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Abstract

We further develop a new framework, called PDE acceleration, by applying it to calculus of 

variation problems defined for general functions on ℝn, obtaining efficient numerical algorithms to 

solve the resulting class of optimization problems based on simple discretizations of their 

corresponding accelerated PDEs. While the resulting family of PDEs and numerical schemes are 

quite general, we give special attention to their application for regularized inversion problems, 

with particular illustrative examples on some popular image processing applications. The method 

is a generalization of momentum, or accelerated, gradient descent to the PDE setting. For elliptic 

problems, the descent equations are a nonlinear damped wave equation, instead of a diffusion 

equation, and the acceleration is realized as an improvement in the CFL condition from Δt ~ Δx2 

(for diffusion) to Δt ~ Δx (for wave equations). We work out several explicit as well as a semi-

implicit numerical scheme, together with their necessary stability constraints, and include 

recursive update formulations which allow minimal-effort adaptation of existing gradient descent 

PDE codes into the accelerated PDE framework. We explore these schemes more carefully for a 

broad class of regularized inversion applications, with special attention to quadratic, Beltrami, and 

total variation regularization, where the accelerated PDE takes the form of a nonlinear wave 

equation. Experimental examples demonstrate the application of these schemes for image 

denoising, deblurring, and inpainting, including comparisons against primal–dual, split Bregman, 

and ADMM algorithms.
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1 Introduction

Variational problems have found great success and are widely used, in image processing for 

problems such as noisy or blurry image restoration, image inpainting, image decomposition, 

and many other problems [2]. Many image processing problems have the form

min
u ∫

Ω
L(x, u, ∇u) dx (1)

where L is convex in ∇u1 and the corresponding gradient descent equation

ut + Lz(x, u, ∇u) − div ∇pL(x, u, ∇u) = 0

is a nonlinear diffusion equation, where L = L(x, z, p). Solving (1), an elliptic problem, via 

gradient descent is inefficient, due in large part to the stiff stability (CFL) condition Δt ≤ 

CΔx2 for diffusion equations. This has led to the development of more efficient optimization 

algorithms, such as primal–dual methods [9] and the split Bregman approach [12] that avoid 

this numerical stiffness.2

Optimization is also widely used in machine learning. Typically for both modern machine 

learning and image processing problems, first-order methods based on computing only the 

gradient are preferable, since computing and storing the Hessian are intractable [4]. 

Although this generalization is with the caveat, most types of machine learning optimization 

problems are often structurally different than in image processing.

For both machine learning and image processing, discrete gradient descent is typically 

written as

xk + 1 = xk − α∇f xk , (2)

where in machine learning the time step α is called the learning rate. And although gradient 

descent is provably convergent for convex problems [5], the method can be very slow to 

converge in practice.

To address this issue, many versions of accelerated gradient descent, typically described as 

momentum-based techniques, have been proposed in the literature and are widely used in 

machine learning [29]. At some heuristic level, gradient descent is often slow to converge 

because the local descent direction is not reliable on a larger scale, leading to large steps in 

poor directions and large corrections in the opposite direction. The descent is also dependent 

on the magnitude of the gradient, which slows or even traps descent when it is locally flat.

Accelerated descent methods typically incorporate some type of averaging of past descent 

directions, which provides a superior descent direction compared to the local gradient. One 

of the oldest accelerated methods is Polyak’s heavy ball method [18]

1Nonconvex problems are also widely used, see, e.g., [17].
2Primal–dual and split Bregman also avoid the non-smoothness of the L1 norm, which is an issue in descent-based approaches and 
often requires some form of regularization.
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xk + 1 = xk − α∇f xk + β xk − xk − 1 . (3)

The term β(xk − xk−1) acts to average the local descent direction with the previous direction 

and is referred to as momentum. Polyak’s heavy ball method was studied in the continuum 

by Attouch et al. [1] and also by Goudou and Munier [13], who call it the heavy ball with 
friction. In the continuum, Polyak’s heavy ball method corresponds to the equations of 

motion for a body in a potential field, which is the second-order ODE

ẍ + aẋ = − ∇f(x) . (4)

A more recent example of momentum descent is the famous Nesterov accelerated gradient 

descent [16]

xk + 1 = yk − α∇f yk

yk + 1 = xk + 1 + k − 1
k + 2 xk + 1 − xk . (5)

In [16], Nesterov proved a convergence rate of O(1/k2) after k iterations for smooth convex 

problems. This is provably optimal for first-order methods.

The seminal works of Polyak and Nesterov have spawned a whole field of momentum-based 

descent methods, and variants of these methods are widely used in machine learning, such as 

the training of neural networks in deep learning [25,29]. The methods are popular for both 

their superior convergence rates for convex problems, but also their ability to avoid local 

minima in nonconvex problems, which is not fully understood in a rigorous sense. There has 

been significant interest recently in understanding the Nesterov accelerated descent methods. 

In particular, Su et al. [22] recently showed that Nesterov acceleration is simply a 

discretization of the second-order ODE

ẍ + 3
t ẋ = − ∇f(x) . (6)

Other works have since termed this ODE as continuous time Nesterov [27]. We note the 

friction coefficient 3/t vanishes as t → ∞, which explains why many implementations of 

Nesterov acceleration involve restarting, or resetting the time to t = 0 when the system is 

underdamped [27].

However, it is the work of Wibisono et al. [29] that gives the clearest picture of Nesterov 

acceleration. They show that virtually all Nesterov accelerated gradient descent methods are 

simply discretizations of the ODE equations of motion for a particular Lagrangian action 

functional. This endows Nesterov acceleration with a variational framework, which aids in 

our understanding, and more importantly can be easily adapted to other settings. This 

framework was extended to the partial differential equation (PDE) setting by 

Sundaramoorthi and Yezzi in their initial works [23,24,30,31] where the first set of 

accelerated PDEs were formulated both for geometric flows of contours and surfaces (active 

contours) as well as for diffeomorphic mappings between images (optical flow).
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In this manuscript, acceleration is addressed both in the continuum (space and time) and for 

a class of discrete problems. Our primary intended usage of the term “acceleration” refers to 

the physical interpretation of acceleration as the second time derivative of the evolving 

entity. In typical gradient descent, the gradient defines the velocity of the evolution. In 

accelerated descent, the gradient defines the acceleration of the evolution. Often, the 

gradient descent PDE for an energy function E(u) has the form

ut = − ∇E(u), (7)

whereas what we are calling an accelerated gradient PDE generally has the form

utt = − aut − ∇E(u), (8)

where the addition of aut, with damping coefficient a, acts as a friction term to dissipate 

kinetic energy. Our secondary usage of the term acceleration applies to a special class of 

variational problems where a less restrictive CFL condition allows coarser time sampling of 

the discretized PDEs. Here an improvement in the CFL conditions for these PDEs is realized 

numerically by much larger step sizes for both their explicit and semi-implicit 

discretizations. Thereby, this allows another interpretation of the term “acceleration” as a 

raw computational speedup, as shown conceptually in Fig. 1.

We note there are also some acceleration-type methods that have appeared recently in image 

processing [3,6,14, 19,28], with the exception of [6,19], these methods are not derived from 

a variational framework, and so they lack energy monotonicity and convergence guarantees. 

Ratner and Zeevi [19] do not derive their approach from an action integral and therefore do 

not have the connections to Nesterov or the heavy ball method. They do not address stability 

or model analysis and likewise lack the convergence guarantees. Baravdish, Svensson, 

Gulliksson and Zhang do, however, address the fully linear case of the same nonlinear setup, 

motivated from the heavy ball method, but restricted to the Lp norm of gradient as a 

regularizer, focusing on mainly p = 1 (total variation) experiments. They prove the existence/

uniqueness of weak solutions for a regularized version of the damped nonlinear wave 

equation and prove the exponential convergence rate from [8]. They, however, limit their 

analysis to a single discretization scheme, the Stormer–Verlet method, which is different 

from ours. Furthermore, they do not derive their approach from an action integral and thus 

lack connections to Nesterov. Our paper extends the analysis to multiple discretization 

schemes and multiple fidelities and gives a more thorough discussion of the stability (CFL) 

conditions for the PDEs. We also extend the connection of Nesterov acceleration to semi-

implicit Euler.

Acceleration has also been applied to composite functionals, which have a strongly convex 

smooth term and a non-smooth convex term [7,10]. These methods are based on accelerating 

the forward/backward splitting algorithms for such composite functionals and use a 

regularization on the TV seminorm. We show in this paper that PDE acceleration can be 

applied directly to the non-smooth unregularized TV seminorm, due to a nonlinear stability 

condition we discuss in Sect. 4.5.
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1.1 Contributions

The contributions of this paper are:

1. We extend the class of accelerated PDEs formulated in [23,24,30,31] to the 

setting of generic functions over ℝn, building on the variational insights 

pioneered by [29]. The method applies to solving general problems in the 

calculus of variations. In similar spirit to (4) and (6), the descent equations in 

PDE acceleration correspond to a continuous second-order flow in time which, 

for a broad class of regularized inversion problems to be addressed in Sect. 4, 

take on the specific form of damped nonlinear wave equations rather than the 

reaction–diffusion equations that arise as their traditional gradient descent 

counterparts. Accelerated PDEs can be solved numerically with simple explicit 

Euler or semi-implicit Euler schemes which we develop in Sect. 3.

