Table 7.
The results of discussion about knowledge attention mechanisms. “M” means . Batch time means the runtime of each batch in the model testing.
Method | Accuracy | Precision | Sensitivity | Specificity | F1-score | AUC | The model size of knowledge attention mechanisms | Batch time |
---|---|---|---|---|---|---|---|---|
Ours (DeepWalk [97]) | 0.8463 | 0.8549 | 0.8506 | 0.8867 | 0.8528 | 0.8507 | 23M | 0.40 s |
Ours (Esim [98]) | 0.8488 | 0.8567 | 0.8545 | 0.8869 | 0.8556 | 0.8552 | 24.3M | 0.35 s |
Ours (metapath2vec [99]) | 0.8499 | 0.8628 | 0.8554 | 0.8912 | 0.8591 | 0.8568 | 24M | 0.34 s |
Ours (HERec [100]) | 0.8523 | 0.8637 | 0.8638 | 0.8938 | 0.8638 | 0.8658 | 23.75M | 0.32 s |
Ours (GCN [101]) | 0.8666 | 0.8701 | 0.8703 | 0.8991 | 0.8702 | 0.8678 | 25.4M | 0.46 s |
Ours (GAT [25]) | 0.8670 | 0.8715 | 0.8724 | 0.8992 | 0.8719 | 0.8766 | 25.4M | 0.97 s |
Ours (MAGNN [102]) | 0.8690 | 0.8764 | 0.8736 | 0.8992 | 0.8750 | 0.8772 | 37.2M | 1.48 s |
Ours (RGCN [103]) | 0.8716 | 0.8716 | 0.8714 | 0.8913 | 0.8814 | 0.8744 | 44M | 1.24 s |
Ours (GATNE [104]) | 0.8736 | 0.8726 | 0.8734 | 0.8955 | 0.8839 | 0.8764 | 44.6M | 1.54 s |
Ours (HGAN [105]) | 0.8765 | 0.8746 | 0.8745 | 0.8960 | 0.8852 | 0.8772 | 47.3M | 2.27 s |
Ours (HetGNN [106]) | 0.9336 | 0.8764 | 0.9090 | 0.9344 | 0.9045 | 0.9459 | 42.1M | 1.35 s |
Ours (HGT [107]) | 0.9604 | 0.8764 | 0.9444 | 0.9331 | 0.9039 | 0.9536 | 41M | 1.50 s |
Ours (MMGCN [108]) | 0.9633 | 0.8764 | 0.9466 | 0.9371 | 0.9057 | 0.9539 | 46.7M | 2.13 s |
Ours | 0.9810 | 0.9889 | 0.9861 | 0.9859 | 0.9875 | 0.9908 | 39.4M | 1.14 s |