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Abstract

We report a systematic analysis of the DNA methylation variability in 1,595 samples of normal
cell subpopulations and 14 tumor subtypes spanning the entire human B-cell lineage. Differential
methylation among tumor entities relates to differences in cellular origin and to de novo epigenetic
alterations, which allowed us to build an accurate machine learning-based diagnostic algorithm.
We identify extensive patient-specific methylation variability in silenced chromatin associated
with the proliferative history of normal and neoplastic B cells. Mitotic activity generally leaves
both hyper- and hypomethylation imprints, but some B-cell neoplasms preferentially gain or lose
DNA methylation. Subsequently, we construct a DNA methylation-based mitotic clock called
epiCMIT, whose lapse magnitude represents a strong independent prognostic variable in B-cell
tumors and is associated with particular driver genetic alterations. Our findings reveal DNA
methylation as a holistic tracer of B-cell tumor developmental history, with implications in the
differential diagnosis and prediction of clinical outcome.

Introduction

The process of neoplastic transformation implies a dramatic alteration of cellular identity 1.
However, cancer cells partially maintain molecular imprints of the cellular lineage and
maturation stage from which they originate 2. B-cell neoplasms are a paradigmatic model of
this model, as the maturation stage of different B-cell neoplasms is the main principle
behind the World Health Organization classification of these tumors 3. Over the last years,
multiple studies analyzed the DNA methylome, a bona fide epigenetic mark related to
cellular identity and gene regulation 14 during the entire B-cell maturation program 5 and in
various B-cell neoplasms spanning the whole maturation spectrum. These include B-cell
acute lymphoblastic leukemia (ALL) 8.7 derived from precursor B cells, mantle cell
lymphoma (MCL) &2 and chronic lymphocytic leukemia 1911 (CLL) derived from pre- and
post-germinal center mature B cells, diffuse large B-cell lymphoma (DLBCL) 12 derived
from germinal center B cells, and multiple myeloma (MM) 1314 derived from terminally-
differentiated plasma cells. These studies have revealed a dynamic DNA methylome during
B-cell maturation as well as novel insights into the cellular origin, pathogenic mechanisms
and clinical behavior of B-cell neoplasms, as reviewed in 1°. However, a global analysis of
the entire normal cell differentiation program and derived neoplasms is neither available for
B cells nor for any other human cell lineage. Thus, we herein exploit both previously
generated DNA methylation datasets as well as newly generated data to systematically
decipher the sources of DNA methylation variability across B-cell neoplasms. This
comprehensive approach using over 2,000 samples including training and validation series
indicates that the human DNA methylome is more dynamic than previously appreciated
51116 and reveals previously hidden biological insights and clinical associations. In
particular, de novo disease-specific hypomethylation in active regulatory regions is
associated with differential transcription factor binding and targets genes important for
disease-specific pathogenesis. From the clinical perspective, we define a set of epigenetic
biomarkers that can accurately classify B-cell neoplasms requiring differential clinical
management and construct a DNA methylation-based mitotic clock, called epiCMIT, as a
personalized predictor of clinical behavior within each B-cell neoplasm.
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Initial data processing and global DNA methylation dynamics in normal and neoplastic B

cells

We analyzed previously published DNA methylation profiles of samples from normal and
neoplastic B cells spanning the entire B-cell differentiation spectrum, all generated with the
450k microarray platform from Ilumina. These included 10 normal B-cell subpopulations >
as well as the main five categories of B-cell neoplasms, i.e. ALL 8,7, MCL 8, CLL 1017,
DLBCL (own unpublished series) and MM 13 (Fig. 1a and Supplementary Table 1).
Following the guidelines of the TCGA Consortium (https://www.cancer.gov/about-nci/
organization/ccg/blog/2018/bcr-tips), we selected samples containing a tumor-cell content
greater than 60%. The validity of this percentage was experimentally confirmed analyzing
methylation profiles of sorted and unsorted tumor cells from MCL and CLL samples
(Extended Data Fig. 1a). Tumor cell content was estimated by flow cytometry 58101317,
genetic datal8 and/or lineage-specific DNA methylation patterns (Supplementary Table 2),
and was highly concordant (Extended Data Fig. 1b). However, MM samples showed that
DNA methylation-based estimation of tumor cell content was far lower than that estimated
by flow cytometry (Extended Data Fig. 1c, d), as expected due their loss of B-cell identity
13 Interestingly, some DLBCL samples also showed a similar effect (Extended Data Fig. 1c,
d), and therefore in MM and DLBCL, tumor cell content was estimated by flow cytometry
and genetic data, respectively. After all filtering criteria (Methods), we generated a curated
data matrix containing 1,595 high quality samples (Fig. 1a and Supplementary Table 1) with
DNA methylation values for 437,182 CpGs, which was used in all downstream analyses.

This comprehensive dataset was used to step-wise dissect the DNA methylation variability
of normal and neoplastic B cells at different levels, including cancer-specific, tumor entity-
specific, tumor subtype-specific and individual-specific variability (Fig. 1b). Out of all the
studied CpGs, only 12% show stable DNA methylation levels in normal and neoplastic B
cells, and target expressed genes (Fig. 1c-g, Extended Data Fig. 1le-h, and Supplementary
Table 3), indicating that the great majority of the DNA methylome (88%) is labile during
normal B-cell development and neoplastic transformation. We could not identify any de
novo epigenetic signature shared by all B-cell tumors. Therefore, the observed DNA
methylation variability was related to differences among B-cell tumor entities and subtypes
as well as patient-specific variability.

Disease-specific hypomethylation targeting regulatory regions is associated with
transcription factor bindings and differential gene expression

An unsupervised principal component analysis showed that different B-cell neoplasms
cluster separately (Fig. 2a and Extended Data Fig. 2a), with neoplasms grouped according to
the maturation stage of their cellular origin, i.e. ALL together with pre-germinal center B
cells and mature B-cell neoplasms together with germinal-center experienced B cells. Next,
to identify DNA methylation signatures associated with malignant transformation, we
focused on the 63% of genome with potential tumor-specific DNA methylation signatures
(Fig. 2b). We detected varying numbers of de novo tumor-specific DNA methylation
(tsDNAm) changes, ranging from 616 in CLL to 49,279 in MM (Fig. 2b, ¢, Extended Data
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Fig. 2D, ¢, d, Supplementary Tables 4 and 5, and Methods). Overall, hypermethylation was
enriched at CpG islands and promoter-related regions, whereas hypomethylation occurred at
low CpG content regions (Extended Data Fig. 2e). Remarkably, we observed that DNA
methylation changes manifested differently in distinct neoplasms. ALL and DLBCL showed
more tumor-specific DNA hypermethylation (tsDNAm-hyper), whereas MCL, CLL and MM
acquired more tumor-specific DNA hypomethylation (tsDNAm-hypo), being this skew
towards hypomethylation remarkable in MM (Fig. 2b-c). These distinct preferences among
neoplasms are not apparently related to differential expression of DNA methyltransferases
(DNMTs), as we could not identify any clear association between the hypermethylation/
hypomethylation ratio and the DNMT1, DNMT3A or DNMT3B expression levels
(Supplementary Figure 1).

Next, we sought to identify potential upstream mediators for de novo DNA methylation
signatures in each B-cell tumor. As transcription factor (TF) binding has been reported to
induce hypomethylation at regulatory regions 19, we performed TFs binding site prediction
analysis in active regulatory elements (i.e. marked by H3K27ac) containing tsDNAm-hypo
CpG (Methods). Interestingly, the entities in which tsSDNAm-hypo was predominantly
located in H3K27ac regions (Fig. 2c) showed enrichments for binding sites of TFs expressed
in each respective entity and with a previously reported association with their pathogenesis,
such as SPI1/SPIB and EBF1 in ALL, TCF/ZEB in MCL, and NFAT in CLL (Fig. 2d,
Extended Data Fig. 2f and Supplementary Table 6) 20-22, In the case of DLBCL and MM,
their tsDNAm-hypo CpGs were actually depleted of active regulatory elements (Fig. 2¢),
suggesting that TF binding may not be a major factor leading to their tumor-specific DNA
methylation signatures. However, the fraction of tsDNAm-hypo CpGs located in regulatory
regions was enriched in TFs potentially involved in the respective diseases, such as FOX
family in DLBCL 23, and NRL (a member of the oncogenic MAF family), ISL1, TEAD, and
YY1 in MM 2427 (Fig. 2d).

Beyond the potential role of TFs in shaping tumor-specific DNA methylation signatures, we
also investigated the downstream transcriptional associations of tsDNAmM-hypo signatures.
An analysis of transcriptional profiles of cases from all five diseases revealed a total of 94
genes associated with tsDNAm-hypo genes expressed in a disease-specific manner (Fig. 2e).
Although some of the identified genes have been shown specifically expressed in a particular
disease, such as CTLA4and KSR2in CLL 28, this comprehensive analysis provides a rich
resource of disease-specific candidate genes in which differential DNA methylation may
play a role in their deregulation.

Accurate classification of 14 clinico-biological subtypes of B cell neoplasms using
epigenetic biomarkers

The B-cell neoplasms shown in Fig. 1a represent broad categories which are further
classified into subtypes with different clinico-biological features based on genetic,
transcriptional or epigenetic features 3. These include high-hyperdiploid (HeH) ALLs, and
ALLs with structural variants: rearrangements affecting 11q23/MLL, three different
chromosomal translocations, i.e. t(12;21), t(1;19), and t(9;22), as well as the dicentric
chromosome dic(9;20) 5; Cluster 1 (C1, DNA methylation patterns related to germinal
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center-inexperienced cells) and Cluster 2 (C2, DNA methylation patterns related to germinal
center-experienced cells) MCLs which mostly reflect conventional and leukemic non-nodal
MCLs8; naive-like/low-programmed, intermediate/intermediate-programmed and memory-
like/high-programmed CLLs 1011 and finally DLBCLs categorized according to the cell of
origin classification into germinal center B cell (GCB) and activated B cell (ABC) 29, and
not according to the most recent genetic classifications30-31, whose link with epigenetic
profiles deserves further investigation. In MM, a previous report did not show robust
methylation differences among the distinct cytogenetic subtypes 13 and thus MM
subgrouping was not included in our analyses. Here, we focused on the identification of
epigenetic biomarkers that may allow a comprehensive diagnosis of B-cell tumor entities
and subtypes. We built a classifier algorithm that yielded 56 CpGs as the optimal number
distributed along 5 predictors (Extended Data Fig. 3a, b and Supplementary Table 7,
Methods) to accurately discriminate the main B-cell tumor entities as a first step (predictor
1), and subsequently B-cell tumor subtypes as a second step (predictors 2, 3, 4 or 5) (Fig.
3a). The accuracy of the five predictors was evaluated using nested 10-fold stratified cross-
validation in the training series (n=1,345) and with external validation series (n=711) (Fig.
3b). Overall, we obtained very high accuracies in the predictions in both main B-cell tumor
entities (mean sensitivity was 97% for training series and 99% for validation series) and B-
cell tumor subtypes (mean sensitivity was 90% for training series and 97% for validation
series). This epigenetic classifier may represent the basis for a simple and accurate
diagnostic tool for B-cell tumor subtypes with different clinical management (Code
availability section).