2. We realize an improvement in the CFL condition from Δt ~ Δx2 for diffusion 

equations (or standard gradient descent), to Δt ~ Δx for wave equations. We also 

refer to this improved stability condition as acceleration since the maximum 

stable time step that the PDEs can take has increased.3 In fact, we will show 

early on in Sect. 3 that the improvements in the CFL condition for explicit 

numerical accelerated PDE schemes (compared with their gradient descent 

counterparts) are a completely general property of accelerated PDEs which 

applies even when the wave equation structure does not arise.

3. We apply the new numerical discretizations to a class of inversion problems: 

denoising, deblurring, and inpainting with various regularizers and show robust 

performance and improvements over existing methods.

In a companion paper [8], we study the PDE acceleration method rigorously and prove a 

convergence rate, perform a complexity analysis, and show how to optimally select the 

parameters, including the damping coefficient (these results are summarized in Sect. 2). That 

paper, however, does not analyze CFL conditions or stability, is more focused on 

convergence rate analysis, and addresses applications to minimal surface obstacle problems 

and improvements to a primal- dual method.

1.2 Paper Outline

This manuscript is organized as follows: In Sect. 2, we summarize the work of a companion 

paper [8], in which we rigorously study the PDE acceleration method, prove a convergence 

rate, perform a complexity analysis, and show how to optimally select the tuning parameters 

including the damping coefficient. In Sect. 3, we develop the explicit and semi-implicit 

Euler schemes and derive the improved CFL conditions for several explicit and semi-

implicit numerical accelerated PDE schemes. In Sect. 4, we extend the derived numerical 

schemes: first-order accelerated, second-order accelerated, and semi-implicit scheme to two 

separate inversion problems for both Beltrami and TV regularization. In Sect. 5, we apply 

3Acceleration can also be used in the sense that in Nesterov acceleration the gradient is forward looking and computed ahead of the 
current state [16]. The semi-implicit case which is an extension from the ODE framework of Nesterov uses a similar look ahead for its 
update scheme.
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the method to quadratic, Beltrami, and total variation regularized problems in image 

processing including denoising, deblurring, and inpainting, obtaining results that are 

comparable to state-of-the-art methods, such as the split Bregman approach, and ADMM, 

and superior to primal–dual methods.

2 PDE Acceleration

We now present our PDE acceleration framework, which is based on the seminal work of 

[23,24,29–31] with suitable modifications to image processing problems. We consider the 

calculus of variation problem

min
u

E[u] ≔ ∫Ω
Φ(x, ∇u) + Ψ(x, u) dx .

The Euler–Lagrange equation satisfied by minimizers is

∇E[u] ≔ Ψz(x, u) − div(∇Φ(x, ∇u)) = 0, (9)

where Φ = Φ(x, p), ∇Φ = ∇pΦ, and Ψ = Ψ(x, z). We note that the gradient ∇E[u] satisfies

d
dε ε = 0

E[u + εv] = ∫
Ω

∇E[u]v dx (10)

for all v smooth with compact support and is often called the L2-gradient due to the presence 

of the L2 inner product on the right-hand side.

We define the action integral

J[u] = ∫t0

t1
k(t) 1

2∫Ω
ρut2 dx − b(t)E[u] dt, (11)

where k(t) and b(t) are time-dependent weights, ρ = ρ(x) represents a mass density, and u = 

u(x, t). Notice the action integral is the weighted difference between kinetic energy 1
2∫ ρut2 dx

and potential energy E[u]. The PDE accelerated descent equations are defined to be the 

equations of motion in the Lagrangian sense corresponding to the action J. To compute the 

equations of motion, we take a variation on J to obtain

0 = d
dε ε = 0J[u + εv]

= ∫t0

t1∫Ω
k(t)ρutvt − k(t)b(t)∇E[u]v dx,

for smooth v with compact support in Ω×(t0, t1). Integrating by parts in t, we have

0 = ∫t0

t1∫Ω
− ∂

∂t k(t)ρut − k(t)b(t)∇E[u] v dx .
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Thus, the PDE accelerated descent equations are

∂
∂t k(t)ρut = − k(t)b(t)∇E[u] .

It is more convenient to define a(t) = k′(t)/k(t) and rewrite the descent equations as

utt + a(t)ut = − b(t)ρ(x)−1∇E[u] . (12)

For image processing problems, there is typically no Dirichlet boundary condition, so the 

natural variational boundary condition ∇pΦ(x, ∇u) · n = 0 is imposed on the boundary ∂Ω, 

where n is the outward normal. Often this reduces to the Neumann condition ∂u
∂n = 0.

In a companion paper [8], we study PDE acceleration descent Eq. (12) rigorously. In 

particular, we prove energy monotonicity and a linear convergence rate. We summarize the 

results in Lemma 1 and Theorem 1.

Lemma 1 (Energy monotonicity [8]) Assume a(t), b(t) ≥ 0 and let u satisfy (12). Suppose 
either u(x, t) g(x) or ∇Φ(x, ∇u) · n = 0 on ∂Ω. Then

d
dt (K[u] + b(t)E[u]) = − 2a(t)K[u] + b′(t)E[u], (13)

where K[u] = 1
2∫Ωρut2 dx. In particular, total energy is always decreasing provided b′(t) ≤ 0 

and E[u] ≥ 0.

Theorem 1 (Convergence rate [8]) Let u satisfy (12) and let u* be a solution of ∇E[u*] = 0 

in Ω. Assume Φ is uniformly convex in ∇u, Ψ is convex, and Ψzz is bounded above, u = u* 

on ∂Ω, a(t) = a > 0 is constant, and b(t) ≡ 1 and ρ ≡ 1. Then there exists C, β > 0 such that

u − u* H1(Ω)
2 ≤ Cexp( − βt) . (14)

We mention that the same convergence rate (14) holds for gradient descent

ut = − ∇E[u]

under the same conditions on E. The difference is that gradient descent is a diffusion 

equation, which requires a time step of Δt ~ Δx2 for stability, while PDE acceleration (12) is 

a wave equation which allows much larger time steps Δt ~ Δx. Thus, the acceleration is 

realized as a relaxation in the CFL condition.

While Theorem 1 provides a convergence rate, it does not give advice on how to select the 

damping coefficient a > 0. It was shown in [8] how to optimally select the damping 

coefficient in the linear setting, and we find this choice is useful for nonlinear problems as 
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well. For convenience, we recall the results from [8], which apply to the linear PDE 

acceleration equation

utt + aut + Lu + λu = f in Ω × (0, ∞), (15)

where L is a linear second-order elliptic operator. A Fourier analysis [8] leads to the optimal 

choice

a = 2 λ1 + λ, (16)

where λ1 is the first Dirichlet eigenvalue of L (or for the Neumann problem, the first 

eigenvalue corresponding to a nontrivial eigenfunction), and the optimal convergence rate

u(x, t) − u*(x) ≤ Cexp ( − at) . (17)

Notice that if L is degenerate elliptic, so λ1 = 0, which roughly corresponds to a non-

strongly convex optimization problem, the method still converges when λ > 0, that is, the 

presence of a fidelity term in the image processing problem enables, and accelerates, 

convergence. This suggests why the algorithm is successful even for TV restoration, which 

is not strongly convex but has a fidelity.

3 Numerical Schemes for Accelerated PDEs

We now describe various time discretization strategies for the generic accelerated PDE

utt + aut = − ∇E u, ux, uxx, … , (18)

alongside related discretizations of the generic gradient descent PDE

ut = − ∇E u, ux, uxx, … (19)

for comparison. Note (18) represents the unit density (ρ = 1) and unit energy scaled (b = 1) 

case of (12). A key advantage of accelerated PDE schemes for regularized inversion 

problems, which we explore subsequently in Sect. 4, is that in typical cases where the 

gradient descent PDE (19) takes the form of a linear or nonlinear reaction-diffusion 

equation, the matching accelerated PDE (18) takes the form of a linear or nonlinear wave 

equation, whose explicit time discretization permits a much larger stable time step than the 

explicit discretization of (19). Therefore, due to their simplicity of implementation, as well 

as their immediately parallelizable structure, we will restrict our discussion to explicit 

update schemes and to the semi-implicit Euler scheme whose two-part update consists of 

partial updates which are both explicit in nature.

3.1 Explicit Forward Euler for Gradient Descent PDEs

We start by considering the explicit forward Euler discretization of the continuous gradient 

descent PDE (19). Using a forward difference in time to approximate the time derivative on 

the left-hand side, we obtain
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u(x, t + Δt) − u(x, t)
Δt = − ∇E .

