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Abstract

Background. Glioblastoma is the most common and aggressive type of primary brain tumor, as most patients
succumb to the disease less than two years after diagnosis. Critically, studies demonstrate that glioma recruits
surrounding blood vessels, while some work suggests that tumor stem cells themselves directly differentiate into
endothelial cells, yet the molecular and cellular dynamics of the endothelium in glioma are poorly characterized.
The goal of this study was to establish molecular and morphological benchmarks for tumor associated vessels
(TAVs) and tumor derived endothelial cells (TDECs) during glioblastoma progression.

Methods. Using /n-Utero Electroporation and CRISPR/Cas9 genome engineering to generate a native, immuno-
competent mouse model of glioma, we characterized vascular-tumor dynamics in three dimensions during tumor
progression. We employed bulk and single-cell RNA-Sequencing to elucidate the relationship between TAVs and
TDECs. We confirmed our findings in a patient derived orthotopic xenograft (PDOX) model.

Results. Using a mouse model of glioma, we identified progressive alteration of vessel function and morphogen-
esis over time. We also showed in our mouse model thatTDECs are a rare subpopulation that contributes to vessels
within the tumor, albeit to a limited degree. Furthermore, transcriptional profiling demonstrates that bothTAVs and
TDECs are molecularly distinct, and both populations feature extensive molecular heterogeneity. Finally, the dis-
tinct molecular signatures of these heterogeneous populations are also present in human glioma.

Conclusions. Our findings show extensive endothelial heterogeneity within the tumor and tumor microenviron-
ment and provide insights into the diverse cellular and molecular mechanisms that drive glioma vascularization
and angiogenesis during tumorigenesis.

Key Points
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Importance of the Study

Excessive angiogenesis and altered vessel function, both
surrounding and within a tumor, are key diagnostic fea-
turesin glioma. However, to date anti-angiogenic therapies
have largely failed to improve patient outcomes in glioma,
suggesting a deeper understanding of vessel dynamics
during tumorigenesis is warranted. Here, using a combina-
tion of 3D imaging and bulk and single-cell transcriptional
profiling, we defined the structural, cellular, and molecular
characteristics of tumor-associated vessels (TAVs) and

Glioblastoma (GBM) and high-grade glioma (HGG) repre-
sent a lethal classification of brain tumors characterized
by a highly invasive and angiogenic nature. The extensive
vascularization of GBM presents a significant hurdle to
treating these tumors, as poorly remodeled and angiogenic
vessels are considered refractory to chemotherapy and
likely contribute to increased patient mortality.' To date,
therapies targeting this “angiogenic switch” (eg, Avastin/
bevacizumab) have failed to provide substantial clinical
benefit in terms of overall patient survival.*® Factors which
lead to this adaptive resistance to anti-angiogenic therapy
include utilizing alternative pathways to sustain tumor
growth,37-° vasculogenic mimicry, tumor stem cell trans-
differentiation into endothelium,’-'2 alterations in blood
brain barrier (BBB) integrity, and the underlying intratumor
cellular heterogeneity of GBM.'3'* While many of these
factors have been studied previously, whether morpho-
logical and cellular diversity exists in tumor-associated or
tumor-derived endothelial populations, and if so what the
contribution of this diversity is to tumor progression, re-
mains unclear.’%'2 Using an endogenous mouse model of
glioma,’ we characterized tumor-associated- vessels (TAVs)
and tumor-derived endothelial-cell (TDEC) populations,
finding that these two endothelial cell populations are mo-
lecularly distinct. Further examination of the underlying
diversity of TAVs and TDECs revealed extensive cellular het-
erogeneity within each of these subpopulations.