Patient-specific DNA methylation changes are associated with silent chromatin without an
impact on gene expression

To determine patient-specific changes within each tumor subtype (Fig. 1b, level 4), we
computed the total number and the number of hyper- and hypomethylation changes in every
single patient within each B-cell tumor subtype as compared to HPC. As each B-cell tumor
entity is derived from a distinct cellular origin, this approach has the advantage of fixing a
reference point for all B-cell tumors. Furthermore, each methylation change was further
classified as being extensively modulated or not during normal B-cell development °, i.e. B
cell-related changes or B cell-independent changes, respectively (Fig. 4a). Overall, we found
large differences in the numbers of DNA methylation changes per patient (Fig. 4a and
Supplementary Table 8), and all B-cell tumors showed a similar degree of DNA methylation
variability (Extended Data Fig. 4a). We also detected strikingly high correlations between
the degree of B-cell related and B-cell independent DNA methylation changes (Fig. 4b,
Extended Data Fig. 4b and Supplementary Table 8). This association suggests that the
overall DNA methylation burden of the tumor in each individual patient may be shaped by a
similar underlying phenomenon. Supporting this concept, we observed that CpGs
undergoing hypomethylation both in the B cell-related and B cell-independent fractions are
mainly located in low CpG-content, low-signal heterochromatin, and the associated genes
are constitutively silent both in normal and neoplastic B cells (Fig. 4c-e and Extended Data
Fig. 4c-f). In the case of hypermethylation, CpGs in both fractions are located mainly in
promoter regions and CGlIs with H3K27me3-repressed and poised-promoter chromatin
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states, and affect genes that remain silent across normal differentiation and neoplastic
transformation of B cells (Fig. 4f-h, Extended Data Fig. 4c, g-i).

Collectively, these findings indicate that most DNA methylation changes in B-cell tumor
patients occur in silent chromatin regions in the absence of concurrent phenotypic changes,
suggesting that a mechanism independent from gene regulation may underlie their overall
DNA methylation landscape.

Development of an epigenetic mitotic clock reflecting the proliferative history of normal
and neoplastic B cells

Beyond the classical role of DNA methylation as gene regulator, an accumulating body of
published evidence supports the concept that hypomethylation of low CpG-content
heterochromatin and hypermethylation of high CpG-content polycomb target regions
accumulate during cell division in a way consistent with an epigenetic mitotic clock32-39,
Here, we observe that the inter-patient methylation variability in B-cell tumors mainly
affects inactive chromatin, including hypomethylation of heterochromatin and
hypermethylation of regions marked with H3K27me3-containing chromatin states (Fig. 4c-h
and Extended Data Fig. 4d-i). Based on this data, these DNA methylation changes most
likely reflect the different tumor cell proliferative histories of individual patients. Thus, we
next performed a step-wise selection of CpGs whose methylation change would reflect the
cell mitotic history (Fig. 5a, Extended Data Fig. 5a and Methods). First, we selected CpGs
within constitutively silenced/poised chromatin. Second, we identified CpGs methylated
(=0.9) or unmethylated (<0.1) in HPC samples that extensively lose or gain methylation (a
difference of at least 0.5) in bmPC samples. This difference was used to capture CpGs
undergoing extensive methylation changes between cells with the lowest and highest
proliferative histories in the B-cell lineage. Third, we obtained 184 CpGs located at
constitutive H3K27me3-containing regions and 1,164 CpGs at constitutive heterochromatin
which gain and lose DNA methylation upon cell division, respectively (Fig. 5a, b,
Supplementary Table 9 and Methods). Fourth, we next constructed two mitotic clocks with
these two sets of CpGs, one gaining DNA methylation upon cell division called
epigenetically-determined Cumulative MIToses (epiCMIT)-hyper and one losing DNA
methylation called epiCMIT-hypo (Fig. 5a, b and Methods). We initially evaluated both
mitotic clocks in normal B cells and observed a high correlation (R=0.96, p-value<2e-16),
with B-cell subpopulations distributed according to their accumulated proliferative history
during B-cell differentiation and not to their current proliferation status (Fig. 5c, left panel).
This association between the degree of hyper- and hypomethylation supports previous
observations in colorectal cancer® and indicates that mitotic cell division in normal B cells
leaves both hyper- and hypomethylated imprints. Although this high correlation between the
two mitotic clocks was also observed for MCL, CLL and DLBCL (Fig. 5¢), it does not seem
to be a universal phenomenon, as no correlation was observed in ALL and MM. In line with
the overall trend to gain methylation in ALL and to lose methylation in MM (Fig. 2b), we
observed that the epiCMIT-hyper was greater than the epiCMIT-hypo in ALL samples, and
the opposite in MM. These differences do not seem to arise from differential expression of
DNMTs (Supplementary Figure 1). As a final step in the epiCMIT mitotic clock
development, we then selected the highest score from the epiCMIT-hyper and epiCMIT-
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hypo per sample to derive a unique epiCMIT value (Fig. 5a, d, Supplementary Table 9 and
Methods). The epiCMIT shall then reflect the relative accumulation of mitotic cell divisions
of a particular sample, including the mitotic history associated with normal cell development
as well as with malignant transformation and progression. Moreover, the epiCMIT cannot be
affected by a different distribution of cell cycle phases in tumor samples, since the DNA
methylome remains rather stable during the whole cell cycle 41,

Validation of the epiCMIT score as mitotic clock in normal and neoplastic B cells

The applicability of the epiCMIT as mitotic clock was validated through several
perspectives. First, we used an independent /17 vitro B-cell differentiation model of primary
NBCs into plasma cells*2, in which cell divisions were controlled by carboxyfluorescein
succinimidyl ester (CFSE) staining (Extended Data Fig. 5b). At days 4 and 6, different B
cells were separated based on their proliferation history measured by CFSE dilution, and we
observed that epiCMIT increases in cells with lower CFSE concentration, i.e. higher
proliferative history (Fig. 5e, left panel). The genes related to epiCMIT-CpGs remained
silenced in all these conditions regardless of the cell phenotype and proliferative history(Fig.
5e, right panel). Second, we studied the link between the epiCMIT and genetic changes
using WGS data of 138 CLL patients from our cohortl’. We observed that the epiCMIT was
correlated with the total number of somatic mutations and with genomic complexity
measured by the number of driver genetic alterations, i.e. mutations with positive selection
(Extended Data Fig. 5¢, d). Additionally, we measured the activity of know mutational
processes through the analysis of single base substitution (SBS) signatures#3 (Extended Data
Fig. 5e). We detected significant correlations between our epiCMIT and signatures SBS5
and SBS1, which have been previously described as mitotic-like mutational processes (Fig.
5f and Extended Data Fig. 5f). We also identified a significant link between the epiCMIT
and the non-canonical AID signature (SBS9) 1743 in /GHV mutated CLL, possibly
reflecting accumulated rounds of cell divisions in the germinal center of the ancestor B cell
prior to its transformation to CLL (Extended Data Fig. 5g). Third, although the epiCMIT is
aimed at capturing the proliferative history of the cell, a relationship with cell proliferation is
expected in tumors (more proliferative history implies higher proliferation, although it also
depends on time). Accordingly, the epiCMIT was higher in MCL cases showing high Ki-67
(a proliferation marker) than in cases with low Ki-67 expression (Fig. 5g). Furthermore,
leukemic CLL cases with high epiCMIT, although not considered to be proliferative, showed
higher expression of genes related with cell proliferation and MYC activity (Fig. 5h and
Supplementary Table 10). Thus, these data suggest that cases with higher proliferative
history also seem to have higher proliferative capacity at the time of sampling.

We next compared the epiCMIT with two previously proposed hypermethylation-based
mitotic clocks called epiTOC and MiAge 37:3% (Supplementary Table 8 and Methods). In
addition, we calculated a hypomethylation-based mitotic clock using a previously defined
pan-cancer set of CpGs losing methylation called PMDsoloWCGW CpGs38 (Supplementary
Table 8 and Methods). Focusing on hypermethylation-based mitotic clocks, the epiCMIT
showed excellent correlations with epiTOC and MiAge in B-cell neoplasms acquiring
polycomb-related hypermethylation (mostly ALL, but also DLBCL and MCL); a moderate
correlation in the case of CLL, which acquires more hypo- than hypermethylation, and a
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total lack of correlation in the case of MM, which mostly loses DNA methylation (Fig. 5i
upper panel and Extended Data Fig. 5h). Interestingly, identical observations were obtained
comparing the epiCMIT and the widely-reported CpG island methylator phenotype (CIMP)
in human cancer#4, suggesting that the pan-cancer CIMP score may also represent a measure
of the cell mitotic history. Interestingly, the opposite scenario was found when comparing
epiCMIT with the hypomethylation-based mitotic clock PMDsoloWCGW. We showed
excellent correlations between epiCMIT and PMDsoloWCGW in tumors with extensive
DNA hypomethylation (mostly MM and CLL, but also MCL and DLBCL) and a null
correlation in ALL (Fig. 5i, bottom panel). In spite of these striking discrepancies in ALL
and MM, mitotic clocks were in general highly correlated, even though the poor overlap of
their underlying CpGs, indicating that cell proliferative history can be traced with different
sets of CpGs (Extended Data Fig. 5i). Additionally, we observed that epiCMIT is highly
correlated with the total number of DNA methylation changes accumulated in all samples
since the HPC stage, suggesting that the overall DNA methylation landscape seems to be
strongly influenced by the cell proliferative history (Fig. 5i bottom panel and Extended Data
Fig. 5h). Finally, epiCMIT outperformed all mitotic clocks to identify cells with different
proliferative histories using the controlled setting of the /n vitro B-cell differentiation model
(Extended Data Fig. 5b, j), a finding that suggests its higher accuracy to trace the B-cell
proliferative history. Collectively, all these analyses suggest that the epiCMIT is a more
universal mitotic clock than previously reported mitotic clocks exclusively based on hyper-
or hypomethylation.

A potential confusing aspect related to epiCMIT is the fact that DNA methylation changes
take place during aging 4°46 and can be used to predict chronological age 4749, as
exemplified with the Horvath’s epigenetic clock 0. To study the potential relationship
between mitotic activity and the aging process, we first analyzed the epiCMIT in normal B
cells with low (NBC) and high (MBC) epiCMIT values in samples from infants, young
adults and elderly donors (Extended Data Fig. 6a, left). This analysis did not reveal any
evidence linking the epiCMIT with the chronological age of healthy donors, which indeed is
accurately predicted by the Horvath’s aging clock (Extended Data Fig. 6a). In the case of B-
cell tumors, we observed the same general tendency. Pediatric ALL samples show the
highest epiCMIT range despite the very low age range, and thus a negligible association
between epiCMIT and age. In DLBCL we observed a similar scenario, since 30 and 90-year-
old patients showed similar epiCMIT levels. Only in MCL and CLL patients we observed
minor correlations between epiCMIT and patient’s age (Extended Data Fig. 6a, right). We
then applied the Horvath’s clock to patient samples and, as previously shown in other
cancers®0, we found significant epigenetic age acceleration with some pediatric ALL
patients reaching an impressive predicted age over 200 years. Interestingly, we found that
the epiCMIT shows a highly significant correlation with the epigenetic age predicted by
Horvath’s clock in the majority of B-cell tumors subtypes (R=0.62, p-value<2el6),
suggesting that epigenetic age acceleration may be related to the increased proliferation of
cancer cells (Extended Data Fig. 6a, bottom). Despite this intriguing correlation that
deserves further investigation, the epiCMIT and Horvath’s clocks seem to be targeting
different molecular features, as their underlying CpGs show markedly distinct genomic
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locations, DNA methylation dynamics in normal and neoplastic B cells, chromatin
enrichments and gene expression of their associated genes (Extended Data Fig. 6b-f).

The epiCMIT is a strong independent variable predicting clinical behavior in B-cell tumors

In normal B-cell maturation, the epiCMIT gradually augments as B cells proliferate, an
increase that is particularly marked in highly proliferative GC B cells (Fig. 5d). In neoplastic
B cells, however, the interpretation of the epiCMIT is less trivial and must be divided into
two components: the epiCMIT of the cell of origin and the epiCMIT acquired in the course
of the neoplastic transformation and progression (Fig. 6a). Therefore, the relative epiCMIT
must be compared among patients from entities arising from the same B-cell maturation
stage and should be a dynamic variable during cancer progression. Thus, we compared the
epiCMIT in two paradigmatic transitions between precursor conditions and overt cancer, i.e.
monoclonal gammopathy of undetermined significance (MGUS) and MM, as well as
monoclonal B cell lymphocytosis (MBL) and CLL categorized according to their cellular
origin. This analysis showed an overall lower epiCMIT in precursor lesions compared with
overt cancer (Fig. 6b, upper panels). In line with this finding, the epiCMIT increased in
paired CLL samples at diagnosis and progression before treatment as well as in sequential
ALL samples at diagnosis, first relapse and second relapse (Fig. 6a, lower panels).