This leads to the following simple discrete iteration

Δun(x) = − Δt∇En

un + 1(x) = un(x) + Δun(x) (20)

where un (x) ≐ u (x, n Δt) denotes the current iterate, Δun ≐ u(x, nΔt + Δt) − u(x, nΔt) the 

increment to be applied, un+1(x) ≐ u (x, (n + 1)Δt) the new iterate, and ∇En(x) ≐ ∇E(x, nΔt) 
the discrete approximation of the gradient computed at step n.

In most cases, stability considerations require an upper bound on the time step Δt (the CFL 

condition) dependent upon the discretization of ∇En [26]. Often this upper bound for stable 

time steps is computed using Von Neumann analysis by linearizing ∇En in (20) and taking a 

discrete Fourier transform (DFT) on both sides of the homogeneous part to obtain

Un + 1(ω) − Un(ω) = − Δt z(ω)Un(ω) .

Such a structure often arises when ∇En is computed explicitly using only the values of un. In 

such cases, its linearization will consist of a combination of un values whose DFT can be 

written in the form z(ω) Un(ω) where Un(ω) denotes the DFT of un. We will refer to z(ω) as 

the gradient amplifier,4 which is defined as

gradient amplifier z(ω) ≐ DFT Ln

DFT un , (21)

where Ln is the linearized homogeneous part of ∇En. This leads to the following update

Un + 1(ω) = (1 − Δt z(ω))
ξ(ω)

Un(ω),

which will be stable as long as the overall update amplification factor ξ(ω) does not have 

complex amplitude exceeding unity for any frequency ω. This condition can be expressed as

ξ(ω)ξ*(ω) = (1 − Δt z(ω)) 1 − Δt z*(ω) ≤ 1,

which leads to the time step restriction

Δt ≤ z(ω) + z*(ω)
z(ω)z*(ω) = 1

z(ω) + 1
z*(ω) = 2ℜ 1

z(ω) .

4A discrete version of what is often called the symbol of the underlying linear differential operator that is being approximated.
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For elliptic operators, which are common in regularized optimization in image processing, 

the gradient amplifier is real and nonnegative: z(ω) ≥ 0. In such cases, the stability constraint 

takes the form of the following CFL condition

Δt ≤ 2
zmax

(22)

where zmax ≐ maxω z(ω).

3.2 Fully Explicit Schemes for Accelerated PDEs

We now turn our attention to the explicit discretizations of the accelerated PDE (18). We will 

consider both first- and second-order approximations of the time derivatives and will exploit 

the following lemma in the Von Neumann stability analysis for each of these choices.

Root Amplitude Lemma Given a quadratic equation Aξ2 + Bξ + C = 0 with real 

coefficients (A ≠ 0), its roots will satisfy |ξ| ≤ 1 if and only if |B|
|A| − 1 ≤ C

A ≤ 1 (or equivalently 

A > C and A + C > |B| for positive A).

Proof We first prove the result in the special case that A = 1 and B ≥ 0, in which case the 

roots are ξ = − B
2 ± 1

2 B2 − 4C and claim that |ξ| ≤ 1 if and only if

B − 1 ≤ C ≤ 1.

If the roots are imaginary, then both have complex amplitude |ξ|2 = C > 0 which makes the 

right hypothesis necessary and sufficient. The left hypothesis automatically follows since 

C > B2
4 ≥ B − 1 (the first part for the roots to be imaginary and the second part equivalent to 

(B − 2)2 ≤ 0). In the case of real roots, we want the larger magnitude root to satisfy 

|ξ | = B
2 + 1

2 B2 − 4C ≤ 1, which can be expressed as B2 − 4C ≤ 2 − B. This immediately 

yields B ≤ 2 as a necessary condition to keep the right side positive. Under this condition, we 

can square both sides and simplify to obtain the left hypothesis as necessary and sufficient. 

The right hypothesis automatically follows since C < B2
4 < 1 (the first part for the roots to be 

real and the second part based on our condition). Combining the hypotheses yields B − 1 ≤ 1 

which satisfies the necessary condition, thus completing the special case proof. The general 

case follows since the roots of Aξ2 + Bξ + C have the same magnitude as the roots of 

ξ2 + |B|
|A|ξ + C

A .

□

3.2.1 Second Order in Time Scheme—Using central difference approximations for 

both time derivatives gives a second-order discretization in time
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u(x, t + Δt) − 2u(x, t) + u(x, t − Δt)
Δt2

+ au(x, t + Δt) − u(x, t − Δt)
2Δt = − ∇E(x, t),

which leads to the update

un + 1(x) =
2un − 1 − aΔt

2 un − 1 − Δt2∇En

1 + aΔt
2

. (23)

Applying the DFT to the linearized homogeneous part of the update scheme (23) yields

Un + 1(ω) =
2 − Δt2z(ω) Un − 1 − aΔt

2 Un − 1

1 + aΔt
2

where z(ω) denotes the gradient amplifier (21). If we substitute Un±m = ξ±mUn, where ξ(ω) 

denotes the overall update amplification factor, then we obtain the quadratic equation

1 + aΔt
2

A

ξ2 + Δt2 z(ω) − 2
B

ξ + 1 − aΔt
2

C

= 0.

In the case of real z(ω), we may exploit the Root Amplitude Lemma to check the stability 

condition |ξ(ω)| ≤ 1. The first condition A ≥ C of the lemma (for positive A) is satisfied 

since 1 + aΔt
2 ≥ 1 − aΔt

2  for all positive a and Δt, and so we use the second condition A + C ≥ |

B| to obtain the stability condition 2 ≥ |2 − Δt2z(ω)|, which may be rewritten as 0 ≤ Δ2z(ω) ≤ 

4. In the case where z(ω) ≥ 0, we automatically satisfy the left-hand inequality for all ω, 

leaving us with

Δt ≤ 2
zmax

. (24)

3.2.2 First Order in Time Schemes—Continuing to use a central difference for the 

second derivative but only a one sided difference (forward or backward) for the first 

derivative in time yields two alternative first-order time schemes.

Forward Difference Using forward differences in time yields the scheme

u(x, t + Δt) − 2u(x, t) + u(x, t − Δt)
Δt2

+ au(x, t + Δt) − u(x, t)
Δt = − ∇E(x, t),

which leads to the update formula
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un + 1(x) = (2 + aΔt)un − un − 1 − Δt2∇En

1 + aΔt . (25)

Von Neumann analysis applied to the linearized homogeneous part of (23) yields the 

quadratic equation

(1 + aΔt)
A

ξ2 + Δt2 z(ω) − 2 − aΔt
B

ξ + 1
C

= 0

for the update amplification factor ξ = ξ(ω). Since 1 + aΔt > 1 for all positive a and Δt, the 

first condition A ≥ C of the root amplitude lemma (for positive A) is always satisfied. We 

may therefore restrict out attention to the second condition A + C ≥ |B|, assuming real z(ω), 

to determine whether |ξ(ω)| ≤ 1. This gives the condition (1+aΔt)+1 ≥ |Δt2z(ω) − (2 + aΔt) 
which is equivalent to 0 ≤ Δt2z(ω) ≤ 2(2 + aΔt). In the case where z(ω) ≥ 0, we 

automatically satisfy the left-hand inequality for all ω, which leaves us with z(ω) Δt2 − 2aΔt 
− 4 ≤ 0. Plugging in the extreme case zmax and restricting Δt to lie below the positive root in 

order to keep the quadratic expression on the left negative yield

Δt ≤ 4
zmax

+ a
zmax

2
+ a

zmax
. (26)

Notice that the CFL condition (24) for the second-order (central difference) scheme is 

sufficient but not necessary. If, however, we wish to obtain a condition independent of the 

damping a, then minimizing the upper bound with respect to a (by plugging in a = 0) 

recovers this prior second-order CFL condition.

Backward Difference Using backward differences in time yields

u(x, t + Δt) − 2u(x, t) + u(x, t − Δt)
Δt2

+ au(x, t) − u(x, t − Δt)
Δt = − ∇E(x, t),

which has the corresponding update

un + 1(x) = (2 − aΔt)un − (1 − aΔt)un − 1 − Δt2∇En . (27)

Similar analysis yields the quadratic equation

ξ2(ω) − 2 − aΔt − Δt2z(ω) ξ(ω) + (1 − aΔt) = 0

for the amplification factor ξ(ω). The first condition A ≥ C of the lemma (for positive A) is 

always satisfied (1 ≥ 1 − aΔt) for all positive values of a and Δt. The second condition A + C 
≥ |B|, assuming real z(ω) ≥ 0, of the lemma, can be expressed as Δt2z(ω) + 2aΔt − 4 ≤ 0. 