Materials and Methods

Generation of Endogenous Glioma in a Mouse
Model Using In Utero Electroporation

All mouse CRISPR-IUE GBM gliomas were gener-
ated in the CD-1 IGS mouse background. In utero
electroporations (IlUEs) were performed as previously
described.'®"7 Briefly, a plasmid containing guide RNAs
targeting the tumor suppressor genes Nf1, Tp53, and
Pten was co-electroporated along with a fluorescent re-
porter to label tumor cells (Supplementary Figure 1). See
Supplementary Materials and Methods for more details.
All mouse experiments were approved by the Baylor
College of Medicine Institutional Animal Care and Use
Committee.

tumor-derived vessels (TDECs) within two animal models
of glioma. Our findings reveal that TAVs and TDECs are
molecularly distinct and that both cell types are highly
heterogeneous. These findings create a shiftin our under-
standing of vascular dynamics in glioma pathogenesis and
suggest that a one-size-fits all approach to targeting the
vasculature in glioma may not be efficacious due to the in-
herent molecular diversity in tumor-associated vessels, as
well as tumor, derived vessels.

CLARITY and Lightsheet Confocal Imaging

Adult mice were perfused via tail vein injection of 100 pL
of fluorescently labeled lectin (Lycopersicon Esculentum)
(VECTOR Laboratories, #DL-1178-1). Specimens were per-
fused with 1x PBS, followed by 5-7 mL of hydrogel (Logos
Biosciences). Brains were drop-fixed in hydrogel solution
overnight at 4 °C and cleared in electrophoretic clearing
solution (Logos Biosciences, C13001) using the X-CLARITY
platform (Logos Biosciences). Cleared brains were equili-
brated in sRIMS at 4 °C before mounting and imaging. For
more details, see Supplementary Materials and Methods.

In Vivo Miles Assay (Evans Blue Extravasation)

Mice were anesthetized and injected intravenously with
100 pL 1% Evan's blue solution (Sigma). Thirty minutes
after injection, mice were euthanized and perfused with
2% PFA. Extravasation of Evans blue into the underlying
brain parenchyma was determined by calculating the ratio
of absorbance in nanometers per milligram of tissue. See
Supplementary Materials and Methods for details.

Fluorescent Activated Cell Sorting of TAVs
and TDECs

See Supplemental Materials and Methods for FACS
gating conditions. Briefly, tumor tissue from dissected
mouse brains was sorted using anti-mouse CD31
(Biolegend-102423), endogenous GFP signal, anti-
mouse podoplanin  (Biolegend-127417), anti-mouse
Vegfr3/Flt4 (R&D Systems FAB743P); human: anti-human
HLA-ABC (BD Bioscience-557348), anti-human CD31
(BD Bioscience-340297), anti-human podoplanin (BD
Bioscience-566456), and anti-Human Vegfr3/Flt4 (R&D
System-FAB3492A).

Total RNA Extraction, Library Preparation,
Sequencing, and Bioinformatic Analysis

For details on mRNA isolation, library construction, and
sequencing see Supplemental Materials and Methods.
Briefly, total RNA was isolated from cells captured by FACS.
8 bp single index cDNA libraries were quality controlled
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using the Standard Sensitivity NGS Fragment Analysis Kit
(DNF-473-0500, Agilent formerly AATI). Equal concentra-
tions (2 nM) of cDNA libraries were pooled and subjected
to paired-end (2 x 75) sequencing of approximately 40 mil-
lion reads per sample on a NextSeq.

Single Cell RNA-seq Analysis

Please see Supplementary Materials and Methods for ex-
panded details regarding cell isolation and informatic anal-
ysis. Briefly, enriched CD31* cells isolated by Magnetic
Activated Cell Sorting (MACS) were processed using the
10x Genomics Chromium single-cell gene expression plat-
form and 9561 total cells were analyzed.

Culture of Human Glioma Cell Lines and Patient-
Derived Xenografts in SCID Mice

Human glioblastoma cell lines were procured from the
University of Texas MD Anderson Cancer Center, with the
informed consent approved by Institutional Review Board
(IRB) protocol LAB04-0001. Primary human glioma cell
lines were injected into the brains of SCID mice'® as ap-
proved by Baylor College of Medicine Institutional Animal
Care and Use Committee. In some cases, neurospheres
were differentiated intoTDECs using described methodolo-
gies™ and tube formation was analyzed to verify the endo-
thelial properties of TDECs.