Based on these observations, we next wondered whether the epiCMIT could be useful to
predict the clinical behavior of B-cell neoplasms. We analyzed specific B-cell tumor
subtypes based on cytogenetic subtypes (i.e. ALL) or cell of origin (i.e. MCL, CLL and
DLBCL), and thus having a similar ground state proliferative history (Fig. 6a). In ALL, high
epiCMIT was consistently associated with longer overall survival (OS), OS after relapse and
relapse-free survival (RFS) of the patients (Fig. 6¢, d and Extended Data Fig. 7a). These
epiCMIT associations maintained an independent statistical significance from the well-
established ALL cytogenetic groups as prognostic variable in RFS and OS, and a marginal
significance in OS after relapse. In contrast to ALL, the opposite clinical scenario was
observed in mature B-cell neoplasms. In each of the CLL subtypes, a high epiCMIT was
strongly associated with a worse prognosis using time to first treatment (TTT) as end-point
variable, both from sampling time (Fig. 6€) and in cases whose sample was obtained close to
diagnosis (Extended Data Fig. 7b). Additionally, the epiCMIT as continuous variable
showed a highly significant independent prognostic impact in the context of major
prognostic factors in CLL, including the /GHV status and 7P53 alterations (deletion and
mutation) (Extended Data Fig. 7c). Overall, it seems that the epiCMIT, CLL epigenetic
subgroups 101151 and genomic complexity measured by the total number of driver
alterations 17:52 are the most significant independent variables associated with prognosis in
CLL. In addition, despite the variability of treatments in our initial CLL series, the epiCMIT
also showed marginal significance in OS (Extended Data Fig. 7d). All these findings were
widely confirmed in an additional series of 210 CLL patients treated mainly with chemo-
immunotherapy (Fig. 6f and Extended Data Fig. 7b, d). In the case of MCL, the epiCMIT
showed an independent poor prognostic impact in the two cell-of-origin subtypes (C1 and
C2), an observation that was confirmed in an extended series in the more aggressive and
prevalent C1 group (Fig. 6g, h). In the case of the two cell-of-origin DLBCL subtypes, our
data suggest that high epiCMIT could also represent a poor prognostic variable (Extended
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Data Fig. 7e). Finally, our epiCMIT score showed an overall superior prognostic value
compared with all the other DNA methylation-based mitotic clocks in all B-cell tumors with
the largest number of patients (Extended Data Fig. 8).

epiCMIT is associated with specific genetic driver alterations in CLL

Despite the independent prognostic impact of epiCMIT and genetic alterations in CLL, we
next assessed which CLL driver alterations could potentially confer a proliferative advantage
to neoplastic cells, and subsequently a higher epiCMIT. To that end, we exploited 477 CLL
samples in which we had DNA methylation data and whole exome sequencing (WES)1’
(Fig. 7a). We initially depicted all driver genetic changes in each CLL subtype divided in
high and low epiCMIT (Extended Data Fig. 9a). Next, we interrogated the levels of
epiCMIT in patients with each driver genetic alteration both in the whole cohort and in each
epigenetic subgroup separately (Fig. 7b, Extended Data Fig. 9b and Methods). We showed
significant and positive associations of epiCMIT with 23 genetic driver alterations (Fig. 7b)
1752 The majority of these genetic alterations have been previously linked to an adverse
clinical behavior of patients, such as NOTCHI, TP53, SF3B1, ATM, BIRC3 or EGRZ.
Interestingly, epiCMIT showed an association with a recently identified non-coding genetic
driver associated with poor prognosis in CLL, the U1 spliceosomal RNA 53, Remarkably,
the presence of some genetic alterations was associated with high epiCMIT indistinctly in all
patients, such as 7P53, while others were particularly associated with epiCMIT within CLL
subgroups, such as SF381and ATM in i-CLL.

Collectively, these results suggest that the well-established clinical impact of certain genetic
alterations in CLL may be explained by their association with a high proliferative potential,
being this association different for certain genetic alterations depending on the maturation
state of the cellular origin.

Discussion

Here, we have followed a systematic approach to dissect the sources of DNA methylation
variability of B-cell neoplasms in the context of the normal B-cell differentiation program.
Overall, we found that the methylation levels of 88% of the studied CpGs are modulated in
normal and/or neoplastic B cells, suggesting that the human DNA methylome is even more
dynamic than previously appreciated 216, The extensive DNA methylation variability among
different B-cell neoplasms is in part related to imprints of normal cell development, a
phenomenon that has been recently used to classify not only B-cell neoplasms 8:10:11.51 pyt
also solid tumors 254, In addition, each B-cell neoplasm also shows de novo disease-specific
hyper- and hypomethylation, being the latter possibly related to binding of disease-specific
TFs and subsequent disease-specific gene expression profiles.

In spite of the widely-reported importance of DNA methylation at regulatory regions, we
identified that the majority of DNA methylation changes in B-cell neoplasms are located in
inactive chromatin. These DNA methylation changes are manifested mainly in the form of
hypomethylation of heterochromatin and hypermethylation of H3K27me3-containing
regions, a phenomenon previously observed in colorectal cancer*. Compelling published
evidences32-38 and our data support the notion that mitotic cell division leaves
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transcriptionally-inert epigenetic imprints onto the DNA located in repressive chromatin
environments. More recently, this knowledge has led to the concept of using DNA
methylation as a mitotic clock 3739 and also has been confirmed at the single cell level 5556,
Here, we identified that using only hyper- or hypomethylation to build a mitotic clock may
be insufficient to capture the mitotic history of cancer cells, as some neoplasms seem to
preferentially gain or lose DNA methylation upon cell division. For instance, ALL seems to
acquire broad hypermethylation upon cell division, whereas we consistently observed the
opposite scenario in MM. Thus, using exclusively hyper- or hypomethylation37-39 to
determine the mitotic history of MM or ALL cells would incongruently lead to the
conclusion that they have not proliferated beyond their cellular origin. Therefore, to
circumvent these limitations, our epiCMIT uses several filters to carefully select both hyper-
and hypomethylation in CpGs. The strict filtering criteria together with the high correlation
with previous cell type-independent mitotic clocks suggest the epiCMIT may represent a
pan-cancer mitotic clock. Here, we showed that epiCMIT captures the entire mitotic history
of B cells, including cell division associated both with normal development as well as
neoplastic transformation and progression. Thus, the epiCMIT should not be compared
among B-cell tumors arising from different normal counterparts but its relative magnitude
must be studied in those arising from a particular maturation stage. Within each of these
subgroups, the relative epiCMIT has a superior prognostic value than previous mitotic
clocks and a profound independent prognostic value from other well-established clinical
variables in B-cell tumors. Increased epiCMIT is associated with worse clinical outcome in
CLL and MCL, suggesting that superior proliferative history before treatment seems to
determine future proliferative capacity of CLL and MCL cells. Strikingly, we consistently
found the opposite pattern in ALL, a finding in line with recent reports showing that the
prese nee of CIMP is associated with better clinical outcome 378, This result may suggest
that the high proliferative ALL cells of children at diagnosis (and thus having a larger
proliferative history) are more efficiently killed by high intensive chemotherapy regimens®?,
which cannot be administrated in elderly patients such as in the case of CLL and MCL.

DNA methylation has also been used as a clock to predict the chronological age of healthy
donors#’~49. The epiCMIT and aging clocks such as that developed by Horvath® seem to
reflect broadly different layers of epigenetic information imprinted onto the DNA. This
notion is supported by multiple perspectives, including the similar levels of epiCMIT in the
same normal B-cell subpopulations regardless of donor’s age, the differential (epi)genomic
and transcriptomic features between Horvath and epiCMIT clocks, and the independent
prognostic value of epiCMIT and age in B-cell tumors. In spite of this overall independence
of mitotic and aging clocks, we did observe a remarkable association between the epiCMIT
and the epigenetic age predicted by the Horvath clock in B-cell tumors. This finding
suggests that the accelerated epigenetic age reported in human cancer®® may actually reflect
the mitotic activity of cancer cells. This concept is further supported by previous results
indicating that the predicted age of a sample increases with 77 vitro cell passages®C.

Finally, we found that epiCMIT is enhanced by the presence of some mutations with positive
selection (i.e. driver genes) and not by random mutations, as driverless CLL patients show
an overall lower epiCMIT compared with patients with abundant genetic driver alterations.
We identified 23 driver genetic alterations particularly associated with higher epiCMIT
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levels or methylation evolution8%, which may represent genetic alterations conferring a
higher proliferative capacity to CLL cells. They were distributed throughout the main altered
signaling pathways in CLL and were manifested differently in distinct CLL subgroups based
on their cellular origin (Fig. 7b). This finding suggests that specific alterations may
predispose to a higher proliferative advantage depending on the maturation stage and
(epi)genetic makeup of the CLL cellular origin.

In summary, our comprehensive epigenetic evaluation of normal and neoplastic B cells
spanning the entire human B-cell lineage uncovers multiple insights into the biological roles
of DNA methylation in cancer, an analytic approach that may also benefit our understanding
of other cancers. From a clinical perspective, DNA methylation may provide a holistic
diagnostic and prognostic approach to B-cell neoplasms. Particularly, we defined an accurate
and easy-to-implement pan-B-cell tumor diagnostic tool and generated a mitotic clock
reflecting the proliferative history of the neoplastic cells of each patient to estimate their
clinical risk, which shall represent a valuable asset in the precision medicine era.

METHODS

Quiality control, normalization, filtering and annotation of DNA methylation data

We collected 450k DNA methylation array data from 913 ALL 67,82 MCL 8,9, 491 CLL7,
and 104 MM 13 (Supplementary Table 1). We collected also normal B cell subpopulations °
totaling 67 samples as well as normal microenvironmental cells including 6 granulocytes, 5
CD8" and 5 CD4* T cells, 6 monocytes, 6 NK cells 6 whole blood samples and 6 peripheral
blood mononuclear cells 61, 6 macrophages 52 and 16 endothelial cells 63, These
microenvironmental cells were used to infer B-cell tumor purities through DNA methylation
data. In addition, we generated genome-wide DNA methylation profiles following
manufacturer’s instructions for DLBCL patients with 450k and EPIC BeadChips (Illumina)
of 80 and 12 DLBCL patients, respectively, with partially available genomic datal®. The
analysis of these DLBCL samples was approved by the Institutional Review Board of
Hospital Clinic (Barcelona, Spain), and informed consent was obtained from all patients in
accordance with the Declaration of Helsinki. In total, 1,799 samples were profiled with the
450k DNA methylation microarrays. We used a custom pipeline to analyze DNA
methylation data using R (version 3.6.3) packages and core Bioconductor (version 3.10)
packages, with special use of minfipackage (version 1.32) exclusively devoted to analyze
DNA methylation data®. From the total of 485,512 probes present in the 450k array, we
sequentially removed probes using the next steps: we initially removed 3,091 non-CpGs
probes, 17,534 CpGs representing SNPs, 7,715 CpGs with individual-specific methylation 3,
and 4,493 CpGs present in sexual chromosomes. All the remaining 452,679 CpGs had a
detection p-value <0.01 in more than 10% of the samples. We then removed samples with
bad intensity signal and/or bad probe conversions as well as those with a tumor percentage
below 60% (See next section). In total, we removed 104 ALL samples, 8 MCL samples, 1
CLL sample, 25 DLBCL samples and 4 MM samples. We also removed microenvironmental
cells to perform all the analyses in normal and neoplastic B cells. After all filtering criteria,
we retained 1,595 samples (Supplementary Table 1 and Fig. 1a) with DNA methylation
values for 452,679 CpGs, which were normalized using SWAN algorithm 5. Some CpGs
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showed missing values in some samples and were removed from all the subsequent analyses
(with the exception of biomarker discovery, Fig. 3) and finally 437,182 CpGs were used. We
used /luminaHumanMethylation450kanno.lmni12.hg19 (version 0.6) and
HluminaHumanMethylationEPICanno.ilm10b4.hg19 (version 0.6) R package to annotate all
CpGs. B-cell related and B-cell independent CpGs classification was used from our previous
study to separate CpGs that are significantly modulated or not during B cell differentiation,
respectively®. The same pipeline was used to curate and normalize the data from the
previously published 42 jn vitro model of B-cell differentiation shown in Extended Data Fig.
5b and all the DNA methylation data for validation series used for the pan-B-cell tumor
classifier as well as clinical associations. These include our newly generated EPIC DNA
methylation data for the 12 DLBCL patients as well as other EPIC and 450K DNA
methylation data previously published. In particular, we collected EPIC DNA methylation
profiles for 70 MCL patients © and 450K and EPIC data for 380 CLL from external
collaborators. Finally, to validate results in ALL, we used 183 samples included in the initial
analysis (Fig. 1, 2)7 but not used to construct any classifier, and we also downloaded DNA
methylation data from GSE76585% and GSE6922967.

