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Abstract

In this work, we leverage the Laplacian eigenbasis of voxel-wise white matter (WM) graphs 

derived from diffusion-weighted MRI data, dubbed WM harmonics, to characterize the spatial 

structure of WM fMRI data. Our motivation for such a characterization is based on studies that 

show WM fMRI data exhibit a spatial correlational anisotropy that coincides with underlying fiber 

patterns. By quantifying the energy content of WM fMRI data associated with subsets of WM 

harmonics across multiple spectral bands, we show that the data exhibits notable subtle spatial 

modulations under functional load that are not manifested during rest. WM harmonics provide a 

novel means to study the spatial dynamics of WM fMRI data, in such way that the analysis is 

informed by the underlying anatomical structure.
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1. INTRODUCTION

Despite past controversies in relation to the source of the blood-oxygen-level-dependent 

(BOLD) signal in white matter (WM) [1], reports of fMRI activation [2, 3] and functional 

connectivity [4, 5] in WM continue to increase. The BOLD signal in WM has been shown to 

exhibit a spatial correlational anisotropy that coincides with underlying fiber patterns [6], 

which is manifested both at rest and under varying functional loads [7]. In addition, it has 

been shown that the dynamics in WM are concomitant with those observed in cortical 

regions connected through fiber bundles [7, 8]. The unique spatial structure of the BOLD 

signal in WM warrants a revisiting of conventional methods used for spatial processing of 

fMRI data, in particular, the use of isotropic (often Gaussian) smoothing kernels to 

preprocess the data [9]. Given the body of recent reports on the anisotropic spatial structure 

of WM fMRI data, the implicit assumption on the isotropy of the BOLD contrast that 

justifies use of isotropic filters may not hold in WM.

Recent work implementing spatial smoothing on diffusion-informed WM graphs has shown 

the benefit of using anisotropic filters that adapt to the underlying diffusion structure in WM 

[10, 11]. Such WM graphs have also been found beneficial in showing the collective 

mediation of WM pathways based on functional activity in gray matter [12]. The present 

work builds on the benefits of subject-specific, voxel-wise WM graphs, showing that their 

Laplacian eigenbasis, dubbed WM harmonics, can provide a novel means for quantifying the 

spatial structure in WM fMRI data. In particular, using principles from the recently emerged 

field of graph signal processing (GSP) [13, 14], we decompose WM fMRI data using a 

systems of spectral kernels that covers fine-scale as well as coarse-scale bands across the 

spectrum. We then quantify the spectral energy (SE) content of WM fMRI data at different 

spectral bands across the graph spectra, and show that under functional load, spatial patterns 

correspond to more spatially varying WM harmonics that encode subtle anisotropic spatial 

patterns confined by the underlying diffusion structure arise. In contrast, we show that the 

observed temporal modulation under functional load is not present during rest.

2. METHODS

2.1. Dataset

We studied data from the “100 Unrelated Subjects” group (54% female, mean age = 29.11± 

3.67, age range = 22-36) of the Human Connectome Project (HCP) dataset [15], which we 

denote as HCP100. Five of the subjects were excluded due to incomplete WM coverage of 

the diffusion MRI data, leaving a total of 95 subjects. We used the minimally preprocessed 

structural MRI, diffusion MRI, task fMRI and resting-state fMRI data of all subjects; the 

functional data were resampled to the resolution of the diffusion data, 1.25 mm isotropic. 

For the task data, we studied the “Social” task, which consists of two experimental 

conditions: mental and random. During the mental-condition blocks, participants were 

presented with short video clips (20 seconds) of objects (circles, squares, triangles) that 

interacted in some way, whereas during the random-condition blocks the objects moved 

randomly on the screen. The paradigm consisted of 3 mental-condition and 2 random-

condition trials. The proposed analysis scheme relies on accurate co-registration between 

structural, diffusion, and functional data, which is meticulously performed on the 
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preprocessed HCP data. A thorough description of the image acquisition parameters and 

preprocessing steps can be found in [16].