Results

Progressive Morphological and Functional
Changes in Tumor-Associated Vessels

Previous studies described vascular development in xeno-
grafts of malignant glioma,'® however this process has not
been characterized in a mouse model that features de novo
tumor growth and an intact immune system. We utilized a
native mouse model of glioma that features CRISPR/Cas9-
mediated disruption of Nf1, p53, and Pten, tumor sup-
pressor genes commonly mutated in glioma, combined
with piggyBac driven expression of GFP for tumor la-
beling'” (Supplementary Figure 1A, B). This well-validated
model'>"7 recapitulates several hallmark features of ma-
lignant glioma including histopathology, diffuse and
infiltrative growth, molecular signatures, and common ge-
netic lesions. Using this system, we examined morpholog-
ical changes inTAVs via CLARITY-based tissue clearing'® of
fluorescent lectin perfused tumor-bearing brains followed
by light-sheet microscopy at postnatal day 65 (P65) and
P80 (Fig. 1A-F’) (Supp. Videos 1 and 2).

Analyses of vessel morphometry revealed that TAV
vessel density is unchanged between P65 and P80 com-
pared to the contralateral side of the brain (Fig. 1G).
Conversely, both the branching index and the number of
branch point junctions are significantly reduced in TAVs,
suggesting a failure to create productive vessel networks
over time (Fig. 1H, I). In addition, we examined the func-
tional properties of tumor brain vasculature by monitoring

blood brain barrier (BBB) integrity in mice bearing tumors
at P65 and P80. Increased extravasation of Evans blue dye
in the brain after intravenous injection was evident at P80
in the tumor tissue compared to the contralateral side
(Fig. 1J-N). Collectively, these morphological and func-
tional analyses reveal progressive changes in both tumor-
associated vessel morphology and function during glioma
progression, consistent with previous observations in
PDOX models.?®

Tumor Derived Endothelial Cells are Present in a
Native Glioblastoma Mouse Model

In the course of our analysis, we observed that a subset of
tumor-derived cells (GFP*) contributed to vessels (lectin*)
(Fig. 1E-F’). Prior reports suggest that glioma stem cells
(GSCs) contribute to the glioma vascular endothelium,0-12
therefore we investigated whether glioma cells give rise to
vessels in our model. We labeled vessels via perfusion of
fluorescent lectin in P80 tumor-bearing mice and examined
3D reconstructed images for lectin-positive vessels that
were labeled by the fluorescent GFP* reporter transgene.
Examination of 3D reconstructed brains showed GFP* cells
contributing to vessels (Fig. 2A, B). Immunohistochemistry
on cryosections from P80 brains, followed by confocal im-
aging, identified lectin-labeled vessels that are GFP* and
express the endothelial-specific marker, CD31 (Fig. 2C-D).
Together, these data suggest that tumor derived cells can
adopt an endothelial lineage. To quantify the extent of
TDECs, we dissociated P65 and P80 tumor-bearing brains
and performed FACS analysis to isolate tumor-derived en-
dothelial cells (GFP+, CD31* aka TDECs) and normal endo-
thelial cells (GFP-, CD31* akaTAVs) (Fig. 2E). Quantification
revealed an average TDEC contribution of 0.36% and 0.52%
of the total tumor population at P65 and P80, respectively
(Fig. 2F).

To verify that FACS-isolated TDECs are tumor-derived,
we performed sequencing of CD31*,GFP* cells, identifying
a substantial number of insertions and/or deletions (eg, in/
dels) in the Pten, Nf1, and Tp53loci, confirming their tumor
origins (Supplementary Figure 1C). To determine whether
tumor cells from our mouse glioma model can generate
endothelium, we generated glioma neurospheres™ and
cultured them in endothelial cell growth medium and
Matrigel, which induced morphological changes that are
reminiscent of tube-like structures (Fig. 2G). FACS con-
firmed the presence of CD31+, GFP*TDECs, demonstrating
that cultured gliomaspheres generate endothelial cells
(Fig. 2H-1). These observations, in conjunction with our im-
aging data, demonstrate that our native model of glioma
generatesTDEC populations.