Inferring tumor purity through DNA methylation data

DNA methylation has been shown to represent an appropriate biological layer to infer the
proportions of blood cell types in peripheral blood 8. We have previously implemented
successfully this statistical framework to infer tumor purity in MCL patient samples 8. We
have extended this strategy to all B-cell tumors using additional cell types to deconvolute
DNA methylation data into cellular proportions including tumor cell content. We validated
this approach using flow cytometry (FCM) and genetic data in MCL and CLL samples
(Extended Data Fig. 1b). Briefly, we assume that B-cell tumors retain a B cell signature
from its cell of origin and also have negligible proportion of normal B cells. Thus, the
percentage of neoplastic B cells in a sample can be inferred by the presence of a DNA
methylation signature of B cells. This B cell methylation signature was identified by two
sequential steps: 1) we selected CpGs with shared methylation values during the entire B-
cell maturation process (from early committed B cells to terminally-differentiated bone
marrow plasma cells), and 2) from those CpGs selected above, we performed a differential
DNA methylation analysis to identify CpGs whose methylation level was significantly
different between B cells and the major non-neoplastic cells accompanying B cell tumors 69,
namely granulocytes, T cells, monocytes, macrophages and endothelial cells. Then, with this
set of CpGs representative of all major cell types present in tumor samples, we apply a linear
constrained projection %8, also known as reference-based approach 7, to find the proportions
of each cell type.

As a final filtering step, we retained patient samples showing at least 60% tumaor cell content
according to DNA methylation-based predictions in ALL, MCL and CLL samples, to FCM
in MM and to genetic data in DLBCL samples.

Purity estimation from mutational and copy number variation data in DLBCL

The 80 samples included in this study were previously analyzed by whole-genome copy
number (CN) arrays (Cytoscan HD, Affymetrix) and gene mutations by targeted next
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generation sequencing of 106 genes.18. The Allele-Specific Copy Number Analysis of
Tumors (ASCAT) algorithm available at Nexus Copy Number (BioDiscovery, version 7) was
used to infer the tumor purity directly from the Cytoscan HD array. The percentage of cells
(or cancer cell fraction, CCF) carrying each somatic mutation found in loci not affected by a
copy number alterations was calculated as CCF = 2xVAF, where VAF is the variant allele
frequency of the mutation. Out of all the mutations, the highest CCF was considered as the
best estimate of tumor purity of the samples based on gene mutations. As a final step, the
maximum tumor purity detected by ASCAT or gene mutations was considered as the
estimated tumor cell purity.

Gene expression data

Gene expression profiles using hgu219 array for normal B cells was obtained from ° (3
hematopoietic precursor cells, 7 pre-B cells, 10 naive B cells, 11 germinal center B cells, 5
tonsillar plasma cells, 5 memory B cells and 1 bone marrow plasma cell). Additionally, we
downloaded gene expression data for 56 ALL samples profiled with 133 plus 2 array from 6,
including several ALL subtypes, namely 18 HeH, 5 11g23/MLL, 16 t(12;21), 6 t(1;19), 5
t(9;22) and 6 dic(9;20). We also used 15 MCL samples profiled with 133 plus 2 arrays 1
including 10 C1 and 5 C2 MCLs. We also used previously generated gene expression data
with hgu219 array for 455 CLL samples 17. For DLBCL samples, we generated gene
expression data using 133 plus 2 arrays following the manufacturer’s instructions for 43
DLBCL samples, including 17 GCB, 15 ABC, and 11 unclassified. Finally, we downloaded
gene expression data for 328 MM samples from 72 analyzed with the 133 plus 2 array
platform. We normalized all the data using rma function available in affy (version 1.64) R
package. As gene expression data come from different studies and different array platforms,
we transformed all normalized gene expression values per sample to gene expression
percentiles to minimize batch effects. Also, we generally used expression data to strengthen
the interpretation of previous results and not for primary and discovery analyses.

Shared DNA methylation dynamics in normal and neoplastic B cells

To define CpGs whose methylation values do not change in normal and neoplastic B cells,
we obtained CpGs showing differences of less than 0.25 across all normal and neoplastic B
cells. Then, we classified them into hyper, partial and hypomethylated CpGs calculating the
median of each CpGs for all the samples.

ChlP-seq data collection, analysis and integration

We downloaded and processed ChIP-seq data available from Blueprint’3 and from a
previous study in ALL4. Particularly, we used Blueprint ChIP-seq data of six histone marks,
i.e.H3K4mel, H3K4me3, H3K27ac, H3K36me3, H3K27me3 and H3K9me3 available for
15 normal B cells (6 NBC, 3 GC, 3MBC and 3tPC), 5 MCLs, 7 CLLs and 4 MMs, as well as
two DLBCL cell lines, i.e. KARPAS-422 and SUDHL-5 DLBCL. We next integrated these
ChIP-seq data using chromHMM software’® as previously described’®. Briefly, we
generated a B-cell specific chromatin state model with 12 emission states using the 15
normal B cells, corrected for their corresponding input. These 12 chromatin states were
ActProm (active promoter, with H3K27ac and H3K4me3 marks), WkProm (weak promoter,
with H3K4mel and H3K4me3 marks), PoisProm (poised promoter, with H3K27me3,
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H3K4mel and H3K4me3 marks), StrEnh1 (strong enhancer 1, with H3K27ac, H3K4mel
and H3K4me3 marks), StrEnh2 (strong enhancer 2, with H3K27ac and H3K4mel marks),
WKENh (weak enhancer, with H3K4mel mark), TxnTrans (transcription transition, with
H3K36me3, H3K27ac and H3K4mel marks), TxnElong (transcription elongation, with
H3K36me3 mark), WkTxn (weak transcription, with low H3K36me3 mark), H3K9me3
(H3K9me3-repressed heterochromatin), H3K27me3 (H3K27me3-repressed
heterochromatin) and Het;Low;Sign (low signal heterochromatin, with the absence of all the
six histone marks).Next, this model was used to assign the chromatin states in the remaining
primary B-cell tumors, namely 5 MCL, 7 CLL, 5 MM, and the 2 DLBCL cell lines. In the
case of ALL, we downloaded H3K27ac ChlP-seq data (generated with the ChiP-grade
ab4729 from Abcam) from the NALM6 ALL cell line’4. We followed the Blueprint pipeline
to find H3K27ac peaks http://dcc.blueprint-epigenome.eu/#/md/chip_seq_grch37. To define
regulatory regions in MCL, CLL, MM and DLBCL, we used the CHMM genome
segmentation. Particularly, we used chromatin states containing H3K27ac, namely ActProm,
StrEnhl, StrEnh2 and TxnTrans chromatin states. For ALL, regulatory regions were defined
as regions showing H3K27ac peaks. These active regulatory regions were not merged but
used in a disease-specific manner in the manuscript. To calculate CHMM enrichments of
CpGs sets, we used the CpGs present in the 450k Illumina DNA methylation array as a
background. To calculate CpG enrichments in regulatory regions in Fig 2¢ and Extended
Data Fig. 2c, the number of CpGs falling in regulatory regions were compared with the same
number of de novo CpGs 10,000 times randomly chosen from the DNA methylome fraction
with potential tumor-specific signatures falling in regulatory regions. To select genes
associated with regulatory regions (Fig. 2), we obtained gene annotation for all CpGs within
regulatory regions using the /fluminaHumanMethylation450kanno.lmn12.hg19R package.

Gene Ontology Analysis

Gene ontology analyses were performed using the “gometh” function within the missMethy!
R package available at Bioconductor, which takes into account the differing number of
probes per gene present on the 450k array.

Tumor specific DNA methylation signatures

We performed Truncated Principal Component Analysis (PCA) using /rlba package
available at CRAN. Next, to find specific DNA methylation signatures in each B cell tumor,
we filtered out all CpGs showing extensive modulation in B cell differentiation °.
Afterwards, we used the /imma package to perform pair-wise comparisons between each B
cell tumor entity. For each B cell neoplasia as compared to other B cell tumors, we retained
CpGs that showed at least =0.25 methylation difference and FDR<0.05 in the same direction
in all comparisons. We next classified the identified CpGs as hyper- or hypomethylated
considering the methylation status of normal B cells.

Transcription factor binding analysis

We used the PWMEnrich package available at Bioconductor. We focused on CpGs showing
specific hypomethylation in each B-cell tumor entity overlapping with regions showing
H3K27ac in primary samples of MCL, CLL or MM, and cell lines in the case of ALL
(NALMS6) and DLBCL (KARPAS-422 and SUDHL-5) (Fig. 2c). We next extended the DNA
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sequence 100bps (50bps to each side) for each CpG using Bsgenome.Hsapiens.UCSC.hg19
annotation package available at Bioconductor. As a background sequences, we used 100,000
random B-cell independent CpGs. We then calculated the frequency of A, T, C and G bases
in the background sequences. Next, we obtained the 537 CORE JASPAR 2018 TFs for
Homo sapiens and transformed motifs to Position Weight Matrices (PWM) using previously
calculated frequencies of each base to account for biases in the 450k array. We then
calculated a lognormal background distribution with tiles of 100 bps to finally perform TFs
binding predictions. We retrieved enrichments per group of sequences and the frequency of
each TF that belongs to the Top 5% enrichment TFs, i.e. how often a TF is among the top
5% enriched TFs in all the interrogated sequences. We considered TF as relevant when being
within the top 5% TFs in at least 10% of the sequences, showing an FDR <0.025 and
consistently expressed in each respective B-cell tumor.

Construction of the classifier algorithm for B cell tumor subtypes

DNA methylation data for 1,345 samples of B-cell neoplasms was used to build a two-step
classifier for the classification of the 5 main B-cell tumor entities (first step) followed by the
classification B-cell tumor subtypes (second step, out of the 1,345, 1,013 samples with
subtype diagnosis were available). We used the DNA methylation values of 452,679 CpGs
including B-cell related and B-cell independent CpGs °. Of note, to build the classifier we
only used CpGs present in both methylation array platforms (450k and EPIC arrays).CpGs
with minimal variation (interquartile range below 0.07) were removed in the training series
of each one of the five predictors.

The following strategy was used to build the predictor for the main B-cell tumor entities as
well as for ALL, MCL and DLBCL tumor subtypes (predictors 1, 2, 3 and 5). In the case of
CLL, we used another strategy, which is subsequently described.

