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Abstract

We report here a mild, safe, and user-friendly bromine radical catalysis system that enables 

efficient [3 + 2] cycloaddition of diversely substituted vinyl- and ethynylcyclopropanes with a 

broad range of alkenes, including drug-like molecules and pharmaceuticals. Key to the success is 

the use of photosensitizing triplet-state β-fragmentation of a judiciously selected precatalyst, 

cinnamyl bromide, to generate bromine radicals in a controlled manner using parts per million-

level photocatalyst (i.e., 4CzIPN) loading.
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Excited-state molecules, compared to those of the ground state, possess distinct electronic 

configurations, which alter the spin-multiplicity and bond strength, thus exhibiting unique 

chemical properties and reactivity.1 Although direct photoexcitation is straightforward to 

access excited-state reactivity, the majority of organic molecules require ultraviolet (UV) 

light irradiation and quartz reaction vessels that challenge practicality, selectivity, and 

functional group tolerance.2 Recently, visible-light photocatalysis has emerged as a 

sustainable and powerful tool to access excited-state reactivity under mild conditions, 
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enabling numerous bond-forming reactions.3 Most examples have utilized single electron-

transfer (ET) mechanisms, that is, photoredox catalysis,4 while transformations proceeding 

through energy transfer (EnT) catalysis, that is, photosensitization,5 are relatively 

underdeveloped. EnT catalysis is unique in that it largely relies on the relative triplet 

energies of the photocatalyst (PC) and the substrates. Upon photosensitization, the partial 

diradical character of a substrate may significantly lower the kinetic barriers toward 

otherwise disfavored transformations, such as [2 + 2] photocycloadditions,6 

photoisomerization of alkenes,7 and others.8

For billions of years nature has utilized EnT to convert solar energy into chemical energy 

(Figure 1a).9 This synergy has inspired synthetic chemists to develop excited-state 

organometallic catalysis via photosensitization as a novel activation pathway.10,11 A 

paradigm of such catalysis is triplet excited-state NiII complex-catalyzed C–C and C–X (X = 

O, N) cross coupling reactions, (Figure 1b).11 Another elegant example employed two-

center photocatalysis for the generation and trapping of (hetero)aryl radicals.12 Specifically, 

Ru(bpy)2Cl2 was used to absorb visible light and transfer the energy to pyrene, enabling the 

efficient single-electron reduction of (hetero)aryl halides and triflates (Figure 1c). Although 

the concept of photosensitization-initiated catalysis has been established as a robust strategy 

with great synthetic potential, the excited-state activation mode and further application in 

discovering valuable and unique bond-forming reactions are still in their infancy.

Heteroatom-centered radicals, for example, bromine ity.13 One of the intriguing features of 

the bromine radical is that it can reversibly add to carbon–carbon π-bonds (via addition and 

elimination).14 Exploiting this reversibility, we envisioned a bromine radical catalysis 

system for the activation of alkenes or alkynes. To the best of our knowledge, such catalysis 

still remains unknown. The immediate challenges to realize this bromine radical catalysis is 

the need for mild and controlled generation of bromine radicals. Two classical strategies to 

deliver a bromine radical includes (i) photolysis of molecular bromine (Br2), a highly toxic, 

corrosive, and volatile liquid,15 and (ii) thermolysis of N-bromosuccinimide (NBS), mean 

while generating reactive succinimide radicals that can abstract hydrogen atoms from weak 

C–H bonds (e.g., allylic C–H bonds).16 The resulting carbon radical, after hydrogen atom 

abstraction (HAT), may terminate the bromine radical. In light of the [2 + 2] 

photocycloaddition of styrene derivatives,8a we hypothesized that, upon photosensitization, 

the partial diradical character of an excited-state styrene derivative, for example, cinnamyl 

bromide, would allow β-fragmentation to liberate a bromine radical that may be intercepted 

for catalysis (Figure 1d).17

[3 + 2] cycloaddition of vinyl cyclopropanes and alkenes is a typical reaction to evaluate the 

addition/elimination radical replay reactivity. It is important to note that such a cycloaddition 

has been well-established through classical thiyl18 and tin19 radical catalysis. However, 

several limitations still remain. First, commonly used precursors of tin or thiyl radicals are 

highly toxic and smelly, including tin hydride, thiols, or disulfides. Second, harsh conditions 

for radical initiation, such as high temperature or UV light irradiation, negatively impacts 

practicality. Here, we report a method for mildly controlling bromine radicals through parts 

per million (ppm) level EnT photocatalysis, which enables efficient cycloaddition of vinyl- 

and ethynylcyclopropane and alkenes with excellent functional group tolerance.
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Initial hypothesis validation began with investigation of the reaction between 1,1-

dimethoxycarboxyl-2-vinylcyclopropane (1) and styrene as the substrates in dimethyl 

sulfoxide (DMSO), and 34 W blue light-emitting diode (LED) as the light source (Table 1). 

