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To enable large-scale analyses of transcription regulation in model species, we developed DeepArk, a set of deep learning
models of the cis-regulatory activities for four widely studied species: Caenorhabditis elegans, Danio rerio, Drosophila melanogaster,
and Mus musculus. DeepArk accurately predicts the presence of thousands of different context-specific regulatory features,
including chromatin states, histone marks, and transcription factors. In vivo studies show that DeepArk can predict the reg-
ulatory impact of any genomic variant (including rare or not previously observed) and enables the regulatory annotation of

understudied model species.
[Supplemental material is available for this article.]

Deciphering the regulatory function of the noncoding genome re-
mains a grand challenge of modern biology. Model species have
long been at the forefront of biological discovery and biomedical
innovation, but our knowledge of the cis-regulatory logic remains
incomplete (Manolio et al. 2017). Many important questions re-
main: How should we mutate a fly enhancer to change its activity
in a tissue-specific manner? Which regulatory variants for mouse
disease genes are functional? How can we predictively edit the ge-
nome to efficiently guide experimentation? Answering these ques-
tions requires interpreting specific effects of any genomic variant,
including changes to chromatin states, histone modifications, and
binding of transcription factors (TFs). Addressing this challenge
across the entire spectrum of genomic variation requires generaliz-
ing from the experimental studies (e.g., ChIP-seq data) to learn the
regulatory code and thus enable the prediction of effects for any
genomic variant. These effects must be predicted in specific con-
texts, including developmental stage, cell and tissue type, and
drug treatments.

Existing approaches for model organisms fall short of this
goal. A common approach is to scan for highly conserved binding
sites with position weight matrices. However, such motifs have
limited contextual information and fail to consider the multiple
interacting factors that frequently delineate histone marks or chro-
matin accessibility (Zhou and Troyanskaya 2015; Wagih et al.
2018). In contrast, newer sequence-based deep learning models
have been successfully used in human genomics to learn this con-
text-specific cis-regulatory code from large-scale sequencing data
without the use of hand-engineered features. In particular, the
many successive convolutional layers used in these models allow
them to learn relatively complex motifs and, we presume, interac-
tions between them (LeCun et al. 2015; Avsec et al. 2021). This
flexibility, combined with an efficiency that allows these models
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to be applied at a truly whole-genome scale, and a growing ecosys-
tem of open-source software and supporting resources (e.g., the
Kipoi model archive) (Avsec et al. 2019) have made deep learning
a potent and useful tool for genomics and computational life sci-
ences in general (Ching et al. 2018). For instance, in the context
of human biology, sequence-based deep learning models have
been successfully used to estimate gene expression from DNA se-
quences (Kelley et al. 2018; Zhou et al. 2018), predict the splicing
and processing of pre-mRNA (Jaganathan et al. 2019; Park et al.
2021), and even improve human variant pathogenicity prioritiza-
tion by integrating information from both human and non-hu-
man primate sources (Sundaram et al. 2018). These models have
also been proven to be powerful for the complex task of predicting
regulatory activity from human genomic sequences (Zhou and
Troyanskaya 2015; Kelley et al. 2016). Nevertheless, the use of
such models to predict regulatory activity in model organisms re-
mains largely undemonstrated aside from one application in
mice (Kelley 2020).

In what follows, we introduce “DeepArk,” a set of convolu-
tional neural networks (CNNs) that model the cis-regulatory func-
tions of four model organisms: Caenorhabditis elegans, Danio rerio,
Drosophila melanogaster, and Mus musculus. As we show, DeepArk is
broadly useful for genomics research in both model organisms and
related species and, furthermore, enables potent computational
and experimental analyses, such as predictive genome editing
and the interpretation of the regulatory effects of genomic
variants.

Results

We developed a set of sequence-based deep CNNs, which we col-
lectively named “DeepArk,” modeling the cis-regulatory activities
of four of the most widely studied model organisms: C. elegans,
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D. rerio, D. melanogaster, and M. musculus
(Fig. 1A). To the best of our knowledge,
DeepArk is the first such resource for
these model organisms. DeepArk pro-
vides an in silico ChIP-seq capability:
Given a genomic sequence as input,
DeepArk’s CNNs predict the activity of
a total of 6562 regulatory features, in-
cluding histone marks, different TFs,
RNA polymerases, and chromatin acces-
sibility ~ (Supplemental  Table  S1).
DeepArk leverages a wide sequence con-
text of 4095 bp to provide accurate pre-
dictions for broad regulatory features
with complex regulatory origins (e.g.,
chromatin accessibility); wide sequence
context has been established as impor-
tant for prediction accuracy (Zhou and
Troyanskaya 2015; Kelley et al. 2016,
2018). DeepArk’s multitask approach to
modeling also allows it to make such pre-
dictions efficiently. Many predictions are
made in specific contexts—larval or adult
stages, specific tissues or cell types—and
under particular treatments (e.g., lipo-
polysaccharide stimulation). In total,
DeepArk provides predictions for 554 in-
dividual TFs and 62 distinct histone
marks, as well as RNA polymerase profiles
across 61 different cell types and chroma-
tin accessibility across 95 cell types. For
most of the organisms and regulatory
features considered, DeepArk is the first
method capable of predicting regulatory
activity from genomic sequence and the
regulatory effects of genomic variants
(Lee et al. 2015; Kelley 2020).

