gated
mechanism, which is a neural network */

5 𝐟 = 𝜎(Gate(𝐟𝑛𝑒𝑡𝑤𝑜𝑟𝑘,𝐟𝑘𝑛𝑜𝑤𝑙𝑒𝑑𝑔𝑒))⊙𝐟𝑛𝑒𝑡𝑤𝑜𝑟𝑘;
6 Calculate The Loss ℒ Though Eq. (12);
7 Update Parameters From The Gradient of ℒ ;
8 until convergence;
1 Function Multimodal-Graph-Attention(𝒢 ,ℋ ,𝚯, 𝐾)
2 for 𝛷𝑖 ∈ {𝛷0, 𝛷1,⋯𝛷𝐶} do
3 for 𝑘 = 1, 2,⋯ , 𝐾 do
4 Calculate single-level modality attention

embedding 𝐟𝑘𝑛𝑜𝑤𝑙𝑒𝑑𝑔𝑒𝛷𝑖 using Eq. (1) and Eq. (2);
5 Calculate multiple-level modality attention embedding

𝐟multiple
𝑘𝑛𝑜𝑤𝑙𝑒𝑑𝑔𝑒 using Eq. (3) ;

6 Procedure Cross-Modality-Shared-Attention
7 for 𝑘 = 1, 2,⋯ , 𝐾 do
8 Calculate the importance of each node 𝑤𝑐𝑟𝑜𝑠𝑠𝛷𝑖

using Eq. (4);
9 Calculate the weight of each node 𝛿𝛷𝑖 using

Eq. (5);
0 Calculate 𝐟𝑘𝑛𝑜𝑤𝑙𝑒𝑑𝑔𝑒 from all attention embeddings,

using Eq. (6);

1 Function T-C-Self-Attention-Networks(𝐱)
/* encoder focuses on encoding input data */

2 𝐒0 =encoder(𝐱);
3 for 𝑙 = 0, 1,⋯ , 𝐿 − 1 do

/* The details of TSAM in Eq. (7) ∼ (8) */
4 𝐒𝐚𝑙 =TSAM(𝐒𝑙);

/* TCN means causal convolutions and its
details are in Eq. (10) */

5 𝐒𝐜𝑙 =TCN(𝐒𝐚𝑙);
6 𝐒𝑙+1 =Activation-Function(𝐒𝐜𝑙);

/* decoder aims at decoding feature maps */
7 𝐟𝑛𝑒𝑡𝑤𝑜𝑟𝑘 =decoder(𝐒𝐿);

one-dimensional CNNs are limited by their reduced output size and
limited receptive field, and the TCNs in this paper have the technique
to solve these problems, i.e., causal convolution.

The causal convolutional layer is filled at the beginning of the input
sequence [76] with a 𝑚 − 1 zero connection length. Besides, It ensures
that there is no disclosure of information that never came to the past,
which is essential for predicting future communication, as follows:

𝐶𝑜𝑛𝑣(𝐒𝐚𝑙 𝑡𝑖𝑚𝑒) = (𝐒𝐚𝑙 ∗ 𝑓𝑖𝑙𝑡)(𝑡𝑖𝑚𝑒) =
𝑚−1
∑

𝑗=0
𝑓𝑖𝑙𝑡𝑗

𝑇 𝐒𝐚𝑙 𝑡𝑖𝑚𝑒−𝑗 ,

𝑙 𝑙 𝑙 𝑙

(10)

𝐒𝐜 = (𝐶𝑜𝑛𝑣(𝐒𝐚 1), 𝐶𝑜𝑛𝑣(𝐒𝐚 2),… , 𝐶𝑜𝑛𝑣(𝐒𝐚 𝑛⋅𝑡𝑟𝑎𝑖𝑛

))
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Fig. 5. The illustration of TCN with dilated causal convolutions.

Furthermore, simple standard causal convolution can only add a
receptive field with linear size to the network depth. This makes it
challenging to handle sequential data. Therefore, we construct the
proposed model with an exponentially large receptive field via the use
of a dilated causal convolution [72]. Fig. 5 illustrates the dilated causal
convolution (we set the filter size to 5). As we can see, a dilated causal
convolution is a convolution where the filter is applied over an area
larger than its length by skipping input values with a certain step. It is
equivalent to a convolution with a larger filter derived from the original
filter by dilating it with zeros, but is significantly more efficient since it
utilizes fewer parameters. As a result, a dilated causal convolution can
better process sequential data without more layers.

4.3.3. Knowledge-based representation learning
We present a gate mechanism for embedding knowledge represen-

tations to strengthen representation learning, with consideration of the
suppression of the non-informational features and permission of the
informational features to transit under the tutorial of a multi-peaked
knowledge graph, similar to Ref. [77–79], denoted as

𝐟 = 𝜎(𝑔(𝐟𝑛𝑒𝑡𝑤𝑜𝑟𝑘, 𝐟𝑘𝑛𝑜𝑤𝑙𝑒𝑑𝑔𝑒))⊙ 𝐟𝑛𝑒𝑡𝑤𝑜𝑟𝑘 (11)

here we define the element-wise multiplication operation as ⊙, the
ogistic sigmoid as 𝜎; 𝑔 is a neural network that combines features
mbedded in the final knowledge with features extracted using TCSAN.