2.2. Graph signal processing fundamentals

Consider an undirected, weighted graph consisting of N vertices in which the edges and their 

weights are given by an N × N adjacency matrix, with elements ai, j > 0 if an edge connects 

vertices i and j, and ai, j = 0 otherwise. The graph’s normalized Laplacian matrix L is 

defined as L = I − D− 1
2AD− 1

2 , where D denotes the graph’s degree matrix, with its diagonal 

elements given as di, i = jai j, and I denotes the identity matrix. The eigendecomposition 

of L gives L = U⋀U*, where ⋀ is a diagonal matrix with the eigenvalues 

0 = λ1 ≤ λ2… ≤ λN ≤ 2 on its diagonal—which define the graph’s spectrum [17], and U is a 

matrix of eigenvectors, wherein each column uk is the eigenvector associated to λk. Hereon, 

we refer to the eigenvectors as the eigenmodes as conventionally used by the neuroimaging 

community. The eigen-basis of L entails a notion of spatial variability. That is, a given 

eigenmode uk is linked to its associated eigenvalue as ukTLuk = λk, which shows that λk is a 

measure of total variability of uk. As such, eigenmodes associated to larger eigenvalues 

entail a greater extent of spatial variability than those associated to smaller eigenvalues.

Let f ∈ ℝN denote a graph signal, where f i  is the value of the signal at vertex i, and let 

f = U*f ∈ ℝN denote its spectral representation, which satisfies the Parseval energy 

conservation relation, i.e., f 2
2 = f 2

2
. Given a continuous kernel defined on the spectral 

range of the graph, denoted k ⋅ : 0, λN ℝ, a graph signal f can be filtered using k(·), 

denoted k L f ∈ ℝN, as [13]

k L f = Uk ⋀ U*f = Uk ⋀ f . (1)

To avoid explicit computation of ⋀ and U, i.e., diagonalization of L, filtering can be 

alternatively done in a computationally efficient way using a polynomial approximation of 

k(·), denoted kp ⋅ : 0, λN ℝ, as

k L f =1 Uk ⋀ U*f ≈ Ukp ⋀ U*f = kp L f, (2)

that is, computing a set of matrix operations on L and applying the resulting matrix to f.

2.3. Diffusion-informed WM graph design

To characterize the underlying domain of WM fMRI data, we leveraged diffusion-weighted 

MRI data to construct voxel-resolution graphs based on the method proposed in [11]. In 

particular, for each subject, and each hemisphere, we constructed a graph, wherein each WM 

voxel is represented as a graph vertex, and the relation between neighboring voxels is 

defined based the extent of coherence between their associated diffusion ODFs: two vertices 

whose associated voxels are adjacent are connected through an edge with a high weight if 

their associated ODFs are well aligned with the edge connecting them, and vice versa. For 
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further details on the design we refer to [11]. We refer to the Laplacian eigenmodes of the 

resulting WM graphs as WM harmonics.

2.4. Spectral characterization of WM fMRI data

We represent fMRI volumes as graph signals. In particular, given a 4-D fMRI time series 

dataset of a given subject s, we represented the fMRI volume associated to each time 

instance t as a graph signal, denoted fs, t ∈ ℝN, through extracting functional values at voxels 

corresponding to the graph vertices, i.e., voxels within WM. The signal was then de-meaned 

and normalized as:

fs, t = fs, t − u1*fs, tu1 / fs, t − u1*fs, tu1 2 . (3)