TAVs and TDECs Feature an Endothelial
Signature

Having established that our mouse model contains both
TAV (CD31*, GFP-) and TDEC (CD31*, GFP*) endothelial
cell populations, we sought to further distinguish TAVs
and TDECs from the bulk tumor.To this end, we performed
RNA-sequencing of FACS isolated TAVs and TDECs from
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Fig.1 Progressive morphological and functional changes in tumor-associated vessels. (A,D) Whole-mount images of an intact mouse brain at
P65 (A) or P80 (D), with tumor-derived cells labeled by GFP (magenta), and vessels labeled by fluorescent lectin (teal). The yellow boxed area in
(A,D), after CLARITY-based tissue clearing and lightsheet confocal imaging, is magnified and shows (B,E) vessels and tumor together or (B",E")
tumor alone. The yellow boxed area in (B,E) is magnified and shows (C,F) vessels and tumor and (C’,F’) tumor alone. White arrows denote vessels
(teal) that are associated with tumors (magenta), denoted by asterisks. Yellow carets in (E’) denote GFP* vessel-like tubes. Scale barin A, B, B/, D,
E, and E' =2 mM. Scale barin C, C/, F, and F" = 300 um. (G-1) Quantification of vessel morphology at P65 and P80 for tumor-associated vasculature
(TAV) and the contralateral non-tumor region. (J-M) Whole-mount and phase images show brain tumor progression from P65 (J, K) to P80 (L, M).
Matching images of each brain following intravenous injection of Evans blue dye. (N) Quantification of Evans blue dye leak, as determined by the
ratio of absorbance at 0D, s ... per milligram of tissue from the tumor area of a contralateral region from the same brain.
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Fig.2 Tumor-derived endothelial cells are present in the native mouse model of glioma. (A) Whole mount reconstruction of a lightsheet confocal image
from a P80 tumor-containing brain. The boxed area in (A) is magnified and shown in (B) with vessels (left), tumor cells (middle), and merged (right).
White arrows denote vessels, yellow carets denote GFP*-positive vessels. (C) Reconstructions of 40 pm thick sections from fluorescent lectin (tur-
quoise) perfused P80 tumors (magenta) stained with CD31 (green) and DAPI (pseudo yellow) in individual and merged channels. Red arrows indi-
cate lumen of perfused vessels, white arrows indicates tumor-derived cells (magenta) positive for CD31 (green). Boxed area is magnified in (D),
showing tumor-derived cells (white arrow, magenta) enwrapping a perfused vessel (red arrow, teal). The upper panel shows a longitudinal view
and the lower panel is rotated 90 degrees to show cross section view of the vessel, X-Y-Z axis is indicated. (E) Representative FACS plot from a
P65 brain shows GFP* tumor-derived cells co-express the endothelial marker CD31 (TDECs). (F) Quantification of murine TAVs (CD31*, GFP-) and TDECs
(GFP*, CD31+) at P65 and P80. (G) Glioma neurospheres produce tube-like structures when cultured in endothelial growth media (EGM), DFO, and grown
in Matrigel. Scale bars = 20 um. (H) Representative FACS plots of tumor neurospheres sorted for GFP* and CD31* shows co-expression of these two
markers; quantification in (1).
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P65 and P80 tumors, along with CD31* populations from
the cortex of non-tumor bearing, age-matched mice.
Comparative bioinformatics identified more than 2700
significantly differentially expressed genes between
bulk tumor and the combined TAV and TDEC populations
(Fig. 3A, SupplementaryTable 1).