Plugging in the extreme case zmax and restricting Δt to lie below the positive root in order to 

keep the quadratic expression on the left negative give the following CFL condition
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Δt ≤ 4
zmax

+ a
zmax

2
− a

zmax
. (28)

Notice that the CFL condition (24) for the central difference scheme is necessary (easily 

seen by applying the triangle inequality) but no longer sufficient as in the forward difference 

case. Furthermore, the constraint becomes increasingly restrictive as the damping coefficient 

a increases, making it impossible to formulate a sufficient damping-independent stability 

constraint. We will therefore give no further consideration to this scheme.

3.3 Recursive Increments and Properties of Explicit Schemes

For greater convenience in implementation, especially when upgrading existing gradient 

descent routines structured according to (20) with one array to store the evolving iterate un 

and another for its increment Δun, the explicit accelerated PDE discretizations can be 

expressed in terms of recursively defined increments. We give the explicit formulas in Eqs. 

(29)–(31), where Δun−1 denotes the previously increment (kept in just one more added 

array).5

47mm Summary of explicit schemes

gradient descent: Δun = − Δt∇En, Δt ≤ 2
zmax (29)

1‐order accelerated: Δun = 1
1 + aΔtΔun − 1 − Δt2

1 + aΔt

∇En, Δt ≤ 4
zmax

+ a
zmax

2
+ a

zmax

(30)

2‐order accelerated: Δun = 2 − aΔt
2 + aΔtΔun − 1 − 2Δt2

2 + aΔt
∇En, Δt ≤ 2

zmax

(31)

Here we see more directly the traditional momentum style structure (i.e., heavy ball) in that 

the next increment Δun is expressed as a weighted combination of the gradient ∇En and the 

previous increment Δun−1. Recursion (30) is equivalent to the first order in time, explicit 

update (25) using forward differences while the recursion (31) is equivalent to the second 

order in time, explicit update (23) using central differences, and as such they must adhere to 

the same CFL conditions (26) and (24) derived earlier for these corresponding schemes.

3.3.1 The First-Order Scheme as a Sub-Case of the Second-Order Scheme—
For any choice of damping α1 and time step Δt1 parameters used in the first-order scheme 

5For completeness, the first-order backward difference scheme can also be written recursively in the form Δun = (1 − aΔt) 
Δun−1−Δt2∇En.
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(denoted by subscript 1), we may obtain equivalent update iterations by substituting the 

following change of parameters into the second-order scheme (denoted by subscript 2)

Δt2 = Δt1
1 + a1Δt1

2

and a2 = a1

1 + a1Δt1
2

.
(32)

This is easily shown by algebraic simplification of the second-order update (and stability 

condition) after applying the change of parameters. The simplified result will yield the first-

order scheme (and stability condition) in the original damping and time step parameters. In 

short, the first-order scheme is always equivalent to the second-order scheme with a reduced 

time step and damping via the contraction factor 1

1 +
a1Δt1

2

< 1.

A particular special case of this equivalency arises in considering the maximal stable time 

step for both schemes. For a fixed choice of damping a, the first-order scheme appears to 

allow a more generous upper bound than the second-order scheme. However, there is no 

effective difference when substituting (32) into the second-order scheme. Although the 

upper bound on the time step is smaller, the contracted time step is also smaller, such that 

the maximum stable time step in the first-order scheme rescales exactly to the maximum 

stable time step in the second-order scheme. Thus, so long as the damping is also contracted 

according to (32), the first-order scheme implemented with its maximum stable time step is 

equivalent to the second-order scheme implemented with its maximum stable time step.

We may also consider the backward version of the change of parameters (32) in order to 

map the second- order scheme into the first-order scheme. In this case, using parameters α2 

and Δt2 in the second-order scheme is equivalent to applying the following change of 

parameters to the first-order scheme

Δt1 = Δt2
1 − a2Δt2

2

and a1 = a2

1 − a2Δt2
2

.
(33)

However, this backward mapping only applies when the second-order parameters satisfy 

a2Δt2 < 2. When this condition is satisfied, we can show by direct substitution and algebraic 

simplification that the second-order scheme (and stability condition) is equivalent to the 

first-order scheme (and stability condition) with an amplified time step and damping 

coefficient via the amplification factor

1

1 −
a2Δt2

2

> 1.

Assuming the same condition is satisfied, the second-order scheme implemented with its 

maximum stable time step is equivalent to the first-order scheme implemented with its 

maximum stable time step after boosting the damping parameter according to (33).
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3.3.2 Critical Damping in the Second-Order Scheme (Gradient Descent)—
Unlike the forward mapping of the first order into the second-order discrete scheme, which 

is always possible for any choice of first- order discrete parameters a1 and Δt1, the backward 

mapping is not possible for certain choices of the second-order discrete parameters, namely 

for a2Δt2 ≥ 2, where the backward amplification factor 1

1 −
a2Δt2

2

 is undefined. While Δt2 is 

upper bounded by the second-order scheme’s stability constraint, there is no such upper 

bound imposed on α2 since the stability constraint is independent of α2. As such for any 

stable, nonzero, second-order discrete time step Δt2, we may always choose the second-order 

discrete damping coefficient a2 high enough to enter into this parameter regime where a2Δt2 

≥ 2. In this case the second-order scheme will exhibit behavior that is no longer reproducible 

by the first-order scheme.

It is interesting to consider what happens at the transition point when a2Δt2 = 2. It is 

immediately seen, by plugging this into (31), that the second-order scheme becomes 

identical to the discrete gradient descent scheme (29) with an effective gradient descent time 

step of Δt = 1
2Δt22 at this transition point (and if the second-order accelerated time step Δt2 

was chosen to be the maximum stable step size of 2/ zmax, the effective gradient descent 

time step Δt will also be the maximum stable gradient descent step size of 2/zmax). If we fix 

the second-order step size Δt2 and approach the transition point a2 = 2/Δt2 from below, 

where an equivalent first-order damping coefficient a1 can be obtained via (33), then we see 

that the damping in the matching first-order scheme becomes infinite as the damping in the 

second-order scheme approaches this critical value. This constitutes a discrete analog of the 

continuum property that the continuous gradient descent PDE (19) arises as the infinite 

frictional limit of the continuous accelerated descent PDE (18).

If we want a damping value α2 in the second-order scheme that will always keep us below 

this transition point for all choices of stable time step, then we must satisfy the inequality 

a2Δt2 < 2 for the maximum stable step size of 2/ zmax. This leads to the following upper 

bound for the second-order damping coefficient.

a2 < zmax .

Namely, the square of damping factor should be strictly less than the gradient amplifier.

3.3.3 Over-Damping in the Second-Order Scheme (Gradient Descent with 
Resistance)—Noting that gradient descent arises in both schemes (although only in the 

limiting sense for the first-order scheme) at the transition point when a2Δt2 = 2 and that both 

schemes offer equivalent discretizations of accelerated descent according to the rescalings 

(32) and (33) below this transition point, it is now interesting to consider what happens 

above this transition point in the second-order scheme. If we choose a2 > zmax, then there 

will be stable time step choices for Δt2 that will bring us beyond this transition.
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In the case a2Δt2 > 2, the second-order update in its recursive form (31) becomes a weighted 

combination of a step in the negative gradient direction as well as a backward step in the 

previous update direction. As such, the combined step can be interpreted as partially 
undoing the previous step, thereby slowing down the descent process. If we take the limiting 

case as the second-order damping coefficient a2 becomes infinite (keeping the same fixed 

time step Δt2), the stability of the scheme will not be affected, but the new update will fully 

subtract the previous update, thereby returning to the previous state before applying the new 

gradient step. Furthermore, after subtracting the previous update the amount of movement 

along the new gradient step will be zero for infinite a2. This can be seen by noting that the 

weight on the previous update in (31) approaches −1 from above and that the weight on the 

gradient approaches 0 from below as a2 → ∞. Therefore, in the limit, even if we initialize 

the recursion (31) with a nonzero starting update Δu0 (the discrete analog of an initial 

velocity), the effect will still be to remain motionless at the initial condition u0.

This leads to the interpretation of the over-damped case as a resisted version of gradient 

descent for any finite α2 > 2/Δt2, since we start with a gradient step in the first update, then 

partially undo it before taking a new gradient step in the second update, which is then 

partially undone before taking a new gradient step in the third update, and so on. Since the 

fraction of each gradient step which gets subtracted in the subsequent step remains fixed, 

rather than accumulating, we do not refer to this as deceleration but rather as resistance, 

which impedes the normal progress of gradient descent by a constant factor. As a2 increases, 

resistance increases, further slowing the progress of gradient descent, while completely 

halting it in the limit as a2 → ∞.