Given the sheer size of voxel-wise WM graphs, diagonalizing the associated L is 

impractical, and therefore, computation of the signal’s spectral representation, i.e., fs, t, is 

infeasible. Instead, to obtain an overall estimate of the spectral energy (SE) content of fMRI 

data on WM graphs at fine-scale spectral bands (FSB), we decomposed the signals using the 

system of 57 spectral kernels presented in [18], see Fig. 1(a), denoted K = kj λ j = 1
57 , 

which form a Parseval frame, i.e., ∀λ ∈ 0, λN , P λ : = j 1
57 kj λ 2 = 1, a property that 

ensures energy conservation between the vertex and spectral representations of the signal, 

i.e., j 1
57 kj L f 2

2
= f 2

2. [19]. Specifically, we leveraged tailored Chebyshev polynomial 

approximations of K, with kernel-specific polynomial orders of mean 300 ± 200, to filter 

signals as in (2).

The decomposition of fs,t using each kernel kj λ ∈ K results in SE value, 

es, t, j = kj L fs, t 2
2, which satisfy jes t j 1, thanks to the normalization performed in (3) 

and the Parseval property of K. Using this measure, we characterize the ensemble 

distribution of energy, across T time frames, for a given subject as

C j = 1
T t 1

T

i 1

j
es t i j = 1, …, 57 . (4)

In order to reduce the dimensionality of the spectral representation, we studied variations in 

the SE content using a coarser set of five spectral kernels as shown in Fig. 1(b), denoted 

ℋ = ℎj λ j = 1
5 , which also form a Parseval frame. Using ℋ, we obtained five SE values for 

each signal fs, t as

cs, t, j = ℎj L fs, t 2
2, j = 1, ⋯, 5, (5)

which satisfy jcs t j 1. The span of the coarse-scale spectral bands (CSB) was 

determined as follows. The first CSB was set to cover approximately the lower 5% of the 

spectrum, i.e., λ ∈ 0, 0.1 , to be consistent with previous results on spectral characterization 
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of fMRI data on cortical graphs [18]. The fifth subband was defined to cover the upper 

approximately 1% of the ensemble SE. The mid spectral range was split into three subbands, 

each of which captured an approximately equal amount of SE for WM fMRI graph signals 

as given by (4), based on the idea presented in [20].

3. RESULTS

Figure 2 shows representative WM harmonics of a representative subject. The first harmonic 

reflects a measure of the degree at each vertex, whereas the second harmonic—the Fiedler 

vector [21], splits the studied hemisphere in two. WM harmonics associated to larger 

eigenvalues encode more varying spatial patterns relative to those associated with smaller 

eigenvalues. In particular, the representative WM harmonics associated with CSBs 2 and 3, 

λ = 0.2 and 0.5, manifest spatial structures that are reminiscent of fiber bundles orientations, 

whereas that associated with CSB 4, exhibits a highly variable structure. The harmonics 

associated to CSB 5 exhibit spatial structures that are highly variable and localized, in 

contrast to the lower harmonics which manifest more delocalized patterns.

Figure 3(a) shows the distribution of SE along the spectrum, across subjects; each subject 

curve represents the ensemble SE aggregated across all functional frames of the Social task. 

More than half of the total SE is captured by WM harmonics associated to eigenvalues 

within the spectral range [0, 0.1], whereas less than 1% is captured by WM harmonics 

associated to the upper-end spectral range [1.4, 2]. Overall, more than 90% of the ensemble 

signal energy is captured by eigenvectors associated to the lower half of the spectrum. WM 

fMRI graph signals associated to functional volumes along the five trials of the Social task 

were decomposed as in (5), resulting in five SE time series per CSB, per subject. The SE 

time series were then processed as follows: 1) smoothed with a moving average filter of 

length five frames (3.8 seconds), 2) de-meaned to have zero mean, 3) normalized to have a 0 

onset, 4) fitted to a polynomial of order four—the choice of 4th degree was to enable fitting 

a curve that potentially mimics the WM HRF response, in particular, an undershoot and an 

overshoot, and 5) averaged across the trials for the condition, resulting in a single ensemble 

polynomial. A global ensemble curve was then obtained for each CSB by averaging the 

subject-specific ensemble curves across the 95 subjects.