.3.4. Objective function
Depending on the final embedding of a particular task, we can

esign different loss functions. In this paper, we can choose to mini-
ize the cross-entropy of all labelled nodes between ground-truth and
rediction:

(𝐱; 𝐟 ) = −

∑𝑛−1
𝑝=1 (𝑦𝑝

𝑇 log(𝑦̂𝑝) + (1 − 𝑦𝑝)
𝑇 log(1 − 𝑦̂𝑝))

𝑛 − 1
(12)

Notice that in our implementation, we assume the average of the
ingle cross-entropy errors of all nodes. The Algorithm 1 depicts the
verall training process of our approach.

. Experimental results

In this section, we experiment with the multimodal COVID-19
ataset to assess the performance of the proposed method. In compar-
son to the state-of-the-art models, our approach would be better in
ifferent evaluation strategies.

.1. Experimental setup

In this subsection, we begin with an overview of the training data
etup and the measures used for performance evaluation. Then we
175

escribe our experiment’s implementation details. d
.1.1. Evaluation protocol
Training Data Setup We randomly choose the 1200 diagnoses and

orresponding X-ray images, CT images, ultrasound images from our
ataset to construct the training set; we randomly choose the 400
iagnoses and corresponding images from our dataset to construct the
alidation set; we randomly choose the 400 diagnoses and correspond-
ng images from our dataset to construct the test set; note that we
andomly choose ten times as per the above strategy and take the
verage evaluation criteria for comparison.

We take advantage of the training data in different dataset and con-
titute the knowledge graph 𝒢Ours by [61,62]. There are four modality
ata: X-ray images, CT images, ultrasound images, and text description
f diagnose. Apparently, most of diagnoses includes some images. If a
ertain diagnose contains no image, we use a zero vector to represent
he image. Besides, if a certain diagnose contains images, we extract
mage features from a 16-layer pre-trained VGGNet [66] to represent
he images, similar to [80]. By this way, we get the feature of X-
ay images (XR), CT images (CT) and ultrasound images (UL). We
se the sentences in a certain diagnose to represent the text (T).
ere we define the meta-path set 𝜣𝐎𝐮𝐫𝐬 as {XRTXR, XRTCT, CTTCT,
TTUL, ULTUL, ULTXR} to perform experiments. We define the images
s the image-type node features 𝐡𝑋−𝑟𝑎𝑦, 𝐡𝐶𝑇 , 𝐡𝑈𝐿. We use the BERT
ethod [68] to deal with the text samples, and then conduct the

ext-type node features 𝐡𝑡𝑒𝑥𝑡. After these, we obtain the node features
𝐎𝐮𝐫𝐬 = {𝐡𝑋−𝑟𝑎𝑦,𝐡𝐶𝑇 ,𝐡𝑈𝑙 ,𝐡𝑡𝑒𝑥𝑡}.

Evaluation Measures We use the accuracy, precision, F1-score, sen-
itivity, specificity, and area under the receiver operator curve (AUC) to
ssess the performance of all models. More precisely, we use sensitivity
nd specificity to denote the number of positive and negative samples
orrectly identified, respectively. Besides, we use AUC to measure the
verall classification performance, which is sensitive to the imbalance
mong multiple classes.

.1.2. Implementation details
All experiments are performed this way with a 4-core PC with

our 12 GB NVIDIA TITAN XP GPUs, 16 GB RAM, and Ubuntu 16.
n all models, we set the number of epochs to 100. We input the
nowledge-based attention feature vector 𝐟 into the COVID-19 classifier
nd then acquire the final classification results. We perform COVID-
9 classification with ResNet-34 classifier [70]. The individual state of
he knowledge attention mechanism and TCSAN implementation is as
ollows:

Temporal Self-Attention Network We utilize 10 layers of temporal
onvolutional networks [72] to serve as our network architecture. For
ach layer, the hidden node has a value of 128, and the kernel size has
value of 5. By extending the dropout to all nonlinear layers, we have
probability of 0.5. Adam optimizer is used to optimize our model. In

ddition, our 𝜆1 is set to 0.9, and the setting of 𝜆2 is set to 0.999, in
hich the weights of 𝐿2 decay to 1𝑒 − 4. For classification, the initial

earning rate has a value of 1𝑒 − 3. The batch size is set to 16. Besides,
or multimodal sentences, the final representation vector ’s length is set
o 512.

The Multimodal Attention Mechanism We randomly initialize the
arameters. For optimization of the model we use Adam [81]. The
ttention ’s dropout has a value of 0.6, and we define the number of
ttentional heads 𝐾 as 8, the regularization parameter as 0.001, and
he learning rate as 0.005. We set the dimension of 𝐪 (the multiple-
evel modality attention vector) to 128. In addition, the final embedding
imension is set to 512. We put in 𝒢Ours, ℋOurs, 𝜣Ours and 𝐾 for training
r testing of attentional mechanisms for experiments on our dataset.

.2. Comparison with state-of-the-art methods

We present a comparison of state-of-the-art methods with our
ataset. In this subsection, ‘‘Ours w/o Knowledge’’ denotes a variant
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Table 5
Classification results of each model on our dataset. ‘‘M’’ means ×106. Batch time means the runtime of each batch in the model testing.