3.4 Semi-Implicit Schemes

We may use semi-implicit Euler style discretizations of (18) to obtain systems which more 

closely resemble the classic two-part Nesterov recursion. We may do this with any of the 

fully explicit schemes (23), (25), or (27) by replacing the explicit discretization ∇En of the 

gradient with a “predicted estimate” ∇En + 1 of its implicit discretization ∇En+1. This 

estimate is obtained by applying the same discretization of ∇E used in approximating ∇En ≈ 

E(un) to a partial update vn for the “look ahead” approximation ∇En + 1 ≈ ∇E vn . The 

partial update vn is obtained before hand via the fully explicit update without the gradient 

term (i.e., by treating ∇En as if it were zero). Using this strategy with the second order in 

time scheme (23) yields the two-step update

vn = un + 2 − aΔt
2 + aΔtΔun − 1

un + 1 = vn − 2Δt2

2 + aΔt ∇E vn

≈ ∇En + 1
. (34)

Notice the first and second steps, in isolation, both have a fully explicit structure. Von 

Neumann analysis can be employed to analyze the stability of this scheme according to the 

following update relationships between the DFT sequences Un, Vn, and Un+1 (transforms of 

un, vn, and un+1, respectively) where z(w) represents the gradient amplifier (21) associated 
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with the linearization of ∇En (and therefore also with the linearization of ∇En + 1). We 

obtain

V n = 4
2 + aΔtUn − 2 − aΔt

2 + aΔtUn − 1

Un + 1 = 1 − 2Δt2
2 + aΔtz(ω) V n .

If we substitute the first expression into the second, followed by substitutions Un±m = ξ
±mUn, then we obtain the quadratic equation

(2 + aΔt)2
A

ξ2 − 4 2 + aΔt − 2Δt2z(ω)
−B

ξ + 2 − aΔt − 2Δt2z ω
C

= 0,

for the overall combined update amplification factor ξ(ω). We may use the root amplitude 

lemma to check the stability criterion |ξ(ω)| ≤ 1.

First Stability Condition: A ≥ C—The first condition from the lemma (for positive A) 

can be expressed in quadratic form as azΔt2 − (a2 + 2z) Δt − 2a ≤ 0 which will be satisfied 

between its positive and negative roots. Restricting our interest to only positive values of Δt 
therefore yields the constraint

Δt ≤
a2 + 2z + a2 + 2z 2 + 8a2z

2az
g(a, z) > 0

where

∂g
∂a = a2 − 2z

toggles

a2 + 2z + a2 + 2z 2 + 8a2z

2a2z a2 + 2z 2 + 8a2z
always positive

.

To satisfy this independently of a, we examine the partial derivative of the upper bound g(a, 
z) with respect to a see that it starts out negative for a2 < 2z and then turns positive for a2 > 
2z. The minimum upper bound is therefore attained when z(ω) = zmax and a2 = 2zmax 

yielding

Δt ≤ 2 + 2
zmax

.

While this upper bound is more generous than (24) for the fully explicit scheme, it only 

satisfies the first of the two stability conditions in the bounded root lemma. We now proceed 

to the second condition which will be more restrictive.
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Second Stability Condition: A + C ≥ |B|—The second condition from the lemma (for 

positive A) can be expressed as

2 + aΔt − Δt2z(ω) + 1
2aΔt3z(ω) ≥ |2 + aΔt − 2Δt2z(ω)|

For small enough time steps, 2 + aΔt − 2Δt2z is positive, the absolute value signs can be 

removed, and the inequality holds. For larger time steps, 2 + aΔt − 2Δt2z becomes and the 

inequality can be rearranged into the following cubic form

az(ω)Δt3 − 6z(ω)Δt2 + 4aΔt + 8 ≥ 0.

Minimizing on the left with the case a = 0 and z(ω) zmax yields a stricter and therefore 

sufficient, stand-alone stability condition

Δt ≤ 2
3zmax

. (35)

Note that this upper bound is smaller, by a factor of 3, than the maximum stable time step 

(24) for the corresponding fully explicit scheme (23) or for its recursive equivalent (31).

4 Regularized Inversion via Accelerated PDEs

Here we consider a very general class of variational regularized inversion problems in the 

accelerated PDE framework. In particular, we assume energy functions with the form

E(u) = ∫Ω
f( Ku − g )

fidelity
+ r( ∇u )

regularity
dx

with ḟ, ṙ, r̈ > 0. The function f is a monotonically increasing penalty on the residual error 

between data measurements g and a forward in the form of linear operator K applied to the 

reconstructed signal u, while r is a monotonically increasing penalty on the gradient of the 

reconstruction.

4.1 General Case (Nonlinear Wave Equation)

The continuum gradient of E has the form

∇E(u) = ḟ( Ku − g )
Ku − g

λ(u, x) > 0

K*(Ku − g)

− ṙ( ∇u )
∇u

c(∇u) > 0

∇ ⋅ ∇u − uηη

− r̈( ∇u )
d(∇u) > 0

uηη,

Benyamin et al. Page 18

J Math Imaging Vis. Author manuscript; available in PMC 2021 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



where K* denotes the adjoint of the forward operator K and where η ≐ ∇u
∇u  denotes the 

unit vector along the gradient direction of u. This gives rise to the following class of 

accelerated flows which take the form of a nonlinear wave equation

utt − c(∇u) ∇ ⋅ ∇u − uηη − d(∇u)uηη + aut = λ(u, x)K*(g − Ku) .

If, purely for the sake of understanding stability, we model the short time behavior of any of 

the presented discrete update schemes in the neighborhood of a particular spatial point x, by 

treating λ, c, and d as locally constant and by representing the forward model linear operator 

K as a real convolution kernel K with adjoint KT, then ∇E can be approximated near x by 

the following linear expression

∇E ≈ λ[x]K[x]
T * K[x] * un − g − c[x] ∇ ⋅ ∇un − uηη + d[x]uηη (36)

where the subscript [x] denotes the local point of spatially constant approximation (rather 

than a function argument). Assuming a uniform Cartesian grid oriented such that its first 

basis vector e1 = (1, 0, 0, …) aligns with ∇u at our local point x and that our spatial 

derivative discretizations become equivalent to central difference (second derivative) 

approximations with space step Δx in each direction, then we obtain the following local 

approximation of the gradient amplifier of (36)

z x, ω1, ω2, …, ωN ≈ λ[x]DFT K[x]
T DFT K[x]

+ 2
Δx2 d[x] 1 − cosω1Δx

+c[x] ∑
k = 2

N
1 − cosωkΔx .

(37)

Noting that the Fourier transform of the adjoint KT of a real convolution kernel is always the 

complex conjugate of the Fourier transform of the kernel K itself, we see that the gradient 

amplifier is real and positive and we can write the following upper bound as a function 

frequency ω

max
ω

z ≤ λ[x] max
ω

DFT K[x]
2

+ 4
c[x](N − 1) + d[x]

Δx2

with equality in cases where the complex amplitude of DFT(K) is maximal at ω = (π, …, 
π). However, since this upper bound depends on the local point of approximation x, we need 

to maximize over x as well in order to exploit the CFL formulas presented earlier in terms of 

zmax. Doing so yields the following upper bound for the local gradient amplifier

zmax ≤ Kmaxλmax + 4(N − 1)cmax + dmax
Δx2 (38)

where λmax ≐ maxx λ, cmax ≐ maxx c, dmax ≐ maxx d, and Kmax ≐ maxx,ω ≐ (|DFT(K)|2).
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If we now plug (38) into the time step restriction (24) for the fully explicit second- order 

accelerated scheme (23), we obtain the following sufficient condition for stability

Δt ≤ 2Δx
KmaxλmaxΔx2 + 4(N − 1)cmax + 4dmax

. (39)

The corresponding condition for gradient descent is obtained by squaring Δx in the 

numerator and removing the radical (squaring) the denominator. As such, we note three 

favorable step size trends for PDE acceleration compared to PDE gradient descent. Most 

notably, when the regularizing coefficients cmax and dmax dominate, stable time step sizes 

are now directly proportional to spatial step sizes rather than to their squares, making the 

upper bound linear rather than quadratic in Δx. We see similar gains as well when the kernel 

K exhibits large amplification at one or more frequencies. In such cases, stable step sizes are 

inversely proportional to the maximum kernel amplification rather than to its square.

4.2 Quadratic Regularization (Linear Wave Equation)

The easiest special case to consider would be that of quadratic fidelity and regularity 

penalties without any forward model (more precisely with K as the identity operator)

E(u) = ∫Ω
λ
2 (u − g)2 + c

2‖∇u‖2dx .

In this case, the gradient is linear and the local approximation (36) becomes exact with λ(x) 

= λ, c(x) = d(x) = c

∇E = λ(u − g) − c∇ ⋅ ∇u .

The accelerated descent PDE therefore takes the form of a damped inhomogeneous linear 

wave equation.

utt − c∇ ⋅ ∇u + aut = λ(g − u) . (40)

In this case, the gradient amplifier z(ω) (21) is easy to compute. If central differences on a 

uniform N-dimensional Cartesian grid with space step Δx in each direction are used to 

approximate the spatial derivatives of the Laplacian ∇ · ∇, then

z(ω) = λ + 2c
Δx2 ∑

k = 1

N
1 − cosωkΔx ,

where ω = (ω1, …, ωN), which makes the local approximation (37) exact as well. Its upper 

bound

zmax = λ + 4Nc
Δx2 (41)
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is attained at ω = (π, …, π), thereby making the general condition (39) necessary as well as 

sufficient for stability. Plugging all this into (29)–(31) yields the following fully explicit 

updates (and CFL conditions), with multi-index α ∈ ℤN to indicate each grid location, and 

where the additive multi-index

ek = δ1k, δ2k, …, δNk

is used to denote displacements to adjacent grid neighbors (δjk being the standard 

Kronecker delta).

