Skip to main content
. 2021 Jun 1;75:168–185. doi: 10.1016/j.inffus.2021.05.015

Table 7.

The results of discussion about knowledge attention mechanisms. “M” means ×106. Batch time means the runtime of each batch in the model testing.

Method Accuracy Precision Sensitivity Specificity F1-score AUC The model size of knowledge attention mechanisms Batch time
Ours (DeepWalk [97]) 0.8463 0.8549 0.8506 0.8867 0.8528 0.8507 23M 0.40 s
Ours (Esim [98]) 0.8488 0.8567 0.8545 0.8869 0.8556 0.8552 24.3M 0.35 s
Ours (metapath2vec [99]) 0.8499 0.8628 0.8554 0.8912 0.8591 0.8568 24M 0.34 s
Ours (HERec [100]) 0.8523 0.8637 0.8638 0.8938 0.8638 0.8658 23.75M 0.32 s
Ours (GCN [101]) 0.8666 0.8701 0.8703 0.8991 0.8702 0.8678 25.4M 0.46 s
Ours (GAT [25]) 0.8670 0.8715 0.8724 0.8992 0.8719 0.8766 25.4M 0.97 s
Ours (MAGNN [102]) 0.8690 0.8764 0.8736 0.8992 0.8750 0.8772 37.2M 1.48 s
Ours (RGCN [103]) 0.8716 0.8716 0.8714 0.8913 0.8814 0.8744 44M 1.24 s
Ours (GATNE [104]) 0.8736 0.8726 0.8734 0.8955 0.8839 0.8764 44.6M 1.54 s
Ours (HGAN [105]) 0.8765 0.8746 0.8745 0.8960 0.8852 0.8772 47.3M 2.27 s
Ours (HetGNN [106]) 0.9336 0.8764 0.9090 0.9344 0.9045 0.9459 42.1M 1.35 s
Ours (HGT [107]) 0.9604 0.8764 0.9444 0.9331 0.9039 0.9536 41M 1.50 s
Ours (MMGCN [108]) 0.9633 0.8764 0.9466 0.9371 0.9057 0.9539 46.7M 2.13 s

Ours 0.9810 0.9889 0.9861 0.9859 0.9875 0.9908 39.4M 1.14 s