Gene Ontology (GO) analysis confirmed that TAVs and
TDECs were enriched in blood vessel- and angiogenesis-
related processes, while the bulk tumor displayed features
of neural development (Fig. 3B, C). Analysis of individual
genes within two representative GO categories, Nervous
System Development and Angiogenesis, confirmed the
endothelial identity of the TDEC and TAV populations
(Fig. 3D). To verify that TAVs and TDECs exhibit signatures
indicative of endothelial cells, we compared our results
with endothelial gene expression datasets. TDEC/TAV en-
riched transcripts showed a strong enrichment for a VEGF-
induced and angiogenic gene signature?' compared to the
bulk tumor (Fig. 3E). Additionally, we found that the signa-
tures of TDECs and TAVs bore a striking resemblance to an
established CNS dataset taken from the E14.5 (angiogenic)
developing mouse brain?? (Fig. 3F). Visualizing the angio-
genic target genes (from panel “E”) showed upregulation
in TAVs and TDECs (Fig. 3G), reinforcing their endothelial
identity.

Single-Cell Sequencing Identifies Extensive
Heterogeneity Among TAVs in Glioma

To further interrogate the heterogeneity of glioma vascu-
lature we performed single-cell RNA-sequencing on en-
dothelial cells isolated from glioma-bearing brains. P80
brains from tumor-bearing mice were dissociated, en-
riched for endothelial cells, and single cell transcriptomes
were generated.?® Analysis of the cells’ transcriptomes
using Seurat?®* and established endothelial data sets?526
identified 10 distinct cell types, ranging from mural cells to
EGFP* lineage tumor cells (identified by expression of GFP
reporter) (Fig. 4A, Supplementary Figure 2A). Differential
gene expression analysis revealed unique molecular sig-
natures between these different clusters, as established
markers of endothelium (Glut1/Sic2al, Fit1, Cldn5), mi-
croglia (Ccl12), astrocytes (Cspg5, Apoe, Aldoc, Sic1a) and
EGFP* tumor cells expressing glial, oligodendrocyte, and
astrocyte markers (eg, Rtn1, Olig1, and Fabp7, respec-
tively) (see Supplementary Figure 2).

Reanalysis of only the brain endothelium identified 3
separate clusters (Fig. 4C), each with a distinct molec-
ular signature (Fig. 4B, C). While all P80 endothelial cells
(ECs) were isolated by CD31* FACS, scRNA-seq failed to
identity any GFP* ECs, suggesting these cells are TAVs
and not TDECs. This likely reflects the rare nature of TDECs
(Fig. 2E, F) and limited sequencing depth. While some pan-
endothelial genes, such as Pecam1 (encoding CD31) were
expressed across P7, adult, and TAV ECs, other transcripts
like the angiogenic marker Ap/n was restricted to angi-
ogenic P7 ECs, the BBB marker Slcola4 (Oatp1a4)?’ was
enriched in adult and TAV ECs, and the cell-cell junction
encoding gene Jcad was enriched in TAVs (Fig. 4B, C and
Supplementary Table 5). To understand the relationships
between ECs from these three clusters, we used trajectory

analysis to order the cells in pseudotime, finding that TAVs
branch away from angiogenic ECs (P7 ECs) transitioning to
a quiescent, homeostatic ECs (adult ECs), suggesting they
represent a unique cell state (Fig. 4D). GO analysis of en-
riched transcripts in each of these three states showed that
genes involved in cell proliferation and metabolism are en-
riched in P7 ECs, vesicle transport and cell to cell commu-
nication are present in adult ECs, and immune system and
protein metabolism genes are enriched in TAVs (Fig. 4E).
Trajectory heatmaps identified dynamic expression of
genes between these states, as transcripts enriched in cell
proliferation skewed toward P7 ECs, mature BBB markers
are enriched in adult ECs, while ATP metabolic processes
and immune genes are centered in TAVs (Fig. 4F). These
data reinforce our findings that TAVs are molecularly dis-
tinct (Fig. 3) and endowed with unique metabolic and mo-
tility signatures.