1. For every class &,

i. Rank the CpGs according to the Mann-Whitney Utest p-value resulting
from the comparison of samples of class & against the samples of all
other classes.

ii. Define the signature of class kas the mean of the methylation values of
the top M, CpGs (or one minus the value for hypomethylated CpGs in
class ). In case of ties in the p-value ranking, prioritize the CpG with
higher mean DNA methylation change.

2. Train a support vector machine model with the signatures of the & classes, using
a linear kernel and optimizing the cost C by cross-validation. In the case of only
two classes (such as MCL or DLBCL, e.g. C1 vs C2, and ABC vs GCB
subtypes), the two signatures are redundant and only one is retained.

The number of CpGs included in the signature of each class in 1) ii, vector M={ My, ...,
Mgcg}, was chosen by 10-fold stratified cross-validation. Specifically, the above algorithm
was repeated at each fold where all combinations of possible M values were tested and the
values that maximized the balanced accuracy were selected. The tested values ranged from 1
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to a different quantity depending on the predictor (4 for the main entities, 5 for the ALL
subtypes, 20 for MCL and 20 for DLBCL).

For the classification of the three CLL subtypes (m-CLL, i-CLL, n-CLL), the described 5-
CpG classifierl®51 could not be applied as one CpG (cg09637172) is not present in the EPIC
array, and therefore, we reanalyzed the data to obtain a new predictor, using the following
steps:

1 Select the 50 CpGs with the lowest Mann-Whitney U test p-value for each
pairwise comparison between the three subtypes.

2. Apply the SVM-RFE algorithm 77 to the subset of CpGs selected in step 1.

3. Train a support vector machine model with the top M¢; ; CpGs of step 2, cost C,
and a linear kernel.

A similar cross-validation strategy as the previous algorithm was used to optimize the M,
and Cparameters. The tested values were Mg, = {1, 2, ..., 20} CpGs and C =

10{=3.72..... 3} cost. Extended Data Fig. 3d shows the balanced accuracy and sensitivities of
the best performing cost for each number of CpGs.

Finally, we used two strategies to estimate the accuracy of the five predictors: (1) with
nested cross-validation in the training series and (2) with a validation series. For the training
series, we used 10-fold stratified cross-validation, where the optimization of the Mand C
parameters was independently performed at each fold using an inner stratified cross-
validation step. For the validation series, we used the following data:

For ALL , we used 183 samples already included in the initial analysis (Fig. 1, 2)7 but not
used to construct any classifier nor in any of the other analyses of the manuscript.
Additionally, we downloaded the following DNA methylation data: GSE7658566 and
GSE69229%7. For MCL validations, we used DNA methylation data from 58 non-
overlapping MCL cases® (accession code EGAS00001004165). For CLL validation, we
collected 450k methylation data for 109 CLL samples from a previous study
11(EGAD00010000871), and 145 CLL with 450k data and 126 CLL with EPIC data kindly
provided by Dr. Thorsten Zenz and partially deposited in 78 (EGAD00010000948). Finally,
for DLBCL validation we generated DNA profiles with EPIC arrays.

To more accurately represent indetermination in newly obtained samples, not all cross-
validated training samples nor validation samples were assigned to an entity/subtype.
Specifically, we used the svm function of the 2071 R package to obtain a probability for
each entity/subtype in each one of the samples. Next, samples where the maximum
probability was below 50% or multiple entities/subtypes (including the true entity) had a
probability above 35% were considered unclassified.

In the case of MCL, the classification of the training series into C1 and C2 subtypes was
performed using a strategy that mirrored the previously described approach®. Specifically,
we first created a PCA space using all of the unfiltered methylation information in the
training samples, and identified that the two first components contained most of the
information related to the subtype. Then, these two components were used to fit a quadratic
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discriminant analysis (QDA) model that distinguished the two cell-of-origin subtypes in this
new space. Finally, the validation samples were projected into the training PCA space and
the fitted QDA model was applied to them. Only samples with either C1 or C2 probability
>85% were assigned to one of the subtypes. This strategy allowed us to define a cell-of-
origin subtype for the validation series using the methylation information as a whole.

Inter-patient DNA methylation heterogeneity

To analyze the variability of DNA methylation data among patients, we identify CpGs with
differential methylation in each patient individually. To do this, we compared data from each
single patient with the mean in HPC samples, and considered a DNA methylation change for
a given CpG when a difference =0.25 was reached. Next, to define all the DNA methylation
changes occurring in patients diagnosed with a specific B-cell tumor subtype, we selected all
CpGs meeting these two criteria; 1) in at least one patient of a specific B cell tumor subtype
showing an absolute methylation difference >0.25 as compared to HPC, and 2) all other
patients in the B cell tumor subtype show the same trend, i.e. towards hypomethylation or
hypermethylation.

Construction of the epiCMIT score (epigenetically-determined Cumulative MIToses)

To create the epiCMIT score, we selected all CpGs from 450k array of our entire DNA
methylation matrix of normal and neoplastic B-cells (n=1,595) located in inactive regions,
particularly in poised promoters (PoisProm, with H3K27me3, H3K4mel and H3M4me3
marks), in H3K27me3 regions, in H3K9me3 regions, and in low signal heterochromatin
(Het;LowsSign, absence of any of the six marks analyzed). We divided this set of CpGs into
two distinct sets, CpGs located in H3K27me3-repressed regions or PoisProm, and CpGs
located in H3K9me3-repressed regions or Het;Low;Sign heterochromatin. We next
performed differential DNA methylation analysis between normal B-cells with the lowest
and the high proliferative histories, namely HPC and bmPC (step 3, Extended Data Fig. 5a)
and we retained CpGs gaining DNA methylation in bmPC in H3K27me3 regions or
PoisProm, and CpGs losing DNA methylation in bmPC in H3K9me3 and Het;Low;Sign
heterochromatin. In addition, we imposed two key restrictions to these two sets of CpGs.
First, CpGs gaining and losing methylation during cell division must respectively show a
very low (<=0.1) and very high (>=0.9) methylation levels in in lowly divided cells, i.e.
HPCS. Second, we retained only those CpGs showing extensive modulation between the
lowly divided HPC and highly divided bmPC cells. This second condition was imposed to
maximize the differences in the DNA methylation values upon cell division. With all these
restrictions, we ended with 184 CpGs hypermethylated CpGs that were used to build the
epiCMIT-hyper score. Conversely, we retained hypomethylated 1,164 CpGs to construct the
epiCMIT-hypo mitotic score. These scores were generated using the following formulas:

Z%MDNA methyaltion epiCMIT — hyper CpGs

epiCMIT — hyper = 34
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DN A methylation epiCMIT — hypo CpGs
1164

1164
. 21
epiCMIT — hypo=1—

Finally, to construct the epiCMIT score, we evaluated per sample both epiCMIT-hyper and
epiCMIT-hypo scores, and selected the higher of the two:

epiCMIT = max{epiCMIT — hyper,epiCMIT — hypo} per sample

As the epiCMIT score was built with 450k array data, there are 84 CpGs that are not present
in the currently available EPIC array from Illumina (10 epiCMIT-hyper and 74 epiCMIT-
hypo). Nonetheless, we showed high correlations between epiCMIT scores calculated with
all the original CpGs with those exclusively present in both 450K and EPIC arrays (data not
shown).

Determination of epiTOC, MiAge, CIMP and PMDsoloWCGW mitotic clocks and the Horvath
chronological clock

To determine epiTOC3’, MiAge3?, CIMP’®, PMDsoloWCGW?38 and Horvath®® DNA
methylation clocks we used their underlying CpGs overlapping with those present in our
curated DNA methylation matrix. Specifically, the number of CpGs were the following: 377
out of the 385 epiTOC CpGs, 261 out of the 268 MiAge CpGs, 88 out of the 89 pan-cancer
CIMP CpGs’?, 5,595 out of the 6,214 PMDsoloWCGW CpGs and 351 out of the 353
Horvath CpGs. For the epiTOC and MiAge scores, we calculated them as previously
indicated 37:39, For CIMP score, we used a set of previously proposed CpGs’® and used the
same strategy than the epiCMIT-hyper. In the case of the PMDsoloWCGW mitotic clocks,
we applied the same strategy that we used for the epiCMIT-hypo score (explained in the
previous section). Finally, we used Horvath to predict age using R as previously reported °°.

Somatic mutations and mutational signature analysis in CLL

The somatic mutations found in the CLL samples used in this study were reported elsewhere
17 We considered driver alterations those reported as such in Puente et. al 2015 and Landau
et. al 2015 17:52, |n addition to this, a new recurrent driver mutation has been recently added
to CLL, namely the U1 spliceosomal RNA 3. We obtained the U1 mutational status for 318
CLL patients already published. For the remaining 172 CLL patients from our analyses, we
evaluated the U1 mutational status using rhAmp SNP Assay (Integrated DNA Technology)
as previously described®3. Next, the mutational signature analysis was performed following
a similar framework as the one described in Alexandrov et al*3€0. Briefly, de novo signature
extraction was performed using a hierarchical Dirichlet process (/dp R package, https://
github.com/nicolaroberts/hdp), and extracted signatures were matched to the recently
described list of mutational signatures 43 based on cosine similarity and the biological
knowledge of each mutational process. Signatures identified through this approach were
signature SBS1, SBS5, SBS8, SBS9, SBS17b, and SBS18. Finally, the contribution of each
of the previously identified signatures for each sample was measured using a fitting
approach (MutationalPatterns R package). To avoid signature bleeding between samples, we
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iteratively removed one signature after another and the least contributing signature was
censored if removal reduced the cosine similarity <0.005, with the exception of signature
SBS1 and SBS5, which were always included based on their reported presence in all normal
and tumor samples.

Gene Set Enrichments Analysis (GSEA)

In order to perform GSEA analysis in CLLs with different epiCMIT score, we took CLLs
samples separated by their cellular origin10-51 (epigenetic groups) above 85% percentile and
below 15% percentile of epiCMIT. I-CLL were excluded due to smaller sample size. We
performed differential gene expression analysis using /imma. We then used fgsea package to
perform GSEA analyses using log FC as summary statistic to rank genes. We downloaded
5,501 curated (C2) gene signatures from Molecular Signatures Database v7.0 https://
www.gsea-msigdb.org/gsea/index.jsp. We performed GSEA analysis with all these pathways
filtering those with less than 5 genes and more than 5,000. We used 10,000 permutations to
obtain p-values. We next selected 118 gene expression signatures related to cell proliferation
and MYC in an unbiased way. These 118 expression signatures were found in R by regular
expression matching with grep() R function using the following expression :
grep(“CELL_CYCLE]|prolifer|divijmitotic|_CYCLING|M_PHASE|_MYC_",
names(gene_expression_signatures_names)).

epiCMIT clinical associations

We performed univariate analysis of epiCMIT score for relapse-free survival (RFS), overall
survival (OS), and OS after relapse in ALL; OS and Time to First Treatment (TTT) for CLL
and OS for MCL using Kaplan Meyer curves with maxstat statistics to define groups with
high and low epiCMIT. The hazard ratios and their corresponding p-values are shown when
epiCMIT categorization was performed. Finally, epiCMIT was assessed in OS together with
ABC and GCB DLBCL transcriptomic subtypes 2°. The epiCMIT prognostic value was
assessed in presence of other well-established prognostic factors in all diseases with
multivariate cox regression models. In ALL, this includes including Hyperdiploid ALLS
(HeH), Others (including non-recurrent, undefined, <45chr,>67chr and iIAMP21), t(1;19),
t(12,21), dic(9;20), t(9;22) and 11g23/MLL. In MCL, we performed the multivariate Cox
regression model for OS with epiCMIT together with epigenetic groups C1 and C2 and with
age. Finally, in CLL we performed multivariate Cox regression models for TTT and OS with
epiCMIT together with age at sampling, epigenetic groups and the total number of driver
alterations considering mutations in both studies 17-52, We scaled all mitotic clocks when
comparing the prognostic value among them.