We trained each DeepArk model on
publicly-available genome-wide mea-
surements of regulatory activity (i.e.,
ChIP-seq of TFs and histone marks,
DNase-seq, and ATAC-seq) from its re-
spective species (Supplemental Table
S1) and tested its performance on chro-
mosomes that were not used during
training (Methods) (Supplemental Table
S2). Training data sets were carefully fil-
tered to retain only data meeting various
quality thresholds (Methods). We found,
consistent with the faithful inference of
cis-regulatory logic, that each DeepArk
model accurately predicted the regulato-
ry activity of the test sequences (Fig.
1B-D; Supplemental Table S1). Perfor-
mance appeared strong across each cate-
gory of regulatory features, and there
were a few interesting, albeit expected,
trends. For instance, DeepArk’s perfor-
mance for TFs appeared to have the high-
est variance of any class of regulatory
features (Fig. 1B-D). In terms of species-
specific trends, DeepArk’s performance
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Figure 1. Overview of DeepArk models and their predictive accuracy. (A) The DeepArk architecture

(Supplemental Fig. S1) uses convolutional layers to scan an input sequence for regulatory motifs and
uses maximum pooling layers to perform dimensionality reduction. By using many successive layers,
DeepArk is able to extract complex motifs while presumably leveraging interactions between motifs
(LeCun etal. 2015; Avsec et al. 2021) and can use a wide sequence context of 4095 bp. Key applications
enabled by DeepArk include prioritizing observed genomic variants by their putative regulatory effects
(top right), exposing the predictive sequence features for regulatory events through in silico saturated mu-
tagenesis (middle right), and predicting the regulatory effects of novel variants for prospective experi-
ments (bottom right). (B) Performance on test chromosomes from each organism, as quantified by the
area under the curve (AUC) of the receiver operating characteristic (ROC) curve (Supplemental Table
S1). Only regulatory features with at least 50 positive test examples are included. For each box plot,
the center line marks the median, and the top and bottom edges of the box mark the first and third quar-
tiles, respectively. The top and bottom whiskers extend to 1.5x the interquartile range (IQR), with data
points outside of this range considered outliers and plotted individually. (C) DeepArk’s performance
on the test chromosomes from each organism, here quantified by the AUC for the precision-recall curve
(PRC) (Supplemental Table S1). Only regulatory features with at least 50 positive test examples are
shown. For each box plot, the center line marks the median, and the top and bottom edges of the box
mark the first and third quartiles, respectively. The top and bottom whiskers extend to 1.5x the IQR.
Data points outside of this range are considered outliers and plotted individually. (D) Performance on
the test chromosomes from each organism in terms of the log; fold-change in the AUC for the PRC rel-
ative to the feature-specific baselines (Supplemental Table S1). Only regulatory features with at least 50
positive test examples are shown. For each box plot, the center line marks the median, and the top and
bottom edges of the box mark the first and third quartiles, respectively. The top and bottom whiskers ex-
tend to 1.5x the IQR. Data points outside of this range are considered as outliers and plotted individually.
DeepArk’s performance never falls below the baseline.
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for D. rerio seemed especially strong and narrowly distributed (Fig.
1B-D). This may be because its genome is quite large (~1.67 Gbp)
and because the training data for D. rerio were all produced by a sin-
gle consortium (Tan et al. 2016). TFs also seem to have the highest
intra-species variance in performance, which may be owing to the
wide variety of regulatory features (e.g., pioneer factors vs. chroma-
tin remodelers) that this category encompasses. Nevertheless, per-
formance for all regulatory feature categories in all species was
higher than baseline, which indicates the relevance of DeepArk’s
predictions.

At its core, DeepArk provides a mapping from DNA sequences
to their predicted regulatory activity. By comparing DeepArk’s pre-
dictions for separate sequences, we can identify how sequence dif-
ferences may lead to regulatory differences. As a consequence, we
can predict whether a variant might increase or decrease regulatory
activity for any of DeepArk’s 6562 regulatory features. This ability
to predict the cis-regulatory effects of genomic variants is an im-
portant step forward for model species genomics, as there is a pau-
city of such methods available.