Reanalysis of the P80 TAV clusters showed that the
tumor endothelium features extensive heterogeneity,
identifying five distinct populations (Fig. 4G) that are de-
fined by their enrichment of distinct endothelial markers.
While Jcad, Spop, and Ctnnb1 (p-catenin, a regulator
of canonical Wnt signaling and BBB integrity)?® are ex-
pressed across all 5 clusters, clusters 2-5 are marked by
the long non-coding RNA Malat1,%® Jun, and Arhgap31, a
critical GTPase that mediates VEGFR2 signaling.%° Cluster
3 expressed Matrix Gla Protein (Mgp, a regulator of ar-
teriovenous patterning),®' Stmn2, and Sema3g, as well
as the arterial marker Gja4 (Connexin37). Cluster 4 was
enriched for the venous marker Nr2f22? the endothe-
lial marker Vwf, Aldh1a1, and Junb, while cluster 5 was
marked by expression of the chemokine receptor CD74
and the proinflammatory chemokine Cxcl10 (Fig. 4H, | and
Supplementary Figure 2). Gene ontology analysis between
these clusters demonstrates that each population is en-
riched for unique cellular processes (Fig. 4J).

TDEC Populations are Molecularly and Cellularly
Heterogeneous

Given the extensive molecular heterogeneity within
TAVs, we next sought to molecularly distinguish TAVs
and TDECs. Towards this, we directly compared the TAV
and TDEC transcriptomes, which revealed over 400 dif-
ferentially expressed genes between the two populations
(Fig. 5A). GO term analysis of these differential gene sig-
natures revealed that genes linked to cell proliferation, cell
adhesion, and cell motility, three hallmarks of angiogen-
esis® are significantly enriched in TDECs (Supplementary
Table 2) (Fig. 5B). Examination of the GO category Positive
Regulation of Cell Motility revealed clear upregulation of
migratory genes in TDECs compared to TAVs, suggesting
they are more infiltrative and angiogenic than their TAV
counterparts (Fig. 5C).

To further probe the prospective TDEC heterogeneity,
we segregated our existing bulk RNA-Sequencing TDEC
transcriptome datasets using principle component anal-
ysis, finding that bulk TDEC datasets segregated into
two populations: TDEC group 1 and group 2 (Fig. 5D).
GO analysis of 1750 differentially expressed genes be-
tween the two populations revealed immune responses

937
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Fig. 4 TAVs display extensive cellular heterogeneity and are not simply angiogenic adult endothelium. (A) UMAP representation of scRNA-seq
individual transcriptomes from wildtype P7, adult brain endothelial cells, and P80 tumor-bearing brains; each population is color-coded according
to their identity (determined by cell-type specific markers). The corresponding number of cells per cluster is shown in parenthesis. (B) Heatmap
showing the top 15 gene markers for each unique endothelial cell cluster. (C) Population marker expression superimposed on only the three en-
dothelial datasets (P7, adult, and TAV). (D) Monocle trajectory analysis of P7 brain ECs, adult brain ECs, and P80 TAVs. (E) GO terms associated
with enriched transcripts detected in each cell state, from panel (D). (F) Trajectory heatmap showing dynamic gene expression changes be-
tween the endothelial clusters (TAV, Adult, and P7 ECs) plotted along pseudotime as determined by Monocle trajectory analysis from panel (E).
(G) UMAP representation of scRNA-seq individual transcriptomes from P80 TAVs identifies 5 unique populations, each color-coded according to
their unique identity. (H) Violin plots show gene expression between the 5 different TAV clusters. (I) Heatmap of the top 10 differentially expressed
genes between each population. (J) GO terms for enriched transcripts specific to each TAV population.
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were significantly enriched in group 1, whereas cell-cell
communication and nervous system development were
upregulated in group 2 (Fig. 5E, F and SupplementaryTable
2). Among the immune-related genes identified in group 1
were lymphatic cell surface markers, Podoplanin (Pdpn)3
and FIt4,%% suggesting that TDECs segregate into lymphatic
endothelial cells (TDLECs-Group1) and blood endothelial
cells (TDBECs-Group2). Next, we performed FACS on P80
native tumors, isolating GFP*, CD31* endothelial cells, fol-
lowed by isolation of PDPN* and FLT44* cells (Fig. 5G).This
strategy revealed that TDECs can be fractionated into two
subpopulations, with prospective TBECs marked by GFP+
CD31*, PDPN-, FLT4- and prospective TDLECs marked
by GFP* CD31*, PDPN*, FLT4* (Fig. 5G, H). Image stream
analysis’of verified the existence of these subpopulations,
while quantification revealed TDLECs constituted a mi-
nority of TDECs (Fig. 5I-K).