Method Modality Accuracy Precision Sensitivity Specificity F1-score AUC Parameters (a.k.a., model size) Batch time

CAAD [35] XR 0.7394 0.7430 0.7659 0.7791 0.7543 0.7488 138.3M 2.06 s
COVID-CAPS [82] XR 0.7413 0.7450 0.7689 0.7844 0.7568 0.7540 23M 2.09 s
COVID-DA [83] XR 0.7446 0.7471 0.7692 0.7844 0.7580 0.7593 33M 2.32 s
COVID-ResNet [84] XR 0.7466 0.7497 0.7747 0.7856 0.7620 0.7702 60.2M 2.31 s
DCSL [85] XR 0.7486 0.7510 0.7777 0.7870 0.7641 0.7709 125M 2.54 s

COVNet [86] CT 0.7518 0.7512 0.7805 0.7880 0.7656 0.7812 130.8M 2.18 s
AnoDet [87] CT 0.7552 0.7518 0.7853 0.7907 0.7682 0.7843 125.8M 2.19 s
DLS [88] CT 0.7607 0.7535 0.7878 0.7958 0.7703 0.7878 179.1M 2.18 s
DeCovNet [89] CT 0.7613 0.7573 0.7947 0.8022 0.7755 0.7885 93M 2.12 s
DLQCTM [90] CT 0.7663 0.7648 0.7989 0.8081 0.7815 0.7896 103M 2.26 s

DenseNet-161[91] UL 0.7029 0.7229 0.7394 0.7517 0.7311 0.7285 18.8M 2.12 s
ResNet-34[70] UL 0.7154 0.7288 0.7514 0.7553 0.7400 0.7287 63.6M 0.80 s
VGG-19[66] UL 0.7214 0.7367 0.7525 0.7605 0.7445 0.7307 144M 2.82 s
ResNet-18[70] UL 0.7278 0.7395 0.7575 0.7708 0.7484 0.7434 33.3M 0.56 s
VGG-16[66] UL 0.7365 0.7420 0.7633 0.7777 0.7525 0.7474 140M 2.48 s

DGLM [92] XRCTUL 0.8070 0.7842 0.8322 0.8591 0.8075 0.8067 130.2M 2.08 s
LM3FT [93] XRCTUL 0.8110 0.7984 0.8323 0.8676 0.8150 0.8120 126M 2.16 s
MMCL [94] XRCTUL 0.8120 0.8010 0.8351 0.8682 0.8177 0.8154 129.3M 2.34 s
MEC [95] XRCTUL 0.8122 0.8079 0.8370 0.8716 0.8222 0.8186 131.7M 2.22 s
GMMF [96] XRCTUL 0.8127 0.8082 0.8378 0.8741 0.8227 0.8202 130.3M 2.53 s

Ours w/o knowledge XRCTUL 0.8160 0.8108 0.8378 0.8741 0.8413 0.8234 71.2M 1.74 s
Ours w/o TSAM XRCTUL 0.8308 0.8121 0.8494 0.8898 0.8491 0.8293 70M 1.12 s
Ours w/o knowledge XRCTULT 0.8389 0.8293 0.8297 0.8292 0.8292 0.8319 73M 1.77 s
Ours w/o TSAM XRCTULT 0.8679 0.8688 0.8641 0.8909 0.8664 0.8675 72M 1.14 s

Ours XRCTUL 0.9371 0.9209 0.8884 0.9805 0.9498 0.9171 75.6M 1.12 s
Ours XRCTULT 0.9810 0.9889 0.9861 0.9859 0.9875 0.9908 76.4M 1.14 s
Table 6
The results of ablation study.
Method Accuracy Precision Sensitivity Specificity F1-score AUC

Ours w/o cross 0.9444 0.9462 0.9338 0.9442 0.9399 0.9577
Ours w/o multiple 0.9608 0.9523 0.9691 0.9659 0.9606 0.9818
Ours w/o single 0.9520 0.9513 0.9634 0.9622 0.9573 0.9768

Ours 0.9810 0.9889 0.9861 0.9859 0.9875 0.9908
e
d

of Ours, involving the use of only network representations of learn-
ing without the use of multimodal attention mechanisms.‘‘Ours w/o
TSAM’’ indicates a variant of Ours with TCN only and no TCSAN.
‘‘XR’’ means X-ray modality, ‘‘CT’’ means CT modality, ‘‘UL’’ means

ltrasound modality and ‘‘T’’ represents text modality; ‘‘XRCTUL’’
stands for the combination of X-ray modality, CT modality and ultra-
sound modality, and ‘‘XRCTULT’’ means combining X-ray modality, CT
modality, ultrasound modality and text modality.

Baselines on Our Dataset We compare against various state-
of-the-art baselines on our dataset, including CAAD [35], COVID-
CAPS [82], COVID-DA [83], COVID-ResNet [84], DCSL [85], COV-
Net [86], AnoDet [87], DLS [88], DeCovNet [89], DLQCTM [90],
DenseNet-161[91], ResNet-34[70], VGG-19[66], ResNet-18[70], VGG-
16[66], DGLM [92], LM3FT [93], MMCL [94], MEC [95], and GMMF
[96].

Effect of Proposed Multimodal Attention Mechanisms. To esti-
ate the performance of our methodology, we present a comparison

f the results reported in the ‘‘Ours w/o Knowledge’’ rows and the
‘Ours’’ in rows in Table 5. Our approach utilizes the fair comparison
f the same loss functions and features in the ‘‘Ours w/o Knowledge’’
ow. Drawing from Table 5, we observe that our methodology continu-
usly increases performance in all cases. In particular, from ‘‘Ours w/o
nowledge’’ to Ours, the number of parameters of models changes from
1.2M to 75.6M with three modal data (i.e., XRCTUL). Similarly, for the
ase of four modal data (i.e., XRCTULT), the number of parameters of
odels changes from 73M to 76.4M. Moreover, the batch time of the

rained models all decrease in the testing stage, after ‘‘Ours w/o Knowl-
dge’’ is added the multimodal attention mechanisms. In terms of all
valuation measures (i.e., accuracy, precision, sensitivity, specificity,
1-score, AUC), the performance of Ours all increased compared to
176
‘‘Ours w/o Knowledge’’. It is clear that the design of multimodal attention
mechanisms can enhance the effectiveness of our model.