To assess DeepArk’s ability to guide the interpretation of reg-
ulatory variants, we compared its predictions for the regulatory ef-
fects of variants in an enhancer of ALDOB with their actual effects
as measured by a massively parallel in vivo reporter assay (MPRA)
in murine livers from Patwardhan et al. (2012). By barcoding
each variant and quantifying enhancer activity with RNA-se-
quencing, the Patwardhan et al. (2012) MPRA tested the expres-
sion-modulating effects of all possible single-nucleotide
polymorphisms (SNPs) in the ALDOB enhancer. DeepArk’s mouse
model’s variant effect predictions were significantly correlated
with the expression effects of the SNPs measured in the ALDOB en-
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Figure 2. DeepArk’s variant effect predictions are well correlated with variant expression effects mea-
sured in a massively parallel in vivo reporter assay (MPRA) of enhancer activity. (A) The plot shows
DeepArk’s predictions for a liver-specific DNase-seq experiment (accession no. SRX3201109) for all pos-
sible variants (blue circles) in the ALDOB enhancer (hg19: Chr 9: 104,195,570-104,195,828) and the ex-
pression effects measured by the massively parallel reporter assay from Patwardhan et al. (2012), which
are significantly correlated (Pearson’s r=0.714, P=3.58 x 10722, n=777 and Spearman’s p=0.587, P=
2.91 x 10773, n=777). Note that the high degree of correlation with this DeepArk feature and the report-
ed expression change is representative of the high correlation witnessed for liver-specific DNase-seq pre-
dictions in general, as shown in the next panel in comparison to other features. (B) The blue line in the
plot shows the empirical complementary cumulative distribution function of the Pearson’s correlation be-
tween the reported expression change in the MPRA of the ALDOB enhancer performed by Patwardhan
et al. (2012) and DeepArk’s variant effect predictions for each regulatory feature for M. musculus. The
red circles correspond to liver-specific DNase-seq experiments from mice under control conditions (ac-
cession numbers SRX188645, SRX681492, SRX681493, SRX681494, SRX681495, SRX681496,
SRX681497, SRX681498, SRX681499, SRX191053, and SRX3201109). The correlations of these liver-
specific DNase-seq features are especially strong (average Pearson’s correlation of 0.7046, n=11 fea-
tures), which is appropriate because the MPRA in question also measures the effects on expression levels
in murine livers.

hancer MPRA (Pearson’s r=0.714, P=3.58x107'%? and Spear-
man’s p=0.587, P=2.91x10""%, n=777) (Fig. 2A,B), further
showing that DeepArk’s predictions reflect in vivo observations.

DeepArk can also be deployed to investigate regulatory loci at
the genome- or chromosome-wide scale. For example, a researcher
interested in identifying loci guiding the spreading of the dosage
compensation complex (DCC) of C. elegans, a complex that both
binds and spreads along the inactivated X Chromosome (Csan-
kovszki et al. 2004), could use DeepArk to investigate the DCC
computationally and identify sites involved in the DCC’s initial re-
cruitment. First, the researcher identifies a region as a highly-prob-
able site of DCC binding by scanning all of Chromosome X for
binding of several protein components of the DCC (e.g., DPY-
27) in vivo (Supplemental Table S3; Supplemental Fig. S2). Then,
the researcher conducts in silico saturated mutagenesis of the pu-
tative DCC-bound region for DCC members and visualizes the re-
sults for SDC-3 binding (NCBI Sequence Read Archive [SRA: https://
www.ncbi.nlm.nih.gov/sra] accession no. SRX2228883), which re-
veals a single highly constrained sequence (TCGCGCAGGGAA)
that is necessary for DCC binding in vivo (Supplemental Fig. S3).
This site appears to be a near-perfect match to the consensus se-
quence for the “recruitment elements on X” or “rex” motif, a critical
sequence for DCC binding (McDonel et al. 2006; Jans et al. 2009).
Repeating this analysis at two additional high-probability DCC
binding sites reveals similar trends and gives the researcher further
confidence in their findings (Supplemental Figs. S4, S5). This illus-
trates how DeepArk may be used to interpret the binding patterns
of even relatively complicated protein complexes.

As another application, DeepArk can directly assist in study-
ing regulatory genomics. We used the DeepArk model for D. mela-

