Skip to main content
. 2021 Jun 1;75:168–185. doi: 10.1016/j.inffus.2021.05.015

Table 8.

The results of discussion about temporal convolution networks. “M” means ×106. Batch time means the runtime of each batch in the model testing.

Method Accuracy Precision Sensitivity Specificity F1-score AUC The model size of temporal convolution networks Batch time
Ours (TCN [72]) 0.8679 0.8688 0.8641 0.8909 0.8664 0.8675 28.6M 1.77 s
Ours (TrellisNet [109]) 0.8788 0.8824 0.8761 0.9036 0.8792 0.8842 87M 1.69 s
Ours (SA-TCN [110]) 0.8854 0.8995 0.8837 0.9087 0.9040 0.8869 54M 1.31 s
Ours (TCAN [111]) 0.8870 0.9302 0.8981 0.9248 0.9275 0.8895 33M 1.26 s

Ours 0.9810 0.9889 0.9861 0.9859 0.9875 0.9908 32M 1.14 s