Effect of Proposed Temporal Self-Attention Mechanism. When
our model and its variants use the XRCTULT, ‘‘Ours’’ is 0.1131, 0.1202,
0.1220, 0.0951, 0.1211, 0.1232 higher than ‘‘Ours w/o TSAM’’, in
term of accuracy, precision, sensitivity, specificity, F1-Score, AUC.
Similarly, with XRCTUL, ‘‘Ours’’ is 0.1063, 0.1089, 0.0390, 0.0908,
0.1006, 0.0878 higher than ‘‘Ours w/o TSAM’’, in term of accuracy,
precision, sensitivity, specificity, F1-Score, AUC. These improvements
demonstrate that learning by the temporal self-attention mechanism for the
better performance of COVID-19 case diagnoses. With almost unchanged
batch time in the test phase, such a large performance improvement
can be obtained at the cost of less than 6M increase in the model size.
It once again shows that our model is effective.

Effect of Doctor–Patient Dialogues. From Table 5, the perform-
ance of all models improved after adding the text from the doctor–
patient dialogues to the training of our model and its variants. This
mphasizes the significance of the doctor–patient dialogues for COVID-19
iagnosis.

Effect of Our Approach. Looking at Table 5, it’ s patently apparent
that our method is superior to others. Particularly, ours is 0.2416,
0.2397, 0.2364, 0.2344, 0.2324, 0.2292, 0.2258, 0.2203, 0.2197,
0.2147, 0.2781, 0.2656, 0.2596, 0.2532, 0.2445, 0.1741, 0.1700,
0.1690, 0.1688, and 0.1683 higher than CAAD [35], COVID-CAPS [82],
COVID-DA [83], COVID-ResNet [84], DCSL [85], COVNet [86], An-
oDet [87], DLS [88], DeCovNet [89], DLQCTM [90], DenseNet-161
[91], ResNet-34 [70], VGG-19 [66], ResNet-18 [70], VGG-16 [66],
DGLM [92], LM3FT [93], MMCL [94], MEC [95], and GMMF [96], in
the light of accuracy, respectively. In the light of precision, sensitivity,
specificity, F1-Score, AUC, there are similar scenarios as the above.
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Table 7
The results of discussion about knowledge attention mechanisms. ‘‘M’’ means ×106. Batch time means the runtime of each batch in the model testing.

Method Accuracy Precision Sensitivity Specificity F1-score AUC The model size of knowledge
attention mechanisms

Batch time

Ours (DeepWalk [97]) 0.8463 0.8549 0.8506 0.8867 0.8528 0.8507 23M 0.40 s
Ours (Esim [98]) 0.8488 0.8567 0.8545 0.8869 0.8556 0.8552 24.3M 0.35 s
Ours (metapath2vec [99]) 0.8499 0.8628 0.8554 0.8912 0.8591 0.8568 24M 0.34 s
Ours (HERec [100]) 0.8523 0.8637 0.8638 0.8938 0.8638 0.8658 23.75M 0.32 s
Ours (GCN [101]) 0.8666 0.8701 0.8703 0.8991 0.8702 0.8678 25.4M 0.46 s
Ours (GAT [25]) 0.8670 0.8715 0.8724 0.8992 0.8719 0.8766 25.4M 0.97 s
Ours (MAGNN [102]) 0.8690 0.8764 0.8736 0.8992 0.8750 0.8772 37.2M 1.48 s
Ours (RGCN [103]) 0.8716 0.8716 0.8714 0.8913 0.8814 0.8744 44M 1.24 s
Ours (GATNE [104]) 0.8736 0.8726 0.8734 0.8955 0.8839 0.8764 44.6M 1.54 s
Ours (HGAN [105]) 0.8765 0.8746 0.8745 0.8960 0.8852 0.8772 47.3M 2.27 s
Ours (HetGNN [106]) 0.9336 0.8764 0.9090 0.9344 0.9045 0.9459 42.1M 1.35 s
Ours (HGT [107]) 0.9604 0.8764 0.9444 0.9331 0.9039 0.9536 41M 1.50 s
Ours (MMGCN [108]) 0.9633 0.8764 0.9466 0.9371 0.9057 0.9539 46.7M 2.13 s

Ours 0.9810 0.9889 0.9861 0.9859 0.9875 0.9908 39.4M 1.14 s
Table 8
The results of discussion about temporal convolution networks. ‘‘M’’ means ×106. Batch time means the runtime of each batch in the model testing.

Method Accuracy Precision Sensitivity Specificity F1-score AUC The model size of temporal
convolution networks

Batch time

Ours (TCN [72]) 0.8679 0.8688 0.8641 0.8909 0.8664 0.8675 28.6M 1.77 s
Ours (TrellisNet [109]) 0.8788 0.8824 0.8761 0.9036 0.8792 0.8842 87M 1.69 s
Ours (SA-TCN [110]) 0.8854 0.8995 0.8837 0.9087 0.9040 0.8869 54M 1.31 s
Ours (TCAN [111]) 0.8870 0.9302 0.8981 0.9248 0.9275 0.8895 33M 1.26 s

Ours 0.9810 0.9889 0.9861 0.9859 0.9875 0.9908 32M 1.14 s
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From above, our approach has more robust performances than the state-of-
the-art approaches on our dataset. With the best performance, in terms
of model size, none of our models exceeds 77M, and the batch time is
around 1.14 seconds(s). In other words, our model processes a medical
image of a lung in about 70 ms on average. This demonstrates that
our model has good application perspectives, although it may seem a
bit redundant and heavy. For above, these mean our approach can detect

OVID-19 diagnose effectively.