RNA-Sequencing of these two TDEC subpopulations,
TDBECs andTDLECs, identified more than 330 differentially
expressed genes (Fig. 5L). GO analysis revealed that circu-
latory system, cell migration, cytokine signaling, immune
and inflammatory, and interferon-alpha response genes
are enriched in TDLECs (Fig. 5M).38 Next, we used markers
for blood endothelial cells (CD31*, FLT4-, PDPN-) and lym-
phatic endothelium (CD31*, FLT4*, PDPN*),3* identifying a
unique signature for TDLECs that is enriched for immune
and inflammatory genes found in lymphatics, including
immune cell activation marker Icam1, the secreted prote-
oglycan Dcn, Tgfbi, and MHC class ll-associated invariant
chain and chemokine receptor CD74 (Fig. 5N). Collectively,
these data show that glioma TDEC populations are com-
prised of distinct subpopulations exhibiting lymphatic and
blood endothelial properties.

TDBECs and TDLECs are Present in PDOX-
derived glioblastoma Tumors

To determine whether TDBEC and TDLEC populations exist
in human glioma models, we intracranially injected patient-
derived glioma cell lines into SCID mice (ie, PDOX model)
and upon tumor formation TDBECs and TDLECs were iso-
lated based on a combination of cell surface expression of
human leukocyte antigen, CD31, PDPN, and FLT4 by FACS
(Fig. 6A). FACS and image stream analysis confirmed that
each of these TDEC subpopulations is present in our PDOX
model of glioma (Fig. 6B-E). Subsequent RNA-sequencing
on these populations yielded over 1200 differentially ex-
pressed genes (Fig. 6F). Analysis of human PDOX TDBEC
and TDLEC gene ontologies revealed significant enrich-
ment in processes that paralleled our native mouse
models, such as circulatory system development and cell
migration (Fig. 6G). Further analysis revealed that PDOX-
derived TDBEC andTDLEC populations express a repertoire
of established markers of blood endothelial cells and lym-
phatic endothelium, similar to their mouse counterparts
(Fig. 6H; see Fig. 5N). Finally, we evaluated the expres-
sion of key genes enriched in both our murine and human
TDBEC and TDLEC datasets in low- and high-grade glioma,
finding significant enrichment of both signatures in high
grade, but not low grade, glioma (Fig. 6l). These PDOX
data, combined with observations from our native mouse

model of glioma and the human TCGA data, indicate that
TDLECs and TDBECs represent two unique endothelial cell
populations in glioma, and suggest that while TAVs and
TDECs are molecularly distinct from normal brain vascu-
lature, as well as one another, they each feature extensive
heterogeneity at a population level.