Explicit fidelity schemes for quadratic regularization

gradient descent

Δuαn = − Δt λ uαn − gα − c ∑
k = 1

N uα + ek
n − 2uαn + uα − ek

n

Δx2

Δt ≤ 2Δx2
4Nc + λΔx2

(42)

1‐order accelerated
Δuαn = 1

1 + aΔtΔuαn − 1 − Δt2
1 + aΔt λ uαn − gα − c ∑

k = 1

N uα + ek
n − 2uαn + uα − ek

n

Δx2

Δt ≤ Δx 4
4Nc + λΔx2 + aΔx

4Nc + λΔx2
2

+ aΔx2
4Nc + λΔx2

(43)

2‐order accelerated

Δuαn = 2 − aΔt
2 + aΔtΔuαn − 1 − 2Δt2

2 + aΔt λ uαn − gα − c ∑
k = 1

N uα + ek
n − 2uαn + uα − ek

n

Δx2

Δt ≤ 2Δπ
4Nc + λΔx2

(44)

semi‐implicit

vαn = uαn + 2 − aΔt
2 + aΔtΔun − 1

uαn + 1 = vαn − 2Δt2
2 + aΔt λ vαn − gα − c ∑

k = 1

N vα + ek
n − 2vαn + vα − ek

n

Δx2

Δt ≤ 2Δx
3 4Nc + λΔx2 (sufficent but not necessary when a > 0

(45)
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4.3 Implicit Handling of the Fidelity Term

The portion of the continuum gradient which arises from the fidelity term is λ(u−g), which 

we have discretized explicitly in the above schemes as λ uαn − gα . Since this term, unlike the 

Laplacian discretization, does not depend upon neighboring grid locations, we could 

evaluate it implicitly at the updated value of u by plugging λ uαn + 1 − gα  into any of these 

schemes and still rearrange the resulting expressions to obtain explicit updates for uαn + 1. 

Algebraic manipulation of these resulting implicitly handled fidelity schemes would yield 

the following equivalent schemes, restructured to reveal their similarity to the schemes (42)–

(45).

Implicit fidelity schemes for quadratic regularization

gradient descent: Δuαn = − Δt
1 + λΔt

λ uαn − gα − c ∑
k = 1

N uα + ek
n − 2uαn + uα − ek

n

Δx2

(46)

1‐order accelerated: Δuαn =
Δuαn − 1 − Δt2 λ uαn − gα − c∑k = 1

N uα + ek
n − 2uαn + uα − ek

n

Δx2
1 + (a + λΔt)Δt

(47)

2‐order accelerated: uαn

=
(2 − aΔt)Δuαn − 1 − 2Δt2 λ uαn − gα − c∑k = 1

N uα + ek
n − 2uαn + uα − ek

n

Δx2

2 + aΔt + 2λΔt2

(48)

semi‐implicit:

vαn = uαn + 2 − aΔt
2 + aΔtΔun − 1

uαn + 1 = vαn − 2Δt2

2 + aΔt + 2λΔt2
λ vαn − gα − c ∑

k = 1

N vα + ek
n − 2vαn + vα − ek

n

Δx2

(49)

Written in this form, it is easy to show by comparison that these schemes become equivalent 

to their explicit fidelity counterparts by a change of time step, damping parameter, or both. 

In the case of gradient descent, the implicit fidelity scheme (46) is identical to explicit 

fidelity scheme (42) with a smaller time step, using Δt Δt
1 + λΔt . The first-order implicit 

fidelity accelerated scheme (47) is equivalent to its explicit fidelity counterpart (43) with a 

larger damping coefficient, using a → a + λΔt. The second-order implicit fidelity 

accelerated scheme (48) is equivalent to the explicit fidelity scheme (44) with both a smaller 

time step and an adjusted damping coefficient (may be either larger or smaller depending on 

λ), using Δt Δt

1 + λ
2 Δt2

 and a a + λΔt

1 + λ
2 Δt2

. Finally, the implicit fidelity adaptation (49) of 
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the semi-implicit scheme (45), obtained by replacing λ uαn + 1 − g  with λ vαn − g , is 

equivalent to the original semi-implicit scheme (45) with both a smaller time step and a 

larger damping coefficient, using Δt Δt

1 + 2λΔt2
2 + aΔt

 and a a 1 + 2λΔt2
2 + aΔt .

The CFL conditions for these implicit fidelity schemes can therefore be obtained by 

applying these substitutions backward to the matching explicit (or semi-implicit) CFL 

conditions. While this often yields a larger maximum stable time step, the apparent gain is 

deceptive since there will be no numerical difference to the corresponding explicit (or semi-

implicit) update with a smaller time step. As such, there is neither a computational nor a 

numerical advantage to handling the fidelity term implicitly. While we have illustrated this 

here for the special case of quadratic regularization, the parameter remappings showing 

equivalency between the explicit and partially implicit schemes depend only upon the 

damping and fidelity parameters. It is easy to see that the exact same analysis applies even in 

the nonlinear case of non-quadratic regularization, making this equivalency (and therefore 

the lack of benefit in implicitly handling the fidelity) more general.

Further generalization of this analysis is also possible in the accelerated cases for non-

quadratic fidelity penalization as well as for nontrivial forward models K. However, in such 

cases, equivalency would require substitution of a constant damping parameter α in the 

partially implicit scheme with a spatially varying damping in the equivalent explicit scheme. 

For example, in the case of a quadratic fidelity penalty paired with a convolution kernel K in 

the first-order accelerated implicit fidelity scheme (47), a constant damping parameter a 

would be have to be replaced by the spatially varying aℐ + λΔtKTK in order to use the 

explicit fidelity scheme (43) to obtain equivalent updates. This would require inversion of 

the matrix (1 + aΔt)ℐ + λΔt2KTK, as division by a scalar would no longer occur in the 

explicit update (43). However, since this inverse does not depend on u, its inverse could be 

computed/approximated just once and then reused in every update step (in cases where the 

damping does not change with time).

4.4 Beltrami Regularization

Another special case to consider is Beltrami regularization. We’ll consider the case of a 

quadratic penalty and an attenuating, mean-preserving convolution kernel K

E(u) = ∫
Ω

λ
2 (K * u − g)2 + 1

β 1 + β ∇u 2

ϵ2 + ∇u 2, ϵ = 1
β

dx .
(50)

The gradient ∇E is given by
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∇E = λKT * K * (u − g) − ∇ ⋅ β ∇u
1 + β ∇u 2

∇u

ϵ2 + ∇u 2, ϵ = 1
β

.

In this case, the nonlinear variational gradient decomposes as in (36) to the form

∇E = λKT * K * (u − g) − β
1 + β ∇u 2

c

∇ ⋅ ∇u − uηη − β

( 1 + β ∇u 2)
3

d

uηη

The accelerated PDE (technically an integral partial differential equation with the 

convolution) takes the quasilinear form

utt − ∇ ⋅ β ∇u
1 + β ∇u 2 + aut = λKT * K * (g − u) . (51)

Note that both coefficients c and d are bounded by β (an upper bound which is actually 

reached in both cases at any point and time where ∇u(x, t) = 0) and that max |DFT(K)| = 1 

by our assumption that K attenuates while preserving the mean. Plugging this into (38) 

yields

zmax ≤ λ + 4Nβ
Δx2 (52)

if we assume a consistent discretization of

∇ ⋅ β ∇u
1 + β ∇u 2 ,

which converges, as ∇u → 0, to the central difference approximation of the β-scaled 

Laplacian β ∇ ⋅ ∇u ≈ β∑k = 1
N uα + ek

n − 2uαn + uα − ek
n

Δx2  with spatial step size Δx in each direction 

(see Sect. 4.2 for the multi-index subscript notation α and ek). If we let Dβ, Δx
2 un denote the 

discretization of ∇ ⋅ β ∇u
1 + β ∇u 2 , then we obtain the schemes in Eqs. (53)–(56)

92mm Summary of schemes for Beltrami regularization
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gradient descent

Δun = − Δt λKT * K * un − g − Dβ, Δx
2 un

Δt ≤ Δx2 2
4Nβ + λΔx2

(53)

1‐order accelerated

Δun = 1
1 + aΔtΔun − 1 − Δt2

1 + aΔt λKT * K * un − g − Dβ, Δx
2 un

Δt ≤ Δx 4
4Nβ + λΔx2 + aΔx

4Nβ + λΔx2
2

+ aΔx
4Nβ + λΔx2

(54)

2‐order accelerated

Δun = 2 − aΔt
2 + aΔtΔun − 1 − 2Δt2

2 + aΔt λKT * K * un − g − Dβ, Δx
2 un

Δt ≤ Δx 2
4Nβ + λΔx2

(55)

semi‐implicit

vn = un + 2 − aΔt
2 + aΔtΔun − 1

un + 1 = vn − 2Δt2
2 + aΔt λKT * K * vn − g − Dβ, Δx

2 vn

Δt ≤ Δx 2
3 4Nβ + λΔx2

(56)

4.5 Total Variation Regularization

If we consider the limit as β → ∞, the Beltrami regularization penalty converges to the total 

variation penalty

E(u) = ∫
Ω

λ
2 (K * u − g)2 + ‖∇u‖dx (57)

with a nonlinear variational gradient (36) that decomposes as
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∇E = λKT * K * (u − g) − ∇ ⋅ ∇u
∇u

= λKT * K * (u − g) − 1
∇u
c

∇ ⋅ ∇u − uηη .