.3. Ablation study

In order to verify the reasonableness and effectiveness of each com-
onent of our attention machine, we develop the ablation experiment.

In Table 6, ‘‘Ours without Single’’ means a variant of Ours, which
ssigns the same weight to each neighbour and removes single-level
odality attention; ‘‘Ours without Multiple’’ means a variant of Ours,
hich removes multiple-level modality attention and assigns the same
eight to each meta-path; ‘‘Ours without Cross’’ means a variant of
urs, which assigns the same importance to each node and removes
ross-level modality attention. We analyse the following two aspects:

Compared with ‘‘Ours’’. From Table 5, it is quite apparent that
ur approach has better performances than others. In particular, ours is
.0366, 0.0202, and 0.0290 better than ‘‘Ours w/o Cross’’, ‘‘Ours w/o
ultiple’’, and ‘‘Ours w/o Single’’, in term of accuracy, respectively.

n terms of precision, sensitivity, specificity, F1-Score, AUC, there are
imilar scenarios as the above. As we can see, ‘‘Ours’’ is better than others.
hese suggest making full use of multimodal information helps us to improve
OVID-19 diagnosis.

Compared with ‘‘Ours without Cross’’. ‘‘Ours without Cross’’ is
.0164 and 0.0076 lower than ‘‘Ours w/o Multiple’’, and ‘‘Ours w/o
ingle’’, in term of accuracy, respectively. In terms of precision, sen-
itivity, specificity, F1-Score, and AUC, there are similar scenarios. As

we can see, ‘‘Ours without Cross’’ is worse than others. These suggest the
importance of making joint use of the single-level modality and multiple-level
modality information.

From the above, we get the conclusion in the following two aspects:
(1) It is apparent that the design of our attention mechanisms improves
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COVID-19 diagnosis. i
(2) It is evident that the design of our cross-level modality mechanisms
s better than our other attention mechanisms. This suggests that the design
f cross-level modality mechanisms is robust and effective.

.4. Discussion about knowledge attention mechanisms

In this subsection, we compare with some state-of-the-art graph
ttention mechanisms, including network embedding approach and
raph neural network-based methodology, to validate the effectiveness
f the presented attention mechanisms. Firstly, we introduce state-
f-the-art graph attention mechanisms. Then, we analyse discussion
xperiment results.

.4.1. State-of-the-art graph attention mechanisms
We review the theory and implementation of state-of-the-art graph

ttention mechanisms, like the following:
★ DeepWalk [97] is a random walk-based network embedding

ethod. Here, we perform DeepWalk on the entire graph and ignore the
odes. Obviously, this method is able to be designed for homogeneous
raphs.
★ ESim [98] captures multi-modal information from multiple meta-

aths and is a graph embedding method. We assign the weights from
ur attention mechanisms to ESim in our discussion because it is hard
o search for weights for the meta-paths set.

★ metapath2vec [99] performs a random walk based on a meta-
ath and uses skip-gram to embed knowledge graphs. This is a graph
mbedding method. Here, we report the best performance in the dis-
ussion and test all meta-paths.

★ HERec [100] devises a constraint policy for filtering node se-
uences. Besides, this is a graph embedding method and uses a skip-
ram embedding knowledge graph. Here, we report the best perfor-
ance in the discussion and test all the meta paths for this method.
★ GCN [101] designs for the graphs and is a semi-supervised graph

onvolutional network. Here we report the best performance and test
ll the meta-paths for GCN.
★ GAT [25] considers the attention mechanism on the graphs and is

semi-supervised neural network. Here we report the best performance

n our discussion and test all the meta-paths for this method.
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★ MAGNN [102] maps the heterogeneous node attribute informa-
tion to the vector space of the same hidden layer, uses the attention
mechanism to consider the semantic information inside the meta path,
and applies the attention mechanism to aggregate information from
multiple meta paths. Here we report the best performance in our
discussion and test all the meta-paths for this method.

★ RGCN [103] applies the GCN framework to relational data mod-
elling and employs sharing parameters techniques and a sparse matrix
multiplications implementation in multiple graphs with a large number
of relations. Obviously, this method is able to be designed for multiple
homogeneous graphs. However, our graph attention mechanism is to
consider building a relational model at a given heterogeneous graph.
Here we report the best performance and test all the meta-paths for
RGCN.

★ GATNE [104] classifies all node embeddings of heterogeneous
graphs into three categories: base embeddings, edge embeddings, and
attribute embeddings. Base embeddings and attribute embeddings are
shared among different types of edges, while edge embeddings are
computed through the aggregation of neighbourhood information and
self-attention mechanisms. Different from the proposed graph attention
mechanism that focuses on the relationship between data modalities,
GATNE focuses on the relationship between different node embed-
dings and different attributes between nodes. Here we report the best
performance and test all the meta-paths for GATNE.

★ HGAN [105] is a heterogeneous GNN. It learns metapath-specific
node embeddings from different metapath-based homogeneous graphs
and leverages the attention mechanism to combine them into one vec-
tor representation for each node. Different from the proposed graph at-
tention mechanism that focuses on the relationship of cross-modalities,
HGAN focuses only on the relationship of multiple modalities as a
whole. Here we report the best performance and test all the meta-paths
for HGAN.