Fig. 3(b) compares changes in the ensemble SE content across the CSBs in the two 

experimental conditions of the Social task. The SE content in CSB 1 drops during the course 

of the task, whereas it shows an overall increasing pattern in CSBs 2 to 4 and shows 

negligible variation in CSB 5. The interplay between the SE contents across the CSBs 

manifest subtle variations between the two experimental conditions, with the mental-

condition showing a greater drop at CSB 1 relative to the random-condition, suggesting the 

greater engagement of more finely resolved spatial patterns during the former condition, and 

thus, reflecting WM spatial dynamics of varying nature underlying the two conditions. 

Moreover, the extent of change in the spectral content across the CSBs notably increases 10 

seconds post stimulus, an observation that can be potentially linked to the delayed 

manifestation of HRF peaks in WM, which have also been shown to appear 10 seconds post 

stimulus in multiple WM fiber bundles [22, 7].
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Given the low amplitudes of modulation, we performed two validations to verify the 

reliability of the observed patterns in Fig. 3(b). Firstly, we performed bootstrapping to see 

how replicable each observed pattern is, by randomly selecting 20 subjects out of the pool of 

95 subjects and computing an ensemble curve, repeated 50 times; results shown in Fig. 3(c). 

The resulting curves reflect the replicability of the observed ensemble patterns in Fig. 3(b), 

which are replicated in Fig. 3(c) as black curves. Secondly, to verify that the observed 

patterns are related to the underlying functional task, ensemble curves over 95 subjects were 

computed on random segments of the subjects’ two resting-state acquisitions. Resting-state 

ensemble curves show substantially lower-amplitude variations compared to task curves, and 

furthermore, do not manifest a clear decrease/increase in SE across time, reflecting the 

greater stability of the underlying spatial patterns in the resting-state data relative to task 

data.

4. CONCLUSIONS AND OUTLOOK

From a broad perspective, our results show how the spatial dynamics of WM fMRI data alter 

under functional loading, demonstrating an interplay between contributions from slowly 

varying and highly varying WM harmonic, corroborating similar findings on region-based 

gray matter fMRI graph signals defined on the connectome [23, 24]. Methods presented in 

this work can find application in multiple scenarios. The quantification of changes in WM 

BOLD signal has been suggested as a marker for detecting cognitive decline [25], but given 

the low amplitudes of WM HRF [22], we anticipate changes in SE at different CSBs to be 

found as an alternative, more sensitive, identifier of subtle changes in the signal. Moreover, 

the manifestation of a clear modulation of SE at the different CSBs suggest the potential 

benefit of deriving white matter functional connectivity matrices [26] from fMRI data that 

are spatially filtered to retain contributions from a given CSB—suppressing contributions 

from the other CSBs, rather than smoothing the data using isotropic Gaussian filters, which 

deteriorate the inherent diffusion-dependent spatial structure in the data. Lastly, the 

decomposition of WM fMRI data at multiple CSBs can be leveraged, for example, to 

implement multi-scale spatial denoising of the data [27], to derive WM signatures of 

consciousness [28, 29], or to train models for predicting disease [30].
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Fig. 1: 
System of spectral kernels forming tight Parseval frames. In (a), kernels within the spectral 

range [0, 0.1] are designed to have narrower bands as the majority of the fMRI signal energy 

falls in that range. In (b), values shown within the kernels represent the fraction of total SE 

captured within each sub-band, on average across subjects; see also Fig. 3(a).
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Fig. 2: 
WM harmonics of a representative subject, associated with the five smallest eigenvalues 

(top), and eigenvalues close to the center of the five CSBs shown in Fig. 1(b). Note that the 

harmonics are defined in 3-D whereas a 2-D cross-section of them is displayed.
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Fig. 3: 
Characterization of spectral energy content of WM fMRI data using diffusion-informed WM 

harmonics.
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