nogaster to investigate the regulatory
effects of mutations in the mesodermal
enhancer of the 748 gene (Lim et al.
2017), whose timely expression regulates
gastrulation in flies (Supplemental Fig.
S7; Supplemental Tables S4, S5; Kolsch
et al. 2007; Lim et al. 2017) and relies
on the binding of zelda (ZId), a pioneer
factor (Dufourt et al. 2018; Yamada
et al. 2019). DeepArk predicted that the
original suboptimal ZId binding site
would have the lowest probability for
Z1d binding, whereas the variants CTT >
CTA and CTT > GTA would have moder-
ate probabilities and the CTT > CTG vari-
ant would have the largest positive effect
on Zld binding. To test the predictive ca-
pabilities of DeepArk, we examined the
in vivo expression of these three variants
in live embryos. Experimental quantifi-
cation of the total transcriptional output
of the T48 enhancer variants clearly
shows that DeepArk’s predictions were
accurate and that, as expected, an in-
crease in ZId’s binding probability corre-
lates with an increase in gene activation
in vivo (Fig. 3A-C). This finding is further
supported by the correlation (average
Pearson’s correlation of 0.7217, n=06 fea-
tures) between the enhancer’s observed
in vivo expression and DeepArk’s predic-
tions for the binding of twist (Twi), a TF
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Figure 3. DeepArk’s predicted effects for the different T48 mesodermal
enhancer variants correlate with in vivo results. (A) Plot of all DeepArk pre-
dictions for ZId binding during nuclear cycle 14 for each of the four en-
hancer alleles. Each point represents a DeepArk prediction for a specific
ZIld ChlIP-seq experiment and a specific allele. The CAGGTAG allele has
the highest predicted probability of binding, whereas the reference allele
CAGGAAG has the lowest. (B) The total transcriptional output for each
of the four alleles, as quantified with in vivo MS2-GFP tagging during nu-
clear cycle 14. Each point in the graph represents the total transcription
output (Methods) of all nuclei in a single embryo. Note that CAGGAAG
and CAGGTAG have the lowest and highest transcriptional outputs, re-
spectively, which is consistent with DeepArk’s predictions. Bonferroni-cor-
rected two-sided t-test with unequal variances: (**) P=4.139 x1073; all
others, P>5x1072. (C) False-color nuclei with active transcription in
Drosophila embryos during minute 20 of nuclear cycle 14 illustrate the dis-
tinct levels of transcriptional activation induced by each allele
(Supplemental Fig. S6). Three replicates were imaged for each allele.
(AU) Arbitrary units, which represent the intensity of the pixels that corre-
spond to the fluorescence of the MS2-GFP-tagged foci relative to the back-
ground GFP signal (Methods). (NC14) Nuclear cycle 14.

known to drive Zld-mediated mesodermal enhancers (Lim et al.
2017), during nuclear cycle 14 (Supplemental Table S4).
Altogether, these findings experimentally confirm DeepArk’s pre-
dictions and show its utility in designing genome editing
experiments.

DeepArk may also be particularly useful for researchers of un-
derstudied model organisms without available regulatory data.
Presently, pairwise alignments of regulatory regions allow for the
detection of constrained noncoding sequences in the absence of
regulatory assays, but they are only a proxy for regulatory function
and their interpretation can be confounded. For instance, some
regulatory elements are enriched for recent evolution (Moon
et al. 2019), whereas other highly conserved noncoding regions
have no known function (Ahituv et al. 2007). By directly predict-
ing regulatory activity from sequence, DeepArk directly tackles
this challenge. To that end, we used the DeepArk model for the
model organism D. rerio to predict chromatin accessibility and
H3K4me3 marks during development in the genome of Oryzias lat-

ipes, or medaka, a fish that diverged from D. rerio an estimated 314-
332 myr ago (Kasahara et al. 2007). Even after filtering conserved
loci, we find that DeepArk accurately predicts ChIP-seq and
ATAC-seq peaks for developing O. latipes (average ROC AUC of
0.927) using only their genomic sequence as model input (Supple-
mental Table S6; Supplemental Fig. S8). Thus, DeepArk may also be
used to help annotate the genomes of understudied organisms
when whole-genome assays of regulatory features do not already
exist (Supplemental Figs. S8, S9).

Discussion

In summary, we described DeepArk: a deep learning model for reg-
ulatory genomics in model organisms. Through computational
evaluations and experimental verification, we demonstrated Deep-
Ark’s utility for a number of diverse tasks, including investigating
the regulatory landscape of model species and related organisms,
predictive genome editing, and variant effect prediction. DeepArk
can also be used to uncover sequences critical to regulatory activity
through in silico saturated mutagenesis. We have shown several
examples illustrating the application of DeepArk, a resource that
we have made publicly available through a dynamic, interactive
interface (https://DeepArk.princeton.edu).

We developed DeepArk in a transparent and open-source
manner, so it can be readily extended and repurposed for other
tasks via transfer learning. Furthermore, DeepArk could be used
as a scoring function in a sequence optimization and design pipe-
line in synthetic biology (Cuperus et al. 2017), as inputs for models
of more complicated regulatory events such as enhancer—promoter
looping (Fudenberg et al. 2020) or gene expression (Zhou et al.
2018), and in high-resolution trait-loci association mapping with-
in animal models as it becomes widespread (Parker et al. 2016).