★ HetGNN [106] first samples a fixed number of neighbours in the
vicinity of an object via random walk with a restart. Then it performs
within-type aggregation of these neighbours and designs a type-level
attention mechanism for type-level aggregation. If we regard a type as a
modality, different from the proposed graph attention mechanism that
focuses on the relationship of cross-modalities, HetGNN focuses only on
intra-modalities. Here we report the best performance and test all the
meta-paths for HetGNN.

★ HGT [107] is a heterogeneous method that considers all possible
by computing all possible meta-path based graphs and then performs
graph convolution on the resulting graphs. Unlike the proposed graph
attention mechanism driven by some meta-paths, HGT focuses on all
relationships from all meta-paths. If meta-paths contain noise or bias,
HGT may not work well. Here we report the best performance and test
all the meta-paths for HGT.

★ MMGCN [108] is a graph-based algorithm. It devises a model-
specific bipartite graph based on user–item interactions for each modal-
ity to learn representations of user preferences on different modalities.
After that, it aggregates all model-specific representations to obtain
the representations of users or items for prediction. Different from the
proposed graph attention mechanism that focuses on the relationship
of cross-modalities, MMGCN focuses on the relationship of model-
specific modalities. Here we report the best performance and test all
the meta-paths for MMGCN.

5.4.2. Analysis of attention mechanisms
In this sub-sub section, Ours(DeepWalk) means a variant of Ours,

which only using DeepWalk and not using our graph attention mech-
anisms; Ours(ESim) means a variant of Ours, which only using ESim
and not using our graph attention mechanisms; Ours(metapath2vec)
means a variant of Ours, which only using metapath2vec and not
using our graph attention mechanisms; Ours(HERec) means a variant
of Ours, which only using HERec and not using our graph attention
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mechanisms; Ours(GCN) means a variant of Ours, which only using
GCN and not using our graph attention mechanisms; Ours(GAT) means
a variant of Ours, which only using GAT and not using our graph
attention mechanisms; Ours(MAGNN) means a variant of Ours, which
only using MAGNN and not using our graph attention mechanisms;
Ours(RGCN) means a variant of Ours, which only using RGCN and not
using our graph attention mechanisms; Ours(GATNE) means a variant
of Ours, which only using GATNE and not using our graph attention
mechanisms; Ours(HGAN) means a variant of Ours, which only using

GAN and not using our graph attention mechanisms; Ours(Het-GNN)
eans a variant of Ours, which only using HetGNN and not using

ur graph attention mechanisms; Ours(HGT) means a variant of Ours,
which only using HGT and not using our graph attention mechanisms;
Ours(MMGCN) means a variant of Ours, which only using MMGCN and
not using our graph attention mechanisms.

Based on Table 7, we can see that our attention mechanisms achieve
the best performance. Specifically, Our is 0.1347, 0.1322, 0.1311,
0.1287, 0.1144, 0.1140, 0.1120, 0.1094, 0.1074, 0.1045, 0.0474,
0.0206, and 0.0177 higher than Ours(DeepWalk), Ours(Esim),
Ours(metapath2vec), Ours(HE-Rec), Ours(GCN), Ours(GAT),
Ours(MAGNN), Ours (RGCN), Ours (GATNE), Ours (HGAN), Ours
(HetGNN), Ours (HGT), and Ours (MMGCN), in term of accuracy,
respectively. In terms of precision, sensitivity, specificity, F1-Score,
AUC, there are similar scenarios as the above. On the other hand,
from Table 7, we compare the model size of our knowledge attention
mechanism with the model size of others: in the case of best perfor-
mance, the model size of our knowledge attention mechanism does not
exceed 40M. Compared to the heaviest model (i.e., Ours (HGAN)), our
model parameters are about 8M smaller, and the performance of our

odel increases all by almost 0.1. Besides, the batch time of our model
i.e., 70 ms per image) is not the optimal one, but it can satisfy the

requirements of real-time applications (less than 100 ms to process each
image [112]).

From the above observation, for traditional graph embedding meth-
ods, ESim performs better than metapath2vec. Besides, it is known
that ESim is able to take multiple meta-paths. In general, graph neural
network-based methods combine feature and structure information,
such as GCN, GAT, and MAGNN. This method generally performs
better. To delve into these methods, MAGNN can accurately weigh
information and improve learning embedding performance compared
to just the average node neighbour. Compared to MAGNN, our at-
tention mechanism can capture the more valuable multi-modal in-
formation successfully and shows its superiority. Compared to some
advanced models, including RGCN, GATNE, HGAN, HetGNN, HGT, and
MMGCN, our attention mechanism can capture the cross-modalities
information successfully and shows its superiority. Besides, according
to Table 6, without single-level modality attention (‘‘Ours without
Single’’), multiple-level modality attention (‘‘Ours without Multiple’’),
cross-level modality attention (‘‘Ours without Cross’’), the performance
of these becomes worse than ours, which indicates the importance of
modelling the attention mechanism on both of the single-level modal-
ity and multiple-level modality information, and joint of multi-modal
information.

Through the above analysis, we can find that the proposed knowledge
attention mechanisms achieve the best performance among the state-of-the-
art graph attention mechanisms. The experimental results also demonstrate
that it is essential to capture and joint the importance of single-level modal-
ity information and multiple-level modality information in a multi-modal
knowledge graph.