Inspired by MacMillan’s photoredox strategy to form bromine radicals,20 catalyst 

combinations of 4 with various bromide salts in different solvents were evaluated (Table S1). 

Unfortunately, none of these experiments resulted in any conversion after 12 h. We then 

turned our attention to the strategy of photosensitization to generate bromine radicals. 

Because of the possibility of recombination of the bromine and carbon radicals, the use of 

sub-stoichiometric quantitites of 3 should favor high conversion. Gratifyingly, the [3 + 2] 

cycloaddition of 1 (1.0 equiv) and styrene (2.0 equiv) proceeded in the presence of 4 (0.5 

mol %) and 3 (2.0 mmol %) to yield the cyclopentane product 2 in 95% NMR yield (Table 

1, entry 1). The subsequent examination of popular photocatalysts revealed a correlation 

between reaction efficiency and the PCs triplet energy (ET). More specifically, reactions 

utilizing PCs with higher ET resulted in higher yields, which is consistent with the 

photoinduced EnT mechanism (entries 1, 2, and 4). The donor–acceptor fluorophore 

4CzIPN (7)21 provides comparable yield to the precious iridium-based photocatalyst 4. We 

chose 7 for further optimization. Importantly, no conversion was observed in the absence of 

light, PC, or 3 (entries 6–8). Moreover, attempts on lower catalyst loadings were successful 

such that 0.005 mol % (50 ppm) of 7 and 1.0 mol % of 3 enabled the formation of 2, as a 

70:30 (trans/cis) mixture of diastereomers, in 88% isolated yield (entry 10), highlighting the 

robustness of this photocatalytic system.

With optimal conditions in hand, we investigated the substrate scope (Table 2). Generally, a 

broad range of vinylcyclopropanes and alkenes is amenable to this protocol, affording 

vinylcyclopentane products in moderate to excellent yields and with distereomeric ratios (dr) 

ranging from 50:50 to 95:5. Reactions of 1 with styrenes bearing substituents on the phenyl 

ring or at α-position, including alkyl and aryl groups, proceed well to give products 8–15 in 

good to excellent yields (70–96% yield). Notably, boric acid is tolerated (13, 84% yield after 

a subsequent reaction with pinacol), providing opportunities for late-stage functionalization 

through cross-coupling reactions. 2-Vinylpyridine and 1H-indene readily participate in this 

transformation (16, 48% yield; 17, 91% yield). Electron-rich alkenes also engage in 

reactivity to afford products (18–20, 32–77% yield). It is noteworthy that the cycloaddition 

of 1 with N-vinylpyrrolidone exhibited excellent diastereoselectivity (dr = 95:5). With a 

diverse set of electron deficient alkenes, we demonstrate excellent functional group tolerance 

of fluorine, epoxide, ketone, carboxylic acid, aldehyde, and nitrile (21–31, 58–90% yield). 

Cycloadditions of diene and enyne substrates afford corresponding products in moderate 

yields (32, 51% yield; 33, 50% yield). Although a higher loading of 7 (500 ppm) was used, 

good yields were maintained across a range of unactivated alkenes (34–38, 58–72% yield). 

In the reaction of (−)-β-pinene, the bridged bicyclic motif is retained (37), suggesting that 

the ring-forming step in this cycloaddition is fast.

To demonstrate the utility of this new protocol, we selected several complex molecules of 

diverse biological activities for late-stage functionalization. 4-Vinylbenzylated theophylline, 

a phosphodiesterase inhibitor,22 and uridine, one of the standard nucleosides, were efficient 

substrates (39–40, 73–86% yield). Because of a solubility issue in DMSO, an estrone 

derivative affords product 41 in only moderate yield (55%). Aspartame, a dipeptide 
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sweetener, is converted into 42 in 81% yield. Gratifyingly, this [3 + 2] cycloaddition is 

effective for 4-vinyl benzoylated desloratadine (43, 74% yield), a popular tricyclic 

antihistamine.

We next explored the vinylcyclopropane scope (Table 2b). Diverse substituents on either the 

malonate motif (44–46, 82–93% yield), vinyl group (53–54, 79–81% yield), or cyclopropane 

scaffold (55, 59% yield) are tolerated. This cycloaddition is also amenable to a range of 

electron-deficient patterns bearing various functionalities, such as carboxylic acid (47, 92% 

yield), amide (49, 93% yield), phosphonate (50, 86% yield), alcohol (57, 86% yield), and 

carbamate (59, 90% yield), delivering corresponding products in good to excellent yield 

(47–52, 56–59, 62–93% yield). Reaction of a substrate containing a hydrophobic cholesterol 

motif is challenging in DMSO but provides 60 in 58% yield. Vinylcyclopropanes bearing 

tethered poly(dimethylsiloxane) (PDMS) or poly-(ethylene glycol) (PEG) efficiently react 

with methyl methacrylate (MMA) to afford products 61 and 62 in 77% and 75% yield, 

respectively. Moreover, well-designed substrates with pendant alkenyl functionality possibly 

engage in intramolecular reactivity to access advanced bicyclic scaffolds. This concept is 

demonstrated in the successful synthesis of γ- and δ-lactones 63 (43% yield) and 64 (72% 

yield).