DeepArk can predict thousands of regulatory features and
provides more expansive coverage of regulatory features than
any previous sequence-based deep learning models for regulatory
genomics. However, there is still much about regulation that is un-
known. Thus, despite DeepArk’s inclusion of thousands of differ-
ent regulatory features, there are certainly regulatory features
that DeepArk has not yet modeled because of the lack of data.
For instance, a user may be interested in a TF’s binding in a rare
cell type that has not been modeled by DeepArk. The user may
consider DeepArk’s predictions for their TF—or another feature
known to correlate with the TF—in a related cell type. However,
in the absence of a well-characterized causal relationship, features
correlated in one context may not be correlated in other contexts.
For example, a passenger motif associated with a tissue-specific pi-
oneer factor may be critical to a TF's binding in one tissue, but that
passenger motif may be irrelevant to said TF's binding in other tis-
sues. Complex and tissue-specific relationships such as this can
make analyses difficult because they require analyzing more
than the canonical motif for the TF, but they can also generate
novel hypotheses to be tested with mechanistic follow-up experi-
ments. Along those lines, cross-tissue predictions that systemati-
cally incorporate information about causal relationships (e.g.,
known regulatory networks, physical TF interactions) may also
be a fruitful avenue for future research (Nair et al. 2019). In the
meantime, to mitigate this issue of missing regulatory features,
we plan to update and expand DeepArk as further training data be-
come available. Based on DeepArk’s strong performance for the
data from the DANIO-CODE consortium (Tan et al. 2016), we ex-
pect future releases of DeepArk to benefit from continued improve-
ments in quality control and data standards for experiments in
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general. Thus, DeepArk’s relevance and utility will only grow as
time goes on.

Future work on DeepArk and other sequence-based models
should draw on new data modalities as well. We suspect that the
proliferation of single-cell sequencing will be especially useful to
these endeavors. Besides providing regulatory insights in a range
of cell types, the resolution enabled by these protocols may lead
to increased tissue-specific and cell type-specific chromatin acces-
sibility data for C. elegans (Durham et al. 2021) and D. melanogaster
(Cusanovich et al. 2018). At present, these two organisms have rel-
atively little tissue-specific chromatin accessibility data from bulk
sequencing compared with D. rerio or M. musculus. Increasingly
high-resolution trait-loci association mapping within model or-
ganisms (Parker et al. 2016) and improvements in MPRA methods
may also provide additional means of validating or interpreting
DeepArk’s variant effect predictions in the future as well.

Although DeepArk performs well (Fig. 1B-D; Supplemental
Table S1), there is still room for further improvements. We suspect
that novel CNN architectures will prove central to such endeavors.
For instance, a wide sequence context is known to be important for
accurate prediction of regulatory activities (Zhou and Troyanskaya
2015; Kelley et al. 2016, 2018), and we did find that a model with a
4095-bp input sequence length outperformed one with a 2047-bp
input sequence length in all four organisms (Methods). However,
it is possible that other sequence lengths may do better still and
that each organism we considered may benefit from distinct se-
quence lengths owing to their regulatory differences. Thus, we ex-
pect that future deep learning-based models of regulatory activity
are also likely to benefit from continued improvements in hard-
ware (Jouppi et al. 2018) and network architectures (Tan and Le
2019), as well as more efficient algorithms for neural architecture
search (Tan and Le 2019; Zhang et al. 2021a,b).

In total, DeepArk is a model capable of enhancing regulatory
genomics research, and we expect that it will be used to quickly
and efficiently generate in silico hypotheses, which researchers
can follow up and validate with more mechanistic in vivo studies.

Methods

DeepArk model architecture

DeepArk is a collection of four deep CNNs, each modeling the ac-
tivity of different regulatory features in a separate model organism.
In total, DeepArk is capable of making predictions for 6562 con-
text-specific regulatory features. In what follows, we detail the de-
sign and structure of the DeepArk model.

Each DeepArk model takes a 4095-bp genomic sequence as in-
put and predicts the probability that the centermost base of this se-
quence is covered by a peak for each regulatory feature of interest.
This input sequence is encoded as a 4095 x 4 one-hot matrix with
columns corresponding to each base in the sequence and with
rows corresponding to adenine, cytosine, guanine, and thymine,
respectively. The output of each DeepArk model is a vector of
length N, where N is the number of features for that model’s given
organism (Supplemental Table S1). DeepArk is a multitask model,
which means it jointly learns the sequence-specific activities of
multiple regulatory features simultaneously, rather than modeling
each regulatory feature separately. The DeepArk architecture was
fixed across organisms (Supplemental Fig. S1), but we learned dis-
tinct model parameters and hyperparameters for each organism
(Supplemental Table S7).

We chose a sequence length of 4095 bp, as prior works mod-
eling human regulatory features from sequence inputs have re-

peatedly shown that longer sequence lengths improve predictive
accuracy for deep sequence-based models of regulatory features
(Zhou and Troyanskaya 2015; Kelley et al. 2018; Zhou et al.
2018). We also trained models using 2047-bp input sequence
lengths. Consistent with prior literature, the 4095-bp sequence
length achieved lower validation loss than the 2047-bp models
in each organism. Other motivating factors for choosing 4095 bp
in particular included the fact that it is odd (i.e., so that the center
base of the reverse complement is also the center base of the for-
ward strand) and close to a power of two (i.e., for GPU memory
alignment).