5.5. Compared to different temporal convolution networks

In this subsection, we compare with some state-of-the-art temporal
convolution networks to verify the effectiveness of the proposed tempo-
ral convolution networks. Firstly, we introduce state-of-the-art tempo-
ral convolution networks. Then, we analyse the comparison experiment

results.
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Table 9
The results of discussion about spatial–temporal networks. ‘‘M’’ means ×106. Batch time means the runtime of each batch in the model testing.
Method Accuracy Precision Sensitivity Specificity F1-score AUC Model size Batch time

DyHAN [113] 0.9008 0.9368 0.9479 0.9258 0.9312 0.8918 184.5M 2.10 s
CE-LSTM [114] 0.9161 0.9458 0.9585 0.9287 0.9372 0.9035 273.6M 2.12 s

Ours 0.9810 0.9889 0.9861 0.9859 0.9875 0.9908 76.4M 1.14 s
Fig. 6. The result of parameters experiments.
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Fig. 7. Scalability. The training time decreases as the number of training samples
increases. Ours takes less training time to converge compared with others.

State-of-The-Art Temporal Convolution Networks We review the
heory and implementation of state-of-the-art temporal convolution
etworks, like the following:
★ TCN [72] use dilated convolutions to solve the global information

f the entire input sequence and sets the Residual block for further
eature extraction.

★ TrellisNet [109] is similar to TCN, but it is different in the
eight sharing mechanism and hidden layer state calculation pro-

ess. Each layer of TrellisNet can be regarded as performing a one-
imensional convolution operation on the hidden state sequence and
hen convolution. The output is passed to the activation function.

★ SA-TCN [110] is a TCN-based model embedded with a temporal
elf-attention block. Each block extracts a global temporal attention
ask from the hidden representation laying between the encoder and
ecoder. Instead, our model utilizes information from other blocks
o boost the representation of one block. Obviously, there is a clear
ifference between these two models.
★ TCAN [111] is also combines temporal convolutional network

nd attention mechanism. Its temporal attention can integer internal
orrelative features under the condition of satisfying sequential char-
cteristics. We have a similar idea to TCAN, but the implementation is
lightly different. TCAN uses a conventional convolution operation to
xtract features and then employs a residual network to augment the
eatures. Instead, we adopt causal convolutions to extract and boost the
eatures from one block.

Analysis of Temporal Convolution Networks In this subsection,
urs(TCN) means a variant of Ours, which only using TCN and not
sing our temporal convolution networks; Ours(TrellisNet) means a
ariant of Ours, which only using TrellisNet and not using our temporal
onvolution networks; Ours(SA-TCN) means a variant of Ours, which
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f

only using SA-TCN and not using our temporal convolution networks;
Ours(TCAN) means a variant of Ours, which only using TCAN and not
using our temporal convolution networks.

From Table 8, it is apparent that our approach has better perfor-
mances than others. Specifically, ours is 0.1131, 0.1022, 0.0956, and
0.0940 higher than Ours (TCN), Ours (TrellisNet), Ours (SA-TCN), and
Ours (TCAN), in term of accuracy, respectively. In terms of precision,
sensitivity, specificity, F1-Score, AUC, there are similar scenarios as the
above. On the other hand, we compare the model size of our temporal
convolution network with the model size of others: in the case of best
performance, the model size of our temporal convolution network is
required as 32M, which is the second smallest. Besides, the batch time
of our model is the smallest. Thus, our method has more convincing
performance than other state-of-the-art temporal convolution networks for
COVID-19 diagnosis.

5.6. Compared to different spatial–temporal networks

In this subsection, we compare with some state-of-the-art spatial–
temporal networks to verify the effectiveness of the proposed model.
Firstly, we introduce state-of-the-art spatial–temporal networks. Then,
we analyse the comparison experiment results.

State-of-The-Art spatial–temporal Networks We review the the-
ory and implementation of state-of-the-art spatial–temporal networks,
like the following:

★ DyHAN [113] is a dynamic heterogeneous graph embedding
ethod with hierarchical attention that learns node embeddings lever-

ging both structural heterogeneity and temporal evolution.
★ CE-LSTM [114] is an event-flow serializing method to learn

he representation from heterogeneous spatial–temporal graph through
ncoding the evolution of dynamic heterogeneous graph into a special
anguage pattern such as word sequence in a corpus.

Analysis of spatial–temporal Networks From Table 9, it is appar-
nt that our approach has better performances than others. Specifically,
urs is 0.0802 and 0.0649 higher than DyHAN and CE-LSTM, in terms
f accuracy, respectively. In terms of precision, sensitivity, specificity,
1-Score, AUC, there are similar scenarios as the above. On the other
and, we compare our model’s model size with the model size of
thers: in the case of best performance, the model size and batch
ime of our model are the smallest. Therefore, our method has more
ffective performance than other state-of-the-art spatial–temporal networks

or COVID-19 diagnosis.



Information Fusion 75 (2021) 168–185W. Zheng et al.
Fig. 8. The result of robustness analysis. Performance modification using the altered data input over our model.
5.7. Parameters experiments

In this subsection, we investigate the sensitivity of parameters and
report the performance results on our dataset with various settings in
Fig. 6.

Different Dimension of The Final Embedding 𝐟 For testing the
final embedding of 𝐟 , the results are shown in Fig. 6(a). We can see
that as the embedding dimension grows, the performance first goes up
and then starts to decrease slowly. This is because our method requires
a suitable dimension to encode multimodal information, and larger
dimensions may introduce additional redundancy.