Finding CLL driver alterations associated with increased epiCMIT

We analyzed the association of each genetic alteration with epiCMIT in all CLL patients,
and in CLL patients belonging to each epigenetic subgroup separately. When evaluating all
CLLs together, we modelled epiCMIT score with each genetic alteration using linear
regression correcting by epigenetic subgroups. We used t-tests between the levels of
epiCMIT in mutated and unmutated patients for each genetic alteration within each
epigenetic subgroup. We derived point estimates and 95% confident intervals in both the
global analysis for all CLLs and within each epigenetic subgroup for all the tests performed
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(p-values were corrected using FDR). We finally grouped genetic alterations most
significantly associated with epiCMIT with pathways implicated in the pathogenesis of
CLL. Treated and untreated patients at the time of sampling were used to perform these
analyses.

Statistics and Reproducibility

Sample size and data exclusion criterion is extensively explained at section Quality control,
normalization, filtering and annotation of DNA methylation data. The experiments were not
randomized. The Investigators were not blinded to allocation during experiments and
outcome assessment.

Data availability

DNA methylation and gene expression data that support the findings of this study have been
deposited at the European Genome-phenome Archive (EGA) under accession number
EGAS00001004640. Previously published DNA methylation data re-analyzed in this study
can be found under accession codes: B cells, EGAS00001001196; ALL, GSE16368,
GSE47051, GSE7658515, GSE6922916; MCL, EGAS00001001637, EGAS00001004165;
CLL, EGAD00010000871, EGAD00010000948; MM, EGAS00001000841; /n vitro B-cell
differentiation model of naive B cells from human primary samples, GSE72498. Normalized
DNA methylation matrices used for all the analyses in this study are available at: http://
resources.idibaps.org/paper/the-proliferative-history-shapes-the-DNA-methylome-of-B-cell-
tumors-and-predicts-clinical-outcome. Published gene expression datasets can be found
under the accession codes: B cells, EGAS00001001197; ALL, GSE47051; MCL,
GSE36000; CLL, EGAS00000000092, EGAD00010000254; MM, GSE19784; In vitro B-
cell differentiation model of naive B cells from human primary samples, GSE72498. ChIP-
seq datasets that were re-analyzed here can be found under the accession codes: GSE109377
(NALM6 ALL cell line, n=1) and EGAS00001000326 (15 normal B cells donors, and 5
MCL, 7 CLL and 4 MM patients) available from Blueprint https://www.blueprint-
epigenome.eu/. Source data is available for this study. All other data supporting the findings
of this study are available from the corresponding author on reasonable request.

Code availability

The source code for the DNA methylation classifier of B-cell tumors entities and subtypes
and for the calculation of the epiCMIT mitotic clock can be found at https://github.com/
Duran-FerrerM/Pan-B-cell-methylome. All other source code supporting the findings of this
study are available from the corresponding author on reasonable request.
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Extended Data Fig. 1. Analysesrelated to sample selection and annotation of stably-methylated
CpGs

a, Principal component analysis and hierarchical clustering of synchronic unpurified/purified
DNA methylation profiles obtained with EPIC array from MCL and CLL patients. Colors
represent the same sample, with FCM-based purities highlighted in each sample. MCL,

mantle cell lymphoma. CLL, chronic lymphocytic leukemia.
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b, Correlations and Passing Bablock regression fits of gold-standard methods for tumor
purity prediction (FCM and genetic-based) against DNA methylation-based tumor purity
prediction for MCL and CLL patients in initial and validation series. Samples sizes are:
MCL initial series, n=32; MCL validation series, n=56; CLL cohort 1, n=109 and CLL
cohort 2, n=178 patients. Shaded area represents 95% confidence intervals. Pearson
correlation and derived p-values are also shown.

¢, Pearson correlations and Passing Bablock regression fits for gold-standard methods for
tumor purity predictions (FCM and genetic-based) against DNA methylation-based tumor
purity predictions in MM and DLBCL patients. Sample sizes are: MM, n=100 and DLBCL,
n=55 patients and are the same as in panel d. Shaded area represents 95% confidence
intervals. Pearson correlation and derived p-values are also shown.

d, Pan-B cell DNA methylation signature used to deconvolute DNA methylation data and
obtain B-cell tumor purities in B-cell tumors. The DNA methylation levels for the Pan-B-
cell DNA methylation signature is shown for microenvironmental cells as well as MM and
DLBCL. Bar plots representing DNA-methylation based predictions as well as gold
standard-based predictions for MM and DLBCL are represented on the top of the heatmaps.
e, Chromatin state genome segmentation with the CHMM software using the 6 histone
marks used in the whole study for normal B cells, MCL, CLL and MM primary cases as
well as for KARPAS-422 and SUDHL-5 DLBCL cells lines.

f, Genomic distribution of stably methylated and unmethylated CpGs in hormal and
neoplastic B cell. Barplots represent single data values.

g, Example gene showing stably unmethylated CpGs at promoters and stably methylated
CpGs at gene body in normal and neoplastic B cells. A total of 98 CpGs are shown.

h, Gene ontology analysis of genes showing both stably methylated and stably unmethylated
CpGs in normal and neoplastic B cells.
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Extended Data Fig. 2. Characterization of tumor-specific DNA methylation signatures
a, First 9 components of a Principal Component Analysis for normal and neoplastic B cells.

Samples sizes are the same as in Fig. 1a. The same sample size applies also for panel b, ¢
and d. Center line, box limits, whiskers and points represent the median, 25th and 75th
percentiles, 1.5x interquartile range and individual samples, respectively.

b, Percentages of de novo DNA methylation signatures over the total DNA methylome. All
de novo hyper- and hypomethylation from the five B-cell tumors analyzed are considered

together to derive each respective percentage.

¢, Heatmap showing B-cell tumor-specific hypermethylation and the number of CpGs
located at active regulatory regions (marked by H3K27ac). To calculate CpG enrichments in
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regulatory regions, the number of CpGs falling in regulatory regions were compared with
the same number of de novo CpGs 10,100 times randomly chosen from the DNA methylome
fraction with potential tumor-specific signatures falling in regulatory regions.

d, Distribution of mean methylation levels of CpGs from de novo B-cell tumor-specific
DNA methylation signatures across all normal and neoplastic B cell samples subtypes. The
number of samples used to calculate the means is shown in Fig. 1a and the number of CpGs
analyzed are those from Fig. 2b.

e, Genomic distribution for de novo DNA methylation changes in B-cell tumors. Barplots
represent single data values.

f, Gene expression percentile of TFs showing the most significant p-values and frequencies
for TFs binding site predictions (Methods) in de novo hypomethylation signatures in each B-
cell tumor from Fig. 2d. Sample sizes for gene expression analyses in tumor samples are the
same than in Fig. 4e.
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Extended Data Fig. 3. DNA methylation levels and analysis of the sensitivity of the epigenetic
classifier of B cell neoplasms.

a, DNA methylation levels of all CpGs from the pan-B-cell diagnostic algorithm in normal
and neoplastic B cells. Sample sizes are the training samples shown in Fig. 3b.

b, Estimated sensitivity according to the number of CpGs used in the pan-B-cell diagnostic
algorithm for the classification of an unknown B-cell tumor into ALL, MCL, CLL, DLBCL
or MM (first step of Fig. 3a, predictor 1). The number of CpGs selected for the predictor was
chosen by maximizing the highest balanced accuracy and is indicated with a red circle. This
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strategy was applied also in the remaining 4 predictors to classify B-cell tumor subtypes in
panels c, d, e and f, (second step of Fig. 3a). Each B-cell tumor is represented with different
shapes and colors.

¢, Estimated sensitivity according to the number of CpGs used in the pan-B-cell diagnostic
algorithm (predictor 2 of Fig. 3a) for the classification of ALL into the subtypes HeH,
11923/MLL, t(12;21), t(1;19), t(9;22) and dic(9;20) while incrementing the number of CpGs
(predictor 2 in Fig. 3a).

d, Estimated sensitivity according to the number of CpGs used in the pan-B-cell diagnostic
algorithm (predictor 3 of Fig. 3a) for the classification of MCL into the subtypes C1 or C2
while incrementing the number of CpGs (predictor 3 in Fig. 3a).

e, Estimated sensitivity according to the number of CpGs used in the pan-B-cell diagnostic
algorithm for the classification of CLL into the subtypes n-CLL, i-CLL or m-CLL while
incrementing the number of CpGs (predictor 4 in Fig. 3a).

f, Estimated sensitivity according to the number of CpGs used in the pan-B-cell diagnostic
algorithm for the classification of DLBCL into the subtypes ABC and GCB while
incrementing the number of CpGs (predictor 5 in Fig. 3a).
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Extended Data Fig. 4. Further characterization of patient-specific DNA methylation changes
a, Variability of DNA methylation changes measured by the interquartile range (IQR) in

normal and neoplastic B cells against the median number of DNA methylation changes per
each subtype. R and p-values were derived from linear modelling. Shaded area represents
95% confidence interval.

b, Correlations in all B cell tumors between B-cell independent DNA methylation changes
and B-cell related changes for hypermethylation (top) and hypomethylation (bottom)
changes. R and p-values were derived from linear models.
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¢, Number of B-cell related or B-cell independent hyperor hypomethylation in B-cell tumors
showing consistent patterns (Methods).

d, B-cell independent CpGs losing DNA methylation in B-cell tumors and the percentages
of each chromatin state in normal and neoplastic B-cells. The mean of percentages per
sample type is shown. The sample sizes are the same as in Fig. 4c and also apply for panel g.
e, The mean of 2,000 representative CpGs per each sample subtype from panel d is
represented.

f, Gene density distributed along the expression percentiles of genes associated with B-cell
independent CpGs losing DNA methylation at low signal heterochromatin in B-cell tumors.
Expressed genes (H3K36me3) are displayed at right as control. Means within each B-cell
subpopulation as well as B-cell tumors are represented.

g, B-cell independent CpGs gaining DNA methylation in B-cell tumors and the percentages
in each chromatin state in normal and neoplastic B-cells.

h , The mean of 2,000 representative CpGs per each sample subtype from panel g is
represented.

i, Gene density distributed along the expression percentiles of genes associated with B-cell
independent CpGs gaining DNA methylation at H3K27me3 regions in B-cell tumors.
Expressed genes (H3K36me3) are displayed at right as control. Means within each B-cell
subpopulation as well as B-cell tumors are represented. Sample size for DNA methylation
analyzes in panels a, b, ¢, eand h are the same as in Fig. 4a. Samples sizes for gene
expression analyses in panels f and i are the same as in Fig. 4e.
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Extended Data Fig. 5. Additional analyses performed to validate the epiCMIT
a, lllustrative scheme showing DNA methylation changes upon cell division and how they

relate to epiCMIT scores.

b, In vitro B-cell differentiation model used to experimentally validate the epiCMIT score.
Primary naive B cells are differentiated into plasma cells in 6 days. At day 0, primary human
B cells are incubated with Carboxyfluorescein succinimidyl ester (CFSE) and harvested with
activation and proliferation cocktails necessary for plasma cell differentiation. The epiCMIT
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was calculated at day O, day 4 and day 6 in B cells with different proliferative histories based
on CFSE dilution.

