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Artificial intelligence (AI) stands to increasingly impact the practice of medicine as 

advances in deep learning for computer vision and natural language processing are translated 

to medical contexts. Applications of deep learning to retinal imaging have shown promise in 

recent years, beginning with a 2016 study by authors from Google demonstrating near-

ophthalmologist accuracy in the classification of diabetic retinopathy from fundus 

photographs.1 However, the challenges facing AI in retinal imaging parallel the challenges 

with applying AI to medicine in general. Many of these problems arise due to limitations in 

data. Large amounts of annotated data are traditionally required to “train” deep-learning 

models to perform well. Not only can high-volume data annotation be costly (the 

aforementioned diabetic retinopathy study required around 527 000 fundus-image 

evaluations by ophthalmologists), but sometimes sufficient data cannot be obtained, as may 

be the case for rare conditions. Additionally, an unbalanced distribution of characteristics, 

such as patient demographics, in the training data can result in poor performance in 

underrepresented populations. This new study in this issue of JAMA Ophthalmology by 

Burlina et al.2 represents a key step toward combatting these challenges by applying cutting-

edge, self-supervised, “low-shot” learning methods to improve performance in retina image 

classification under conditions of few training examples.

The authors studied the influence of the amount of training data on AI model performance in 

the classification of diabetic retinopathy from fundus photographs. They trained several 

different types of models on subsets of training data from a publicly available fundus image 

database. The images were categorized into two classes: either having referable diabetic 

retinopathy or not. Independent models of each type were trained using subsets of the 

database increasing in size from 10 images per class to 5120 images per class. All models 

were evaluated on the primary metrics of accuracy and area under the receiver operating 

characteristic curve (AUC) on the same test set taken from the same database. The models 

included a standard convolutional neural network (CNN) as a control (ResNet50), along 

with several different low-shot approaches (both standard and self-supervised) based on 

recent developments in AI research. As expected, all models tended to perform better with 

increased amounts of training data. At the maximum amount of training data (5120 images 

per class), the control CNN achieved an AUC of 0.8330, and the comparable self-
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supervised, low-shot method achieved AUC of 0.8348. As the amount of training data 

decreased, the low-shot methods outperformed the standard control CNN, with the self-

supervised approaches performing best.

Deep learning mitigates the need for human-designed features used in traditional image-

processing techniques and, instead, allows the model to devise its own domain-specific 

features and correlate those features to classification based on exposure to training data. 

Because deep-learning models are highly flexible in terms of the features they can 

potentially learn, a high volume of training data is typically needed for a model to refine 

these features and make them relevant to the data the model will encounter at test time.

The low-shot methods presented in the article by Burline et al2 reduce the number of labeled 

training examples required to learn relevant features by restricting the model hypothesis 

(feature) space and leveraging internal associationss within the data to enhance 

representations. The standard low-shot methods evaluated in this study combined 

“pretrained” CNNs with traditional classifiers (random forest, support vector machine, and 

K-nearest-neighbors), which help the model avoid overfitting at the fully connected layer. 

Second, the self-supervised approaches maximize the use of smaller amounts of labeled 

training data by learning about statistical regularities (eg. spatial relationships and 

orientation of images) that might be a cue to semantics of the underlying data. Self-

supervised approaches use variations on the theme of using a portion of the data to predict 

something about another correlated portion of the data. The self-supervised approach used 

here (extension of Deep InfoMax)3 compares a model’s deepest representation of an entire 

transformed image with shallower representations of differently transformed portions of the 

same and different images. It requires no additional expert-provided labels, and in the 

process of analyzing these comparisons, it captures useful information about the data. The 

key contribution of the study by Burlina et al2 was putting these low-shot methods to the test 

in the retinal-imaging domain, an important milestone in the translation of the latest deep-

learning techniques into ophthalmology.

This study has a number of strengths. The authors properly implemented a recently 

developed self-supervised learning algorithm that uses general knowledge from intranet 

images, and they demonstrated that this knowledge can be usefully transferred from natural 

images to retinal images. Several low-shot classification methods were evaluated against a 

control CNN, and full experimental results were presented in detail along with 95% CIs. 

Another major strength of this study is its method, which included using a large, open-

source database, partitioning images at the patient level, and balancing classes across all 

experiments. This method strengthens the finding that the self-supervised approaches 

exceeded the performance of the industry standard in the low-data regime. These results lay 

the foundation for the use of low-shot learning in retinal imaging, but several important 

questions remain.

One limitation of the study stems from its limited range of training data sizes. In the 2016 

diabetic retinopathy study, the low-training-data threshold for optimal model performance 

was around 60 000 images.1 At best performance, the AUCs in that study were around 0.99. 

Given that this study used, at most, 10 240 training examples, it is expected that the AUCs 
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would be worse than the 2016 study. However, testing lower amounts of training data limited 

the findings in 2 main ways. Although the superiority of low-shot methods in the very-low-

data regime shows promise for certain applications, it is not clear whether these results are 

acceptable for clinical use in domains where sufficient data are available without further 

studies. Second, the restricted representational capacity of some low-shot methods may limit 

their performance compared with traditional methods in the untested high-data regime. The 

self-supervised, low-shot methods may be most useful in addressing the issue of training 

data set imbalances. Future work could evaluate their performance as the training data set 

becomes more imbalanced with respect to disease category or patient characteristics.

Low-shot learning is particularly beneficial to the success of medical AI when studying 

uncommon diseases or requiring high-quality, clinician-derived labels, as opposed to 

training with functional targets.4–6 Burlina et al2 have accomplished a critical step toward 

realizing the benefits of low-shot learning by demonstrating the advantages of self-

supervised methods in low-shot retinal imaging. Future research could quantify where these 

approaches can be most clinically relevant and evaluate whether they can address the 

important issues associated with data set bias.
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