Different Dimension of Multiple-Level Modality Attention Vec-
tor 𝐪 As multimodal attention’s capability is influenced by the dimen-
sions of the multimodal attention vector 𝐪, we expose experimental
results for different dimensions. The results are shown in Fig. 6(b). We
can see that when the dimension of 𝐪 is set to 128, the performance of
our method reaches its best performance as the number of dimensions
of the multilevel modal attention vector grows. Afterward, as the
performance of our method begins to degrade, overfitting may occur.

Number of attention head 𝐾 To examine the effects of multi-head
attention, we investigate the performance of various attention head
approaches. The results are shown in Fig. 6(c). From the results, it
can be seen that the number of attention heads usually improves the
performance of our method. 𝐾 is the best performance. After that, the
performance gradually decreases.

5.8. Scalability analysis

In this subsection, we investigate our model’s scalability and com-
pared methods deployed on different numbers of training samples for
optimization. Fig. 7 shows the speedup, w.r.t., the number of training
samples on the proposed dataset.

From Fig. 7, our model is entirely scalable as the training time
decreases significantly when we add up the number of training samples,
and finally, the proposed model takes less than six hours to converge
with 1200 training samples. We also find that our method’s training
speed increases almost linearly as the number of training samples
increases, while other methods converge slower. Besides the state-of-
the-art performance, ours is also scalable enough to be adopted in
practice.

5.9. Robustness analysis

In this subsection, in order to investigate the robustness of our
model under study, we consider the alterations for all medical chest
images in our proposed dataset. In other words, we think the most
common alterations that can occur when working on digital images in
the medical sector:

⧫ Gaussian Noise (GN) simulates the possible effect of a wrong
manipulation of the microscopic slide (e.g., too much dye has been used
for contrast) [115]. We considered different values for the variance 𝛿2
of the noise.

⧫ Blur Addition (BA) may occur due to a small move of the tool
causing a focus loss. We vary the radius 𝑟 of blurring.
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Fig. 9. The confusion matrix of classifying the asymptomatic infection (COVID-19)
cases and non-COVID-19 cases.

⧫ JPEG Compression (JC) may occur when images are transferred
in a lossy manner. We vary compression value .

From Fig. 8, the performance profiles of our model are similar under
different noisy data conditions. Moreover, the performance degradation
does not exceed 0.12. It suggests that our model has a good ability to
resist noise. Further, it demonstrates the robustness of our model.

5.10. Generalization about asymptomatic infection cases

A rising number of asymptomatic patients with a confirmed diagno-
sis of COVID-19 has been reported. Asymptomatic infections are those
patients who do not have clinical symptoms associated with COVID-19
(e.g., fever, cough, sore throat, etc.) but who test positive for anti-
bodies on RTPCR or in specimens such as the respiratory tract [116].
Asymptomatic patients can be the source of infection and carry some
risk of transmission. Therefore, it is urgent to recognize asymptomatic
infected patients from non-COVID-19 patients. Asymptomatic patients
with COVID-19 pneumonia have unilateral ground-glass opacities on
medical imaging of the lungs [117]. Therefore, the chest images of
asymptomatic COVID-19 patients have several imaging features, and
these images are of significant diagnostic value in close contact with
an infected person.

In this subsection, to better verify the robust performance of our
algorithm, we extend our model to a specific classification task, where
we use the trained model to directly classify the asymptomatic infection
(COVID-19) cases and non-COVID-19 cases. To this end, we collect
70 cases from asymptomatic infection (COVID-19) patients with the
similar methods mentioned in Section 3, and we randomly choose
140 non-COVID-19 cases from our test dataset. In this way, we get
the new test set in this generalization experiment. We analyse the
generalization results shown in Fig. 9, in terms of accuracy, precision,
F1-score, sensitivity, specificity. From Fig. 9, our model considers only 2
asymptomatic infection cases as non-COVID-19 patients, with a 97.14%
specificity. It demonstrates the good performance of our model on
this particular task. Furthermore, it suggests that our model has good
generalization performance.
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Fig. 10. Error analysis.

5.11. Error analysis

We conducted error analysis on our model results on the test data
and identified two types of dominating errors as shown in Fig. 10.

In Fig. 10(a), our model predicts that the patient has COVID-19
because there are words in the doctor–patient dialogues: ground-glass
opacities, infiltrates, and viral pneumonia. These words are closely
related to COVID-19, although some of them are denial terms, which
leads to confusion and errors in our model.

As shown in Fig. 10(b), our model falsely identifies this as a non-
COVID-19 patient. In this kind of case, we find that there are words
in doctor–patient dialogues: not observed, not significantly. In this
case, we also observe that the doctor gives words like lung opacity,
which may cause our model not to identify and classify it correctly.
In summary, these errors provide suggestions for future work on our
model.

6. Conclusion

In this paper, we propose a novel COVID-19 diagnosis approach,
which can fully take advantage of multi-modal medical information to
build up the performance. Our approach gains the precise embedding
of multi-modal medical information and exports medical knowledge
directly from a deep learning-based network through learning from a
given knowledge graph. With the learned deep learning-based network
and medical embedding, our approach can yield the knowledge-based
attention feature vector that can mainly contribute to the improved
performance of diagnostic models. Experimental results demonstrate
the effectiveness and robustness of our approach for the task of COVID-
19 diagnosis. We believe and hope this work can provide insights to
181
the researchers working in this area to shift the attention from only
medical images to the doctor–patient dialogue and its corresponding
medical images.
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