The DeepArk architecture (Supplemental Fig. S1) consists of a
deep CNN, wherein the network’s output is the functional compo-
sition of many linear and nonlinear transformations, called “lay-
ers.” The specific parameters of these transformations are
selected during training to optimize the objective function. We
consider five types of transformations in our network: convolu-
tional layers, maximum pooling layers, batch normalization lay-
ers, and the rectified linear unit (ReLU) and sigmoid activation
functions. The basic unit of our model is a multilayer “convolu-
tional unit,” which contains, in order, a batch normalization layer,
a ReLU layer, and a convolution layer. We further organize our
model into five multilayered convolutional blocks. We used max-
imum pooling at the start of each convolutional block, as we found
that spatial invariance and reduced training time allowed us to im-
prove our model. The output of the final convolutional block is fed
into a length-one convolution with output channels equal to the
number output features of the model, as well as fed into the sig-
moid activation function.

We designed the DeepArk architecture to regularize it and
avoid overfitting. First, we averaged predictions made for the for-
ward and reverse complement of sequences. Second, we leveraged
spatial dropout (Tompson et al. 2014), which randomly zeros out
channels in the input to a convolutional layer. Typically, dropout
(Srivastava et al. 2014) randomly sets input values to zero with
probability P, which has the effect of forcing the model to over-
come perturbations in internal values (i.e., without altering the se-
quence input) to make correct predictions. However, highly
correlated sequence positions in CNN inputs may diminish the ef-
fectiveness of dropout and slow training. Conversely, spatial
dropout mitigates this by zeroing out entire channels in the convo-
lutional layer’s input.

Training examples

Training examples are two-tuples of a 4095-bp genomic sequence
and a label vector. For each example, a given feature’s entry in the
label vector is positive if the center base of the 4095-bp sequence is
overlapped by a peak from the feature’s corresponding ChIP-seq,
DNase-seq, or ATAC-seq experiment. With the exception of
ENCODE blacklisted regions (Amemiya et al. 2019), all positions
in the genome were considered valid examples.

Nonintersecting training, validation, and testing sets were
generated by whole-chromosome holdout (Supplemental Table
S2). We chose one validation and one test chromosome for each
organism. Chromosomes were selected for validation and testing
that were representatively sized and were near the median chromo-
some length for their respective organism. Validation data were
generated by randomly drawing 64,000 examples from a given spe-
cies’ set of validation chromosomes. Training and validation ex-
amples are drawn uniformly and with replacement. Each species’
test set consisted of 1 million examples drawn uniformly and with-
out replacement from the held-out test chromosomes for said spe-
cies. Only features with at least 50 positive examples in the held-
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out test data were considered when calculating performance
metrics.

Training DeepArk

We used stochastic gradient descent with momentum and mini-
batches of 128 examples to select network weights that optimized
the model objective function during training. Specifically, our ob-
jective function was the sum of the binary cross-entropy (BCE) loss
and an L2 regularization term,

L = BCE 4+ AW |3,
1y - ~
BCE = — > yilogyi + (1 — yplog(1 -7,
i=1

where y; is the vector of target labels for example i, y; is DeepArk’s
prediction for example i, A is the weight decay hyperparameter, W
is the weight matrix, and N is the mini-batch size. Model validation
performance was evaluated every 5000 training steps with a valida-
tion set drawn randomly from a set of held-out validation chromo-
somes (see “Training examples” section in Methods). When
minimum validation loss failed to decrease for five consecutive ep-
ochs, we decrease the learning rate by 20% of its current value. We
terminated training when validation loss stopped decreasing for a
sustained period of time. Hyperparameters for SGD and model
training (Supplemental Table S7) were selected based on each
model’s performance on its respective validation set. DeepArk
was implemented and trained with Selene (Chen et al. 2019).

Training data preparation

Labels for training, validation, and testing data were constructed
using publicly-available ChIP-seq, DNase-seq, and ATAC-seq for
C. elegans, D. rerio, D. melanogaster, and M. musculus. For C. elegans,
D. melanogaster, and M. musculus, we used peak intervals from
ChIP-Atlas (Oki et al. 2018), a large compendium of uniformly pro-
cessed high-throughput sequencing experiments sourced from the
NCBI Sequence Read Archive (SRA), the European Nucleotide
Archive (ENA; https://www.ebi.ac.uk/ena/browser/home), and
the DNA Data Bank of Japan (DDBJ; https://www.ddbj.nig.ac.jp).
Specifically, we used peaks called with a maximum Q-value cutoff
of 1 x 1075, ChIP-Atlas intervals for C. elegans, D. melanogaster, and
M. musculus data were downloaded from the following URLs:

¢ http://dbarchive.biosciencedbc.jp/kyushu-u/ce10/
allPeaks_light/allPeaks_light.ce10.05.bed.gz,
http://dbarchive.biosciencedbc.jp/kyushu-u/dm3/
allPeaks_light/allPeaks_light.dm3.05.bed.gz, and
http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/
allPeaks_light/allPeaks_light.mm9.05.bed.gz.

