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Abstract

Late gadolinium enhanced (LGE) cardiac magnetic resonance (CMR) imaging, the current 

benchmark for assessment of myocardium viability, enables the identification and quantification of 

the compromised myocardial tissue regions, as they appear hyper-enhanced compared to the 

surrounding, healthy myocardium. However, in LGE CMR images, the reduced contrast between 

the left ventricle (LV) myocardium and LV blood-pool hampers the accurate delineation of the LV 

myocardium. On the other hand, the balanced-Steady State Free Precession (bSSFP) cine CMR 

imaging provides high resolution images ideal for accurate segmentation of the cardiac chambers. 

In the interest of generating patient-specific hybrid 3D and 4D anatomical models of the heart, to 

identify and quantify the compromised myocardial tissue regions for revascularization therapy 

planning, in our previous work, we presented a spatial transformer network (STN) based 

convolutional neural network (CNN) architecture for registration of LGE and bSSFP cine CMR 

image datasets made available through the 2019 Multi-Sequence Cardiac Magnetic Resonance 

Segmentation Challenge (MS-CMRSeg). We performed a supervised registration by leveraging the 

region of interest (RoI) information using the manual annotations of the LV blood-pool, LV 

myocardium and right ventricle (RV) blood-pool provided for both the LGE and the bSSFP cine 

CMR images. In order to reduce the reliance on the number of manual annotations for training 

such network, we propose a joint deep learning framework consisting of three branches: a STN 

based RoI guided CNN for registration of LGE and bSSFP cine CMR images, an U-Net model for 

segmentation of bSSFP cine CMR images, and an U-Net model for segmentation of LGE CMR 

images. This results in learning of a joint multi-scale feature encoder by optimizing all three 

branches of the network architecture simultaneously. Our experiments show that the registration 

results obtained by training 25 of the available 45 image datasets in a joint deep learning 

framework is comparable to the registration results obtained by stand-alone STN based CNN 

model by training 35 of the available 45 image datasets and also shows significant improvement in 

registration performance when compared to the results achieved by the stand-alone STN based 

CNN model by training 25 of the available 45 image datasets.
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1. INTRODUCTION

Myocardial viability assessment is an essential step for diagnosis and optimal therapy 

planning for patients diagnosed with cardiovascular diseases such as myocardial infarction, 

cardiomyopathy or myocarditis. Hence, it is important to accurately detect, localize and 

quantify the diseased myocardium regions, also referred as infarct/scar, in order to determine 

the part of the heart that may benefit from revascularization therapy.1 In LGE CMR imaging, 

the scars exhibit hyper-enhanced intensities, enabling the assessment of their transmural 

extent.2 This feature renders LGE CMR as the current gold standard for viability assessment 

of the myocardium.

Nevertheless, in LGE CMR imaging, the gadolinium-based contrast agent that is responsible 

for the brighter scar tissue reduces the contrast between the LV myocardium and the LV 

blood-pool, making it difficult to accurately delineate the myocardium. On the contrary, the 

bSSFP cine CMR images provide high resolution, dynamic 3D images of the cardiac 

chambers with very good contrast between myocardium and blood-pool; however, they do 

not show the scarred myocardial regions (Fig 1). To this end, it is crucial to segment and co-

register the LGE and bSSFP cine CMR images to generate hybrid 3D and 4D anatomical 

models of the heart in the effort to help localize, quantify and clearly visualize the 

compromised myocardial regions, for use in patient-specific revascularization therapy 

planning and guidance. On account of this, a number of researchers proposed extracting the 

myocardium and blood-pool contours from the cine CMR images and superimposing them 

on the LGE CMR images, thus, formulating it as a multimodal image registration problem.

Prior to deep learning, a number of algorithms like rigid registration using normalized 

mutual information as similarity measure,3 affine registration using pattern intensity as 

similarity measure,1 as well as multi-step registration approaches (rigid followed by 

deformable registration4) have been proposed for registering the cine images with contrast 

delay-enhanced images. These traditional approaches iteratively optimize the registration 

cost function for a given pair of images.

In recent years, several researchers proposed utilizing deep learning for optimization of these 

registration cost functions.5 These unsupervised deep learning registration algorithms help 

speed up