¢, The epiCMIT is correlated with total number of mutations detected by WGS in each CLL
epigenetic subtype. R and p-values are derived from linear modelling. 138 CLL patient
samples with WGS and DNA methylation data are shown (66 n-CLL, 18 i-CLL and 54 m-
CLL). The same sample size applies for panel g, f and g.

d, The epiCMIT is correlated with CLL genomic complexity measured by the total number
of driver alterations and thus with mutations with positive selection. Fitted linear regression
models and derived R and p-values are shown for each group. The sample size for each
number of driver alterations are: O drivers: n-CLL, n=2, i-CLL, n=5, m-CLL, n=44; 1 driver:
n-CLL, n=14, i-CLL, n=19, m-CLL, n=119; 2 drivers: n-CLL, n=37, i-CLL, n=25, m-CLL,
n=55; 3 drivers: n-CLL, n=38, i-CLL, n=12, m-CLL, n=28; 4 drivers: n-CLL, n=27, i-CLL,
n=4, m-CLL, n=12; 5 drivers: n-CLL, n=23, i-CLL, n=2, m-CLL, n=2; 6 drivers: n-CLL,
n=10, i-CLL, n=0, m-CLL, n=0; 7 drivers: n-CLL, n=7, i-CLL, n=2, m-CLL, n=0; 8 drivers:
n-CLL, n=1; 9 drivers: n-CLL, n=1; 10 drivers: n-CLL, n=1. For the box plots, center line,
box limits, whiskers and points represent the median, 25th and 75th percentiles, 1.5x
interquartile range and individual samples, respectively.

e, Mutational signatures found in CLL with available WGS. CLL subtypes are shown
separately.

f, The epiCMIT is correlated with the mitotic-like mutational signature SBS1. CLL samples
are divided in CLL epigenetic subgroups. R and p-values are derived from linear models.

0, The epiCMIT is correlated with the mitotic-like mutational signatures SBS9. CLL
samples are separated with the classical IGHV mutational status (98%). R and p-values are
shown for each respective linear model.

h, epiCMIT-hyper CpGs and epiCMIT-hypo mitotic clocks are compared with other hyper-
or hypomethylation based mitotic clocks as well as the total number of hyper- (rightmost
top) or hypomethylation (rightmost bottom) changes per sample since HPC stage. R from
linear models are shown. Samples sizes are the same as in Fig. 4a.

i, Overlap among the CpG used to build each mitotic clock. Barplots represent single data
values.

j, Performance of all mitotic clocks in the in vitro B-cell differentiation model from panel c.
The fraction of epiCMIT which gain methylation (epiCMIT-hyper) and the fraction that lose
DNA methylation (epiCMIT-hypo) were analyzed together with hyper- and
hypomethylation-based mitotic clocks, respectively. Biological independent sample sizes are
the same as in Fig. 5e. P-values are derived from two-sided t-tests and from biological
independent experiments. On the right, expression of genes containing any CpG of each
respective mitotic clock as well as genes containing CpGs in H3K36me3 regions are
depicted (n=14,598). The number of genes analyzed per each mitotic clock are: epiCMIT-
hyper, n=155; epiTOC, n=412; MiAge, n=298; CIMP, n=102; epiCMIT-hypo, n1,123;
PMDsoloWCGW, n=4053. For the box plot, center line, box limits, whiskers and points
represent the median, 25th and 75th percentiles, 1.5x interquartile range and individual
samples, respectively.
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Extended Data Fig. 6. Comparison between the epiCMIT mitotic clock and the Horvath aging

clock

a, Correlations among epiCMIT, age and Horvath-predicted age in normal and neoplastic B
cells. Samples sizes are: NBC, n=10 and MBC, n=9 donors; C1 MCL, n=40; C2 MCL,
n=17; n-CLL, n=159; i-CLL, n=69; m-CLL, n=260; GCB DLBCL, n=20 and ABC DLBCL,
n=28 patients. R and p-value are derived from linear models. Shaded areas represent 95%

confidence intervals.

b, epiCMIT and Horvath clocks do not have any CpG in common. CpGs of the Horvath
model are divided into positively associated with age (gain of methylation) and negatively
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associated with age (loss of methylation). In addition, they are further classified into B-cell
related or B-cell independent if they are extensively modulated or not during normal B-cell
differentiation. Barplots represent single data values.

¢, The CpGs used to build the epiCMIT and Horvath clock show distinct genomic locations.
Barplots represent single data values.

d, DNA methylation levels of the CpGs from the epiCMIT and Horvath clocks in normal
and neoplastic B cells. Sample sizes are the same as in Fig. 4a.

e, The CpGs associated with the epiCMIT and Horvath clocks are located in markedly
different chromatin states. Sample sizes are the same as in Fig. 4c.

f, Genes associated with epiCMIT and Horvath CpGs show distinct transcriptional states in
normal and neoplastic B cells. Gene probes shared across all normalized matrices from
normal and neoplastic B cells were retained and were the following: epiCMIT-hyper, n=60;
epiCMIT-hypo, n=327; Age positive B-cell related, n=44; Age positive B-cell independent,
n=118; Age negative B-cell related, n=49; Age negative B-cell independent, n=101. For the
box plot, center line, box limits, whiskers and points represent the median, 25th and 75th
percentiles, 1.5x interquartile range and individual samples, respectively. Sample size are the
same as in Fig. 4e.

Nat Cancer. Author manuscript; available in PMC 2021 June 01.



1duosnuepy Joyiny 1duosnuely Joyiny 1duosnue Joyiny

1duosnuely Joyiny

Duran-Ferrer et al.

Hazard ratio (95% CI) pvalues
epiCMIT n=569 079 o 2.1e-4
| Cytogenetic HeH Ref.
| goup  n=ie1 C .
Oth 1.7
n!IQS? - 0.029
1.19) 08 L X
“;‘222! < 0.726
H1221) 178
;:‘ e 3} o 0.026

Hazard ratio (95% CI)

a
ALL Relapse-free survival
b vene epiCMIT-low  weem epiCMIT-high
0.75
:.
£
2 o050
2
o
0.25
HR=0.8 (0.72-0.9)
pvalue=1.5e-4
0
0 2 a4 & & 10 12 14 16
Relapse (Years)
Number at risk
— 204 285 257 223 157 100 S1 18 7
- 275 246 203 177 121 90 49 22 6
C
Time to first treatment
M
IGHV status n‘;?é'%ﬁ Ref
Unmutated 163
n=170
WT
TP53 alt. (del + mut) rmddB Ref
Alteration
st 0.78
epiCMIT n=470 148
Age n=470 0.76
Num. driveralt.  n=470 156
o i m-CLL
Epigeneticcoo. Tt Ref
i~CLL 272
n=68
n=CLL 4,
n=153 =
n Events = 228 05
e

Vaus epICMIT-low e epiCMIT-high

Probaility

p-value = 0.024
1]

% Z 4 & ¥ W 12 1 1%

08 (Years)

HNumber at risk
— 25 13 10 3 5 3 1 1 Q
=k i 8111838
=== 8 8 6 5 4 2 1 g g

dic{9,20) 2.99 [a— A
n"\‘-l=15 ) »— 0.026

e 32 —a— 0.004
11g23MLL 4.23
igzan —a—6.2e5

nEvents=137 05 1 2 5 10

pvalues

0.11

0.357
35e5
1.4e-8

7.9e-11

28e5

4.4e-5

Hazard ratio (95% CI)

Page 34

TTT for CLL samples near diagnosis (30 months)
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Extended Data Fig. 7. Additional characterization of the clinical impact of the epiCMIT in B cell

tumors

a, Kaplan-Meier curves for relapse-free survival in ALL patients with low or high epiCMIT
according to the maxstat rank statistics-based cutoff. Hazard ratio and p-value for the
univariate Cox regression model are shown. A multivariate Cox regression model with
epiCMIT as continuous variable and ALL cytogenetic groups is shown on the right. Hazard
ratio for epiCMIT correspond to 0.1 increments.
b, epiCMIT preserves its prognostic value in multivariate Cox regressions for time to first
treatment in CLL patients whose samples were acquired at maximum 30 months after

diagnosis both in initial and validation series.
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¢, epiCMIT shows independent prognostic value from major prognostic variables in CLL
including IGHV mutational status and 7P53alterations (deletions and mutations) in
multivariate Cox regressions for time to first treatment (TTT).

d, Multivariate cox regression models in initial and validation CLL series for overall survival
with epiCMIT and important prognostic variables.

e, Kaplan-Meier curves for overall survival in GCB and ABC DLBCL patients with low or
high epiCMIT according to the maxstat rank statistics-based cutoff. A multivariate Cox
regression model with epiCMIT as continuous variable, the DLBCL subtype and age is
shown on the right. Hazard ratio for epiCMIT correspond to 0.1 increments. On the right,
univariate cox regression model for all mitotic clocks.
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Extended Data Fig. 8. Clinical impact of the epiCMIT as compared to other mitotic clocks
a, On the left, epiCMIT and hypermethylation-based mitotic clocks are highly correlated in

ALL, creating a collinearity phenomenon in multivariate cox regression models with
multiple mitotic clocks. On the right, multivariate Cox regression models with epiCMIT and
PMDsoloWCGW mitotic clocks and ALL cytogenetic subgroups for overall survival,
relapse-free survival and overall survival after relapse.

b, In CLL, epiCMIT shows superior prognostic value in multivariate cox models for time to
first treatment than all the other mitotic clocks in both initial and validation series.
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¢, In MCL, epiCMIT shows an overall superior prognostic value in multivariate cox models
for overall survival in both initial series (with C1 and C2 MCL subtypes) and in the
validation series, which only contain C1 MCL subtypes. In the initial series, MCL subtypes
with different cellular origin were not introduced in multivariate Cox regression models due
to few events, and thus the epiCMIT of each MCL patient was centered according to its
cellular origin (C1 or C2) to account for normal B-cell development epiCMIT (Fig. 6a).
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a, Oncoprint showing all genetic driver alterations considered in the whole CLL initial series
composed by 490 CLL patient samples grouped by epigenetic subtypes and ordered
according to increasing levels of epiCMIT (from left to right within each epigenetic
subgroup). Other clinico-biological features including MBL or CLL, IGHYV status, Age,
Binet stage, epiCMIT subgroups based on maxstat rank statistic, need for treatment and
patient status are shown. Distinct genetic driver alterations are depicted with different colors
and shapes. The percentage of mutated patients and number of mutated patients for each
alteration is shown at right.

b, Driver genetic alterations without clear associations with epiCMIT. Analyses were done
in the whole cohort as well as within each epigenetic subgroup. Point estimates with 95%
confidence intervals were derived in the whole cohort using linear modelling between
epiCMIT and alterations adjusted for CLL subtypes, and with two-sided t-tests within CLL
subtypes. Point estimates then represent the coefficient of each respective alteration in each
corresponding linear model (whole cohort analysis) or the difference between means (CLL
subtypes analysis). Point estimates are color-coded according to FDR correction. Treated
and untreated patients at the moment of sampling were considered for these analyses.
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Fig. 1|. Experimental design and characterization of stably methylated regions.
a, Experimental design, including normal B cell subpopulations, B cell tumors under study,

source of the samples and number of patient samples included in the study with tumor cell
content greater than 60%. HPC, hematopoietic precursor cells; pre-B, precursor B-cell and
immature B cells; NBC, naive B cells; GC, germinal center B cells; MBC, memory B cells;
tPC, tonsillar plasma cells; bmPC, bone-marrow plasma cells; ALL, acute lymphoblastic
leukemia; MCL, mantle cell lymphoma; CLL, chronic lymphocytic leukemia; DLBCL,
Diffuse large B cell lymphoma; MM, multiple myeloma; BM, bone marrow; PB, peripheral
blood; LN, lymph node.

b, Different levels of DNA methylation variability addressed in the study.