To keep our methodology consistent, we called our own peaks
for D. rerio. Specifically, we downloaded aligned BAMs for ChlIP-
seq and ATAC-seq experiments from the DANIO-CODE website
(Supplemental Table S8; Tan et al. 2016). Peaks were called for
these BAMSs using MACS2 (Gaspar 2018) with a maximum Q-value
cutoff of 1 x 10~° and an effective genome size of 8.1 x 10® bp. This
approximate effective genome size was calculated by counting the
number of unambiguous bases in the Genome Reference
Consortium Zebrafish Build 11 (GRCz11), without including re-
peats (Howe et al. 2013). The repeat-masked genome was down-
loaded from the UCSC Genome Browser annotation database
(Haeussler et al. 2019).

To ensure that we only considered high-quality experiments,
we removed those with too few peaks, an insufficient number of
mapped reads, or average read length <32 bp (Supplemental
Table S9). We also removed experiments that did not list a specific

antibody target. We manually curated sample metadata regarding
strains, cell lines, genetic modifications, and sample treatment.
Because there exists a wide range of mouse cell lines and strains
with extensive genetic and phenotypic diversity among them,
we removed mouse experiments that did not reference a specific
strain or cell line.

Finally, we removed experiments in which there was duplica-
tion or redundancy between SRA, ENA, and DDBJ. We considered
experiments to be duplicates if they were from the same species,
differed by fewer than 100 peaks, and had the same number of un-
mapped, mapped, and duplicate-free reads. We manually inspect-
ed the FASTQ files to ensure true duplication. In cases in which
both accessions had the same metadata, we discarded one of the
duplicate accessions at random. If the duplicates did not have
the same antibody or biological source (e.g., cell type) listed, we
discarded all of them.

Analysis of massively parallel reporter assay

To evaluate DeepArk’s accuracy, we used it to predict the regulatory
effects of all possible variants in the ALDOB enhancer (Patwardhan
et al. 2012). We downloaded variant effects for the MPRA of the
ALDOB enhancer from MaveDB (Esposito et al. 2019; https://
www.mavedb.org/scoreset/urn:mavedb:00000006-a-1/). The pre-
dicted functional effect of each variant was calculated with in silico
saturated mutagenesis. Specifically, the change in chromatin ac-
cessibility at the center of the 259-bp ALDOB enhancer (hgl9:
Chr 9: 104,195,570-104,195,828) was predicted for all possible
variants within the 4095-bp window, and those reported in the
MPRA were retained for analysis.

Predicting the binding of the DCC in C, elegans

To identify a high-confidence binding site for the DCC, we
scanned the entire X Chromosome and made predictions every
200 bp with DeepArk. We took the mean probability across all fea-
tures corresponding to DCC components (Supplemental Table S3)
as a proxy of DCC binding probability. The top three sites with the
maximum mean probabilities across DCC components were then
analyzed with in silico saturated mutagenesis (Supplemental
Tables S10-S12). Finally, we annotated locations within the in sil-
ico saturated mutagenesis input sequences that appeared to be ca-
nonical DCC recruitment sites, generally known as “recruitment
elements on X” or rex sites, by scanning the sequences with
FIMO (Grant et al. 2011). When running FIMO, we used FIMO's
default parameters and sourced the rex motif’s position weight ma-
trix from Jans et al. (2009). The practice of subtracting the mean
probability across alleles at a given position in the in silico saturat-
ed mutagenesis visualizations was based on the methods of
Shrikumar et al. (2019). Joint visualization of the outputs from
FIMO and the in silico saturated mutagenesis predictions enabled
comparison between the two.

Cloning of T48 enhancer MS2 reporter alleles

To clone the four different 748 enhancer MS2 reporters, the T48
enhancer was first cut with Notl from the T48 > MS2 > yellow plas-
mid (Lim et al. 2017) and subcloned into a pGEM-T Easy vector.
Site-directed mutagenesis was then performed by amplifying the
pGEM-T Easy T48 enhancer vector (Supplemental Table S13).
The different PCR reactions were digested with Dpn and trans-
formed into Escherichia coli in order to obtain clones of the four dif-
ferent T48 alleles. These plasmids were then individually
subcloned into the pbphi-evePr-MS2-yellow vector (Fukaya et al.
2016) using Notl.
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DeepArk: deep regulatory codes for model species

Live imaging of T48 enhancer alleles

To visualize live transcription of the 748 MS2 reporters, female fly
virgins carrying the MCP-GFP and His2Av-mRFP fusion proteins
(Lim et al. 2018) were crossed to males carrying the MS2 reporter
genes inserted on a landing site of the third chromosome (strain
9450, Bloomington stock center). The resulting embryos were
dechorionated and mounted between a semipermeable membrane
and a coverslip with Halocarbon oil 27 (Sigma-Aldrich). Embryos
were imaged from the beginning of nuclear cycle 14 up to the on-
set of gastrulation using a Zeiss LSM 880 confocal microscope and
a Plan-Apochromat 40x/1.3 NA oil-immersion objective. For each
time point, a stack of 21 images separated by 0.5 pm with a final
time resolution of 14 sec was acquired at 16 bit. Two laser lines
at 488 nm and 561 nm were used to excite the green and red fluo-
rophores, respectively. The same imaging conditions were used
across the three replicates and the four different reporter lines.