For the reaction mechanism, a Stern–Volmer quenching experiment reveals the feasible 

interaction between 7 and 3 (Figure 2d). However, the single-electron oxidation pathway to 

generate bromine radicals is thermodynamically unfavorable ([E1/2
red(7*/7•−)] = +1.37 vs 

standard calomel electrode (SCE), [E 1/2
OX (3/3•+)] = 2.01 V vs SCE, see Figure S5), 

suggesting that previously proposed photosensitization via EnT is likely the dominant 

pathway. Several control experiments were performed to gain insight into this reaction 

mechanism. First, radical trapping using (2,2,6,6-tetramethylpiperidin-1-yl)oxyl (TEMPO) 

supports the formation of cinnamyl carbon radical (Figure 2a). However, the bromine 

radical-TEMPO adduct was not detected, presumably due to stability issues. Second, 

reactivity of other precatalysts, such as NBS and Br2, was investigated (Figure 2b). 

Photosensitization of NBS or direct photolysis of Br2 provides similar catalytic reactivity, 

but in much lower yields (41% and 16% yield, respectively), evidencing the key role of 

bromine radical in this transformation. Third, epimerization of 66 under optimal conditions 

strongly supports the radical mechanism (Figure 2c). Furthermore, temporal on/off control 

on the reaction (Figure 2e) showcases the light-controlled feature of this bromine radical 

catalysis. Accordingly, we proposed a catalytic cycle as shown in Figure 2f. Upon visible 

light irradiation, PC 7 is capable of sensitizing triplet-state fragmentation of 3 to release a 

bromine radical. Addition of the bromine radical to the vinyl group of 1 gives a transient 

radical species I, which undergoes a fast but reversible ring-opening process to furnish 

intermediate II. A subsequent radical addition of II to alkenes, followed by a ring-closure 

reaction, affords intermediate IV. In this step, the spin center shifts to the position for β-

elimination, giving the final product, meanwhile regenerating the bromine radical to enter 

into further catalytic cycles. Efficient radical–radical coupling of bromine radical and 

cinnamyl carbon radical leads to the dormant precatalyst (3), which is evidenced by the 

high-yielding recovery of 3 in TEMPO trapping experiment (81%, Figure 2b). Possibly, Br2, 

formed through recombination of two bromine radicals, may be another dormant species 

within this photosystem.
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Lastly, we examined the performance of bromine radicals in the activation of C–C triple 

bonds. Under optimal conditions, in situ-generated bromine radicals add to alkyne group of 

ethynylcyclopropane 67, followed by a similar ring-opening reaction, to give the key allenyl 

intermediate V (eq 1). Trapping of V with methacrylates successfully affords 

ethynylcyclopentanes 68 and 69 in 66% and 48% yield, respectively. Continued efforts to 

functionalize more challenging molecules (such as alkanes via HAT) utilizing this mild 

bromine radical catalysis are underway.

(1)
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Figure 1. 
Photosensitization-Initiated Excited-State Catalysis
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Figure 2. 
Mechanistic studies. (a) TEMPO trapping experiment. (b) Examination of alternative 

precatalysts. (c) Radical epimerization experiment. (d) Stern–Volmer quenching experiment. 

(e) “On/off” experiment and (f) proposed catalytic cycle.
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Table 1.

Optimization of Conditions for Visible Light-Gated Bromine Radical-Catalyzed [3 + 2] of Vinylcyclopropane 

1 and Styrene
a

entry PC ET (kcal/mol) [Br] yield
b
 (%)

1 4 61 3 95

2 5 49 3 11

3 6 55 3 0

4 7 58 3 93

5
c 7 58 3 0

6 – – 3 0

7 7 58 – 0

8
d,e 7 58 3 93

9
d,f 7 58 3 92(88)

g

10
d,h 7 58 3 30

a
All reactions were Cycloaddition performed on 0.2 mmol scale. Regardless of reaction conditions, dr was 70:30.

b
Determined by 1H NMR using trimethoxylbenzene as an internal standard.

c
No light.

d
1.0 mol % 3 was used.

e
0.1 mol % 4CzIPN was used.

f
50 ppm 4CzIPN was used.

g
Isolated yield.

h
10 ppm 4CzIPN was used.
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