¢, Percentage of CpGs whose methylation is stable in normal and neoplastic B cells, or
modulated in normal B cells. Percentages are calculated over the total number of CpGs
analyzed.

d, Heatmaps showing stably methylated CpGs (top) and stably demethylated CpGs (bottom)
in normal and neoplastic B cell.

e, Chromatin state enrichments for stably un/methylated CpGs in normal and neoplastic B
cells. All CpGs analyzed were used as background. ActProm, Active promoter; WkProm,
Weak promoter; StrEnh1, Strong enhancer 1 (promoter-related); StrEnh2, Strong enhancer
2; WKEnh, Weak enhancer; TxnTrans, Transcription transition; TxnElong, Transcription
elongation; WkTxn, Weak transcription; PoisProm, Poised promoter; H3K27me3,
Polycomb-repressed region; H3K9me3, H3K9me3 heterochromatin; Het;LowSign,
Het;LowsSign heterochtomatin.

f, Overlap between the target genes of the stably methylated and unmethylated CpGs.

g, Gene expression percentiles in normal and neoplastic B cells of genes showing stable
hyper- and hypomethylation.
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b, Number of de novo DNA methylation changes in each B-cell tumor entity. Percentages
are calculated over the total of 437,182 CpG analyzed. Barplots represent single data values.
¢, Heatmap showing de novo B-cell tumor-specific hypomethylation and the number of

CpGs falling at active regulatory regions marked by H3K27ac.

d, Enrichment of binding sites of transcription factors expressed in B-cell tumors and in
regions with de novo hypomethylated CpGs located in active regulatory elements from c.
e, Differential gene expression percentiles for genes showing B-cell tumor-specific

hypomethylation in active regulatory regions.
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Fig. 3|. Development and validation of a DNA methylation-based diagnostic classifier of different
subtypes of B cell neoplasms.

a Heatmap showing DNA methylation values of the CpGs used for the two-step pan B-cell
cancer classifier. The training samples from b are represented.

b, Accuracy for the pan-B-cell cancer diagnostic classifier composed by the 5 predictors in
panel a in both training and validation series. Sensitivity is represented as black circles or
triangles for training or validation series, respectively. The percentage of cases without a
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clear prediction (unclassified) is represented in grey. The total number of samples used for
both training and validation is shown at bottom.
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Fig. 4|. Identification and characterization of patient-specific DNA methylation changes.
a, Number of DNA methylation changes in individual patients for normal and neoplastic B

cells as compared to the hematopoietic precursor cell stage. Total number of DNA
methylation changes, hypomethylation changes and hypermethylation changes are depicted
at outer, middle and inner tracks, respectively. Changes are further classified and color-
coded as B-cell related or B-cell independent. Sample sizes are: HPC, n=6; pre-B cells, n=
16; NBC, n=15; GC, n=9; tPC, n=8; MBC, n=10 and bmPC, n=3 donors; HeH ALL, n=168;
11g23/MLL ALL, n=26; t(12;21) ALL, n=152; t(1;19) ALL, n=22; t(9;22) ALL, n=18;
dic(9;20) ALL, n=17; C1 MCL, n=56; C2 MCL, n=18; n-CLL, n=161; i-CLL, n=69; m-
CLL, n=260; GCB DLBCL, n=19; ABC DLBCL, n=27; UC DLBCL, n=5 and MM, n=100
patients. The same sample size is applied to panels b, d and g.

b, Correlation between B-cell related changes and B-cell independent changes in normal and
neoplastic B-cells. R derived from linear models are shown.
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¢, B-cell related CpGs losing DNA methylation in B-cell tumors and the percentages in each
chromatin state in normal and neoplastic B-cells. The mean of percentages per sample type
is shown. Sample sizes are: NBC, n=6; GC, n=3; MBC, n=3 and tPC, n=3 donors; MCL,
n=5; CLL, n=7 and MM, n=4 patients. The same sample size applies for panel f.

d, The mean of 2,000 representative CpGs per each sample subtype from panel c is
represented.

e, Gene density distributed along the expression percentiles of genes associated with B-cell
related CpGs losing DNA methylation in B-cell tumors at low signal heterochromatin.
Expressed genes showing the H3K36me3 mark are displayed at right as a positive control.
The mean for each sample type is represented. Lines represent 0, 25, 50, 75 and 100%
percentiles.

f, B-cell related CpGs gaining DNA methylation in B-cell tumors and the percentages in
each chromatin state in normal and neoplastic B-cells. The mean of percentages per sample
type is shown.

0, The mean of 2,000 representative CpGs per each sample subtype from panel f is
represented.

h, Gene density distributed along the expression percentiles of genes associated with B-cell
related CpGs gaining DNA methylation in B-cell tumors in regions containing the
H3K27me3 mark. Expressed genes with the H3K36me3 mark are displayed at right as a
positive control. Means within each B-cell subpopulation as well as B-cell tumors are
represented. Sample subtypes from panels d, e, g and h are color-coded as in panel b.
Sample sizes for gene expression analyses in panels eand h are: HPC, n=3; pre-B cells, n=7;
NBC, n=10; GC, n=11 tPC, n=5 donors; MBC, n=5 and bmPC, n=1 donors; HeH ALL,
n=18; 11923/MLL ALL, n=5, t(12;21) ALL, n=16, t(1;19) ALL, n=6, t(9;22) ALL, n=5,
dic(9;20) ALL, n=6; C1 MCL, n=10; C2 MCL, n=5; n-CLL, n=142, i-CLL, n=64; m-CLL,
n=249; GCB DLBCL, n=17, UC DLBCL, n=11, ABC DLBCL, n=15 and MM=328
patients.
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Fig. 5|. Development and validation of the epiCMIT.
a, Steps to construct the epiCMIT-hyper, epiCMIT-hypo and epiCMIT mitotic clocks.

epiCMIT, epigenetically-determined Cumulative MIToses.
b, CpGs constituting the epiCMIT-hyper (184 CpGs) and epiCMIT-hypo (1,164 CpGs)
mitotic clocks.
¢, Correlation between the epiCMIT-hyper and the epiCMIT-hypo in normal and neoplastic
B cells. R and p-values are derived from linear models.
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d, Box plot showing the distribution of epiCMIT values in normal and neoplastic B cells.
Center line, box limits, whiskers and points represent the median, 25th and 75th percentiles,
1.5x interquartile range and individual samples, respectively.

e, Experimental validation of epiCMIT score with an in vitro B-cell differentiation model of
primary human naive B cells into plasma cells. The epiCMIT was calculated at day 0, day 4
and day 6 in B cells with distinct proliferative histories based on CFSE dilution. Sample
sizes are: NBC-PB, n=5; CFSE-high at day 4, n=6; CFSE-low at day 4, n=3; P3 cells at day
6, n=3; P2 cells at day 6, n=3 and P1 cells at day 6, n=8. Each dot within each category is
derived from a different donor, and thus represent biologically independent samples. P-
values are derived from two-sided t-tests. On the right, gene expression of genes containing
CpGs belonging to epiCMIT. The number of genes containing epiCMIT genes analyzed is
n=1,278, and genes with CpGs mapping at H3K36me3 are n=14,598. For the box plots,
center line, box limits, whiskers and points represent the median, 25th and 75th percentiles,
1.5x interquartile range and individual samples, respectively.

f, piCMIT correlates with the mitotic-like mutational signature SBS5 in CLL. R and p-
values are derived from linear models. 138 CLL patients with WGS and DNA methylation
data are shown. Sample sizes for CLL subtypes are: n-CLL, n=66; i-CLL, n=18 and m-CLL,
n=54 patients.

0, epiCMIT is associated with high Ki67 staining in C1 MCL cases. Number of cases are
n=8 and n=12 for high and intermediate Ki67 values. Two-sided t-test was used to assess
statistical significance. For the box plot, center line, box limits, whiskers and points
represent the median, 25th and 75th percentiles, 1.5x interquartile range and individual
samples, respectively.

h, Gene set enrichment analysis (GSEA) showing that epiCMIT is associated with gene
expression signatures related to cell proliferation and MY C activity in CLL. 142 n-CLL
were analyzed, and 22 n-CLL samples with low and high epiCMIT are shown (15 and 85%
percentiles, respectively). At top, z-score for each gene is represented. At bottom, some
representative gene expression signatures enrichments are shown.

i, Correlation between the epiCMIT and previously reported mitotic clocks, including
epiTOC, MiAge and PMDsoloWCGW, the pan-cancer CIMP, and the total number of DNA
methylation changes accumulated since HPC stage in each patient. R’s correspond to linear
regression models. The same sample for panels b, ¢, d and i are the same than in Fig. 4a.
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Fig. 6. Clinical impact of theepiCMIT isB-cell tumors.
a, The epiCMIT in neoplastic B cells include the proliferative history associated with normal

B-cell development and with malignant transformation and progression (blue and red
components of the epiCMIT bar, respectively). B-cell tumors derive from different
maturation stages, and thus they contain different normal B-cell baseline epiCMIT. Most of
the B-cell related DNA methylation changes occurring in B-cell tumors relate to cell
division.
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b, epiCMIT evolves during disease progression. epiCMIT is lower in precursor conditions
such as MGUS (n=13 patients) and MBL (n=53 patients) as compared to their respective
cancer conditions CLL (n=437 patients) and MM (n=100 patients), as well as in paired CLL
samples from diagnosis to progression (n=9 patients), and trios of ALL patients at diagnosis
and first relapse (n=23 patients) and second relapse (n=5 patients). P-values were obtained
from two-sided t-test, and paired t-test in the case of paired samples. For the box plots,
center line, box limits, whiskers and points represent the median, 25th and 75th percentiles,
1.5x interquartile range and individual samples, respectively.

¢, d Kaplan-Meier curves for ¢ overall survival (OS) and d OS after relapse in ALL patients
with low or high epiCMIT according to the maxstat rank statistics-based cutoff. Hazard ratio
and p-value for the univariate Cox regression models are shown on the left panels.
Multivariate Cox regression models with epiCMIT as continuous variable and ALL
cytogenetic groups are shown on the right. Hazard ratio for epiCMIT correspond to 0.1
increments, and also in panels e, f gand h.

e,, Kaplan-Meier curves for CLL epigenetic groups based on different cellular origin divided
in low and high epiCMIT according to the maxstat rank statistics-based cutoff. A
multivariate Cox regression model for time to first treatment with epiCMIT as continue
variable together with age, number of driver alterations and epigenetic groups based on
different cellular origin is shown on the right. The results obtained with the independent
validation series is shown in panel f.

0, Kaplan-Meier curves for MCL epigenetic groups based on different cellular origin divided
in low and high epiCMIT according to the maxstat rank statistics-based cutoff. A
multivariate Cox regression model for OS with epiCMIT as continuous variable together
with epigenetic groups and age is shown on the right. Validation series for C1 MCL is shown
in panel h.
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Fig. 7 |. Association between the epiCM I T and genetic driver alterationsin CLL.
a, lllustrative scheme to represent which potential genetic driver alterations may confer a

higher proliferative capacity to CLL cells.

b, Analysis of the association between the epiCMIT levels and the presence of specific
driver genes grouped by signaling pathways. Point estimates with 95% confidence intervals
were derived in the whole cohort using linear modelling between epiCMIT and alterations
adjusted for CLL subtypes, and with two-sided t-tests within CLL subtypes. Point estimates
represent the coefficient of each respective alteration in each corresponding linear model in
whole cohort analysis, and the difference between the mean of CLL patients with and
without each corresponding alteration for the analysis within each CLL subtypes. Point
estimates are color-coded according to FDR correction. The Oncoprint shows genetic driver
alterations significantly associated with higher epiCMIT with CLL epigenetic groups shown
separately. Other clinicobiological features including MBL or CLL, IGHV status, Age, Binet
stage, epiCMIT subgroups based on maxstat rank statistic cutoff, need for treatment and
patient status are shown. Cases are ordered within each CLL subgroup from lower to higher
epiCMIT values. Genetic driver alterations are depicted with different colors and shapes
depending of the alteration type. Number of mutated patients as well as their percentage
over the whole cohort is shown on the right. The whole CLL initial series was used for these
analyses and is represented (n=490 patients).
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