Image analysis and transcription quantification

To quantify the fluorescent signal resulting from the embryo’s live
transcription, the 21 images corresponding to each time point
were converted into maximum projections. The subsequent anal-
ysis was processed by segmenting the nuclei using the His2Av-
mRFP channel and by tracking the segmented individual nuclei
during nuclear cycle 14. To record the MS2-GFP fluorescent signal
corresponding to the transcription foci, an average of the signal for
the three brightest pixels within each nucleus was determined af-
ter subtracting the background GFP signal. Total transcriptional
output was calculated by adding the transcription foci signal for
each active nucleus for the first 200 time frames of each embryo af-
ter the onset of nuclear cycle 14 (for a more detailed description of
the image analysis methods, see Fukaya et al. 2016).

Interspecies regulatory prediction

To illustrate DeepArk’s ability to make robust predictions in novel
species (i.e., not C. elegans, D. rerio, D. melanogaster, or M. muscu-
lus), we used the DeepArk model for D. rerio to predict regulatory
activity of sequences from the genome of O. latipes, which di-
verged from D. rerio between 314 and 332 myr ago (Kasahara
et al. 2007). Specifically, we used extant ATAC-seq and H3K4me1l
ChlIP-seq data from O. latipes.

To generate testing examples for O. latipes, we randomly drew
1 million locations from the O. latipes reference genome without
replacement. We ignored regions that contained an excess (i.e.,
more than 50) of ambiguous bases. To ensure the model was truly
generalizing to the O. latipes genome, we removed test sequences
in the O. latipes genome that were conserved between D. rerio
and O. latipes. To identify conserved bases, we used a multiple
whole-genome alignment of eight vertebrates, including O. latipes,
to the D. rerio reference genome. We downloaded this alignment
from the UCSC Genome Browser website (https://hgdownload
.soe.ucsc.edu/goldenPath/danRer7/multiz8way/multiz8way.maf
.gz). To enable comparisons between the two fish, morphological
stages of O. latipes development were matched to their correspond-
ing stages in D. rerio (Tena et al. 2014; Marlétaz et al. 2018).

Labels for the testing examples were assigned using existing
ATAC-seq and ChIP-seq data from O. latipes. We downloaded
unprocessed FASTQ files from SRA using the SRA toolkit
(Supplemental Table S6). We filtered and clipped reads using
TrimGalore. We used BWA-MEM (Li 2013) to align reads to the
O. latipes reference genome (Kasahara et al. 2007). Following align-
ment, we used SAMtools (Li et al. 2009) to index and sort the BAM
files and used the “MarkDuplicates” command from Picard Tools
to identify and remove duplicate reads in each BAM file. Finally,

we used MACS2 (Gaspar 2018) to call peaks with a Q-value cutoff
of 1x107° and an effective genome size of 8.18 x 10° bp.

Lastly, RNA-seq data for D. rerio (accession no. SRX3353221)
and O. latipes (accession no. SRX3353227) were used to visualize
changes in expression and compare changes in histone modifica-
tions at promoters (Supplemental Fig. S9). We downloaded the un-
processed FASTQ files for these data from SRA using the SRA
toolkit. Using HISAT2 (Kim et al. 2019), the processed reads for
O. latipes were aligned to its reference genome (Kasahara et al.
2007), and the reads for D. rerio were aligned to GRCz11 (Howe
etal. 2013). Coverage was quantified as counts per million mapped
reads (CPM) using the “bamCoverage” command from deepTools
(Ramirez et al. 2016).

Software availability

The code to run DeepArk locally is available as Supplemental Code
and has also been uploaded to GitHub (https://github.com/
FunctionLab/DeepArk). DeepArk is also freely accessible through
our user-friendly web server (https://DeepArk.princeton.edu).

Data access

Raw videos from imaging are available on Zenodo (https://doi.org/
10.5281/zenodo.3759736). DeepArk predictions for DCC compo-
nentbinding along the C. elegans X Chromosome are also available
on Zenodo (https://doi.org/10.5281/zenodo.4663161, https://doi
.org/10.5281/zen0do.3759699). DeepArk variant effect predic-
tions of M. musculus regulatory features for the ALDOB MPRA ex-
periment from Patwardhan et al. (2012) are available on Zenodo
as well (https://doi.org/10.5281/zenodo.4060298). The training
data for DeepArk are also available on Zenodo (https://doi.org/10
.5281/zen0do.4647691).
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