The accelerated PDE now takes the form of the nonlinear wave equation

utt − ∇ ⋅ ∇u
∇u + aut = λKT * K * (g − u) . (58)

In this case, the coefficient d vanishes, but the coefficient c no longer has a finite upper 

bound. Plugging this into (38) yields an infinite upper bound for the maximum gradient 

amplifier if at any point and time ∇u(x, t) = 0. Otherwise, by our earlier assumption on K 
(see Sect. 4.4) we obtain

λ ≤ zmax ≤ λ + 4(N − 1)
Δx2min ∇u

. (59)

For the explicit second-order accelerated scheme, this ensures the sufficient condition 

Δt ≤ 2

λ + 4(N − 1)
Δx2min ∇u

 for a stable step. If we fix Δt, we may rearrange this inequality to 

obtain an equivalent sufficient condition

min‖∇u‖ ≥ N − 1
Δx2

4Δt2

4 − λΔt2

which takes the form of a lower bound on the spatial gradient.

Here an interesting nonlinear dynamic occurs to keep the implementation stable by 

preventing initiated instabilities from growing unbounded. If the spatial gradient falls below 

this lower bound and instabilities begins to propagate at one or more frequencies, they will 

eventually cause the spatial gradient to rise above the guaranteed stable lower bound at 

which point the instabilities will cease growing. In the absence of a kernel K, the fastest 

growing instability will occur at the highest digital frequency in each grid direction ω = (π, 

…, π) which corresponds to oscillations between immediately adjacent grid points; this in 

turn will most rapidly increase the discrete difference approximations of ‖∇u‖. In the 

presence of a strongly smoothing kernel, the fastest growing instability may occur at lower 

digital frequencies, thereby causing a low-grade ringing effect, with several grid points per 

period, until the amplitude of the oscillation is large enough to drive adjacent pixel 

differences back over the lower bound for ‖∇u‖.

A similar phenomenon occurs with both the first-order and semi-implicit schemes (and even 

with gradient descent), making all these schemes stable independently of the regularizer 

coefficient c. As such, purely for stability considerations alone, the necessary step size 

constraint will be connected to the lower bound λ of the gradient amplifier zmax rather than 
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its upper bound in (59). This yields the following necessary conditions for stability. 

However, the schemes may only converge under these constraints in an oscillatory sense 

with a fluctuating level of “background noise” whose amplitude will depend upon the value 

of Δt.

gradient descent: Δt ≤ 2
λ (60)

1‐order accelerated: Δt ≤ 4
λ + a

λ
2

+ a
λ (61)

2‐order accelerated: Δt ≤ 2
λ (62)

semi‐implicit: Δt ≤ 2
3λ (63)

We may exploit the behavior of this nonlinear stabilizing effect to obtain a more useful time 

step constraint by plugging in a minimal acceptable value of ‖∇u‖ for the final reconstruction 

into the stability condition for Δt. A natural way to approach this is by exploiting a 

quantization interval Q for the digital representation of u together with the following discrete 

approximation bounds for ‖∇u‖

min‖∇u‖ = min
α

∑
k = 1

N uα + ek − uα
Δx

2

≥ N min
α, k

uα + ek − uα
Δx

2

= N
Δx min

α, k
|uα + ek − uα| .

If we now determine that instability-related distortions confined to a single quantization 

interval Q between neighboring pixels are acceptable, we substitute

min‖∇u‖ N
Δx Q

into the upper bound for (59) to obtain

zmax ≤ λ + 4(N − 1)
QΔx N < λ + 4 N

QΔx (64)

within the desired stable regime for ‖∇u‖. This in turn gives rise to the schemes in Eqs. (65)–

(68), where DΔx
2 un denotes the discretization of ∇ ⋅ ∇u

∇u .

Benyamin et al. Page 27

J Math Imaging Vis. Author manuscript; available in PMC 2021 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Summary of schemes for Total Variation regularization

gradient descent

Δun = − Δt λKT * K * un − g − DΔx
2 un

Δt ≤ QΔx 2
4 N + λQΔx

(65)

1‐order accelerated

Δun = 1
1 + aΔtΔun − 1 − Δt2

1 + aΔt λKT * K * un − g − DΔx
2 un

Δt ≤ QΔx 4
4 N + λQΔx + a QΔx

4 N + λQΔx
2

+ a QΔx
4 N + λQΔx

(66)

2‐orderaccelerated

Δun = 2 − aΔt
2 + aΔtΔun − 1 − 2Δt2

2 + aΔt λKT * K * un − g − DΔx
2 un

Δt ≤ QΔx 4
4 N + λQΔx

(67)

semi‐implicit

vn = un + 2 − aΔt
2 + aΔtΔun − 1

un + 1 = vn − 2Δt2
2 + aΔt λKT * K * vn − g − DΔx

2 vn

Δt ≤ QΔx 4
3 4 N + λQΔx

(68)

5 Experimental Examples

5.1 Beltrami Denoising

Our first application is to the problem of Beltrami regularization for image denoising and 

image inpainting [15,21,32], which corresponds to minimizing (50) in the absence of a 

kernel K via the accelerated PDE (51). In this case, g is the original noisy image, and the 

minimizer u is the denoised/inpainted image. For denoising, we typically set the parameter λ 
to be a positive constant, and for inpainting we can set λ = 0 in the region D ⊂ Ω to be 

inpainted and set λ to be large or ∞ in Ω \ D. The Beltrami regularization term interpolates 

between the interpolates between the TV norm ∫|Δu| and the H1 norm ∫|∇u|2—near edges 
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where Δu is large, it behaves like the TV norm to preserve edges, and where Δu is small it 

behaves like the H1 norm in order to reduce staircasing. Recently, Zosso and Bustin [32] 

have proposed an efficient primal–dual projected gradient method for solving Beltrami 

regularized problems.

We use the first-order explicit scheme (54) with forward differences for ∇u and backward 

differences for div. We set the damping coefficient to a = 2 βπ2 + λ via the linear analysis 

(16) and run the algorithm at its maximum stable step Δt (54) until the absolute difference 

between the current and previous iterates falls below 10−4. We note that the image is 

normalized so the pixel values fall in the interval [0, 1].

Figure 2 shows the results of applying the PDE accelerated Beltrami regularization to a 

noisy baboon test image with varying values of λ and β with single-threaded C++ code on a 

3.2-GHz Intel processor running Linux. The corresponding runtimes are given in Table 1 

and are favorably competitive with the runtimes reported in [32], who proposed a primal–

dual projected gradient algorithm for Beltrami regularization. Notice the algorithm does 

slow down somewhat when λ is small and the denoising is heavily regularized, but the 

difference is far less pronounced compared to other explicit methods such as gradient 

descent.

5.2 Beltrami Inpainting

We also give an example of PDE acceleration for Beltrami regularized inpainting in Fig. 3. 

We used β = 1 and a = 5π, the inpainting took 687 iterations (11.48s) starting from an initial 

guess given by nearest neighbor interpolation. This is a good deal slower than the denoising 

examples. It is possible to give a partial explanation for this. Recall that the optimal damping 

parameter, and convergence rate, depends on the size of the first eigenvalue of the linearized 

operator on the given domain and the presence of a zeroth-order term λu. In inpainting, 

there is no zeroth-order term and the domain is highly irregular. Further, the inpainting 

domain is typically disconnected, so the eigenvalues on each connected component would be 

required, and this would lead to different choices of damping coefficient in each region. We 

plan to investigate this issue, and others, in future work.