Discussion

Despite the importance of angiogenesis in cancer path-
ophysiology, defined functional and molecular bench-
marks for vessels during glioma tumorigenesis are
lacking. Utilizing both an endogenous glioma model in
mice and a PDOX mouse model we characterized the
morphological and functional properties of the vascu-
lature during de novo, glioma progression. RNA-seq
and scRNA-seq analysis revealed that TAVs are molec-
ularly distinct from normal brain endothelium and that
they exhibit extensive heterogeneity. Insights into the
biology of TAVs has the potential to reveal new facets
of the diverse microenvironment in which glioma pro-
gresses and may suggest novel therapeutic targets. For
example, genes linked to the production of caveolae in
the plasma membrane (eg, Cavin-1 and Cavin-2) are sig-
nificantly upregulated in TAVs (Supplementary Figure
3). Caveolae regulate cellular senescence and play crit-
ical roles in cell signaling. Cavin-2 (also known as serum
deprivation response, Sdpr) downregulates endothelial
nitric-oxide synthase (eNOS) production and pathologic
angiogenesis.3”3 |Interestingly, Cavin-1 (Polymerase
I and Transcript Release Factor) is elevated in glioma
and increased expression is associated with decreased
survival time in patients.’® Caveolae may control in-
terstitial fluid pressure, which is dramatically elevated
in GBM and impedes drug delivery, and these targets
could represent a rationale target for future therapeutic
interventions.*®

In addition to TAVs, we also characterized the cellular
and molecular properties of TDECs. While the existence
of TDECs is controversial,'>'24142 prior studies on this
population did not define how TDECs differ from TAVs.
Our analysis represents the first molecular comparison
between tumor-associated and tumor-derived vascular
populations in an immune-competent animal model,
where tumors arise in a de novo manner, in the na-
tive brain microenvironment. Through a combination
of lightsheet imaging, FACS, and transcriptomics we
show that (1) that TDECs are present in a native murine
model of glioma and (2) that TAV and TDEC populations
are molecularly distinct cell types. Finally, it's impor-
tant to note that GSC populations in PDOX models can
also produce pericyte-like cells*® and it's possible to
misconstrue tumor-derived pericytes for TDECs. To re-
solve this, we performed immunostaining with CD13, a
pericyte marker, and did not identify any GFP*, CD13*
cells (Supplementary Figure 4C-E). Moreover, compara-
tive bioinformatics between pericyte gene signatures?644
and our TDEC transcriptional profiling data failed to re-
veal a significant correlation between these datasets
(Supplementary Figure 4F-G). Together, these data
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lend additional credence to our identification of TDEC
populations.

Consistent with prior studies, we found that TDECs are
a rare population, raising the question of whether such
a rare population is functionally significant. Our investi-
gations into TDEC heterogeneity provides some insight
into their possible roles in tumorigenesis. Using FACS
approaches with the lymphatic cell surface markers
PDPN and FLT4 we found that TDECs are composed of
two distinct endothelial subpopulations: TDBECs and
TDLECs. Analysis of their gene expression profiles re-
vealed that TDBECs exhibit profiles enriched for vascular
development, while TDLECs possess pro-inflammatory
and lymphatic signatures. Previous studies suggest that
tumor-derived lymphatic cells facilitate metastasis, as
primary tumor cells migrate along the lymphatic endo-
thelium.*®* However, glioma rarely metastasizes, there-
fore, TDLECs may potentially play a unique role in tumor
inflammation and immune cell recruitment, as they ex-
hibit interferon-alpha and interferon-beta response sig-
natures. Future studies onTDLECs could provide insights
to the sources of inflammation in the context of a com-
plex tumor landscape.

The unique inflammatory signatures described in
TAVs, TDLECs, and TDBECs are intriguing as their po-
tential interactions with tumor-associated macrophages
and other immune populations could explain a variety
of emerging immune phenotypes, including immu-
nosuppression.*® These data suggest that targeting
specific molecular pathways controlling endothelial
cell recruitment within the glioma microenvironment
may be a strategy for inhibiting glioma progression or
enhancing the efficacy of immunotherapy or other inter-
ventions. Moreover, we show that both TAVs and TDECs
are molecularly distinct from healthy CNS endothelium,
suggesting that strategies differentially targeting tumor-
derived vessels, while sparing normal endothelium, may
be possible.

Supplementary Material

Supplementary material is available at Neuro-Oncology
online.
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