5.3 Beltrami Deblurring

Finally, we give an example of PDE acceleration for Beltrami regularized deblurring. We 

used λ = 107, β = 1, and a = 4, and the deblurring was run using the second-order explicit 

scheme (55) with its maximum stable time step starting with the original blurred image as 

the initial guess. After 2038 iterations, it achieved its tenth-of-a-decibel rounded steady-state 

restored PSNR of 32.3dB. The original image was blurred with a Gaussian kernel of σ = 3 to 

create an blurry initial image with a signal-to-noise ratio of 25.6185 dB. In Fig. 4, we 

compare the accelerated PDE results, both visually and quantitatively according to the 

restored signal-to-noise ratio, with those obtained using primal–dual and L1 ADMM 

algorithms for the same parameters λ = 107 and β = 1. ADMM reached its tenth-of-a-

decibel rounded steady-state restored PSNR of 31.8 dB after 2453 iterations, whereas 

primal–dual reached its tenth-of-a-decibel rounded steady-state restored PSNR of 27.8 dB 
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after 63 iterations (significantly fewer iterations than both other algorithms, but also 

significantly lower restored PSNR).

5.4 TV Denoising

We now consider the problem of total variation (TV) restoration, which has a long history in 

image processing [20]. The TV denoising problem corresponds to minimizing (57) in the 

absence of a kernel K via the accelerated PDE (58). In this case, state-of-the-art approaches 

include primal–dual methods [9] and the split Bregman method [12].

We again use the first-order explicit scheme (66), while discretizing the spatial gradient and 

divergence separately (using forward differences for the gradient and backward differences 

for the divergence), and homogeneous Neumann boundary conditions. Numerically, we set 

∇u/∇u| = 0 whenever ∇u = 0, so no regularization is required, though we rarely encounter 

numerical gradients that are identically zero. This choice of discretization makes the discrete 

divergence the exact numerical adjoint of the discrete gradient.

We first consider a noisy square image, with dark region u = 0.25 and light region u = 0.75 

with additive Gaussian noise with standard deviation σ = 0.3. Figure 5 shows the noisy 

square and the total variation denoising with the split Bregman algorithm and PDE 

acceleration. We compare PDE acceleration, primal–dual, and split Bregman on slices of the 

image at similar computation times in Figs. 6 and 7. Notice the primal–dual algorithm blurs 

the edges slightly at first, and they are restored only late in the flow (at t = 4 primal–dual has 

not yet converged). The PDE acceleration algorithm does a better job preserving edges (they 

are never blurred) compared to primal–dual and is slightly better than split Bregman at 

preserving edges by time t = 4.

In the example above, we took Δt = Δx/2 for simplicity. Corroborating our analysis in Sect. 

4.5, this explicit numerical scheme (66) behaves stably in L∞ in our experiments, meaning 

the solutions remain bounded in L∞ for all time, even for larger time steps which still satisfy 

the necessary conditions (60), (61), (62) or (63). For such larger time steps, though, we find 

the flow does not fully converge, yet remains stable via the nonlinear effect discussed in 

Sect. 4.5, but instead tends to an oscillatory steady state. Figure 8 shows a snapshot of the 

steady state for various values of the time step Δt. For Δt ≤ Δx, the steady state is a 

reasonable denoising; hence, we choose Δt = Δx or Δt = Δx/2 in most of this paper. Note that 

this closely matches the suggested time step bound in (67) for a quantization level of 1/255, 

given the other parameters utilized here, which would come out to Δt ≤ 1.189Δx.

Figures 9, 10, and 11 compare the energy decay against CPU time for denoising the Lenna 

image with PDE acceleration, primal–dual, and split Bregman algorithms. The noise is 

additive zero mean Gaussian noise with standard deviation σ = 0.1, and the images take 

values in the interval [0, 1]. We note in Figs. 12 and 13 that PDE acceleration appears to 

yield a better quality image for the same energy level compared to primal–dual.

5.5 Variable Damping

We now give further considerations to variable damping. In Fig. 14, we show the initial 

condition and final converged result for five separate damping experiments. Note that the 
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final result remains the same regardless of the damping coefficient that is chosen for a. From 

the linear analysis in (16) and our choice of λ = 1000 and β = 1 for the two tuning 

parameters, we have a = λ + βπ2 giving an optimal damping of 63.6. In Fig. 15, we 

compare an optimally damped system to a below optimal, above optimal, Nesterov, and 

critically damped system. The damping coefficients and convergence times in iterations are 

given in Table 2. The below optimal and above optimal are each one order of magnitude 

away from the optimal damping, respectively, and the critical damping is the point at which 

the second-order accelerated scheme is equivalent to gradient descent, i.e., the point at which 

the damping completely cancels out the momentum leaving only a first-order descent for the 

PDE. While the optimal damping will always give the fastest convergence for the PDE, if 

one is uncertain of the optimal damping, then using a greater than optimally damped but less 

than critically damped system will yield reasonable performance. While the Nesterov 

damping does converge faster than the above optimally damped example in Fig. 15, the 

increasing damping as a function of time will yield degraded performance and would likely 

necessitate an additional stopping criterion. Although the below optimally damped system is 

initially faster than the optimally damped system, it is subject to large oscillations in energy 

which while they do converge greatly slows down the final convergence time.

6 Conclusion

We employed the novel framework of PDE acceleration, based on momentum methods such 

as Nesterov and Polyak’s heavy ball method, to calculus of variation problems defined for 

general functions on ℝn. The result was a very general set of accelerated PDEs whose simple 

discretizations efficiently solve the resulting class of optimization problems. We further 

analyzed their use in regularized inversion problems, where gradient descent diffusion 

equations get replaced by nonlinear wave equations within the framework of PDE 

acceleration, with far more generous discrete time step conditions.

We presented results of experiments on image processing problems including Beltrami 

regularized denoising and inpainting, and total variation (TV) regularized denoising and 

deblurring. In all cases, we can achieve state-of-the-art results with very simple algorithms; 

indeed, the PDE acceleration update is a simple explicit forward Euler update of a nonlinear 

wave equation. Future work will focus on problems such as TV inpainting, where there is no 

fidelity, how to choose the damping parameter adaptively to further accelerate convergence, 

and applications to other problems in computer vision, such as Chan–Vese active contours 

[11].
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Fig. 1. 
Illustration of gradient descent PDE vs accelerated gradient PDE: gradient descent PDEs 

and the corresponding accelerated gradient PDEs generally follow different paths. Further, 

accelerated PDEs lead to discretization schemes with less restrictive CFL conditions 

corresponding to larger discrete steps than gradient descent PDEs, leading to faster 

convergence in the convex case. Note in the case of strictly convex problems B = C
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Fig. 2. 
Results of Beltrami regularization applied to a noisy baboon image with varying values of λ 
and β. The units of λ are thousands
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Fig. 3. 
An example of inpainting using the PDE accelerated Beltrami regularization framework on 

the cameraman image
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Fig. 4. 
Deblurring of an image using the explicit accelerated PDE scheme compared with the results 

of two other state-of-the-art methods (final signal-to-noise ratios shown for each restoration)
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Fig. 5. 
Denoising of a synthetic image with total variation restoration with λ = 1000 via b split 

Bregman and c PDE acceleration. In PDE acceleration, we used Δt = Δx/2 and a = 2 λ
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Fig. 6. 
Comparison of PDE acceleration, primal–dual, and split Bregman algorithms for denoising a 

noisy square image. A one-dimensional slice of the image is displayed at the same 

computation time for each algorithm
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Fig. 7. 
Comparison of flows generated by a PDE acceleration and b primal–dual for solving the TV 

restoration problem on the noisy square image. Notice the edges are better preserved in PDE 

acceleration earlier in the flow
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Fig. 8. 
Comparison of steady-state solutions for denoising the 2D noisy square for different time 

steps in PDE acceleration. The scheme is stable in L∞ for a variety of time steps though we 

observe Δt ≤ Δx is required to ensure the solution is a reasonable denoising
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Fig. 9. 
Comparison of logarithm of total energy versus CPU time for denoising the full 512×512 

Lenna image with PDE acceleration, primal–dual, and split Bregman. We used the optimal 

damping a = 2 λ from the linear analysis
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Fig. 10. 
Comparison of logarithm of TV seminorm energy versus CPU time for denoising the full 

512 × 512 Lenna image with PDE acceleration, primal–dual, and split Bregman
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Fig. 11. 
Comparison of fidelity energy versus CPU time for denoising the full 512 × 512 Lenna 

image with PDE acceleration, primal–dual, and split Bregman
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Fig. 12. 
Comparison of PDE acceleration, primal–dual, and split Bregman for TV restoration of a 

noisy Lenna image with λ = 1000. Each algorithm was run for 150 iterations, which took 

2.7s for PDE acceleration, 3.3s for primal–dual, and 28s for split Bregman
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Fig. 13. 
Comparison of PDE acceleration, primal–dual, and split Bregman for TV restoration of a 

noisy Lenna image with λ = 7000. Each algorithm was run for 50 iterations, which took 

0.85s for PDE acceleration, 1.12s for primal–dual, and 10.4s for split Bregman
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Fig. 14. 
Initial (a) and final (b) condition of denoising experiment with variable damping. Note the 

final result does not change only the number of iterations required
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Fig. 15. 
Convergence experiment with variable damping for a Beltrami regularizer. Initial condition 

and converged result are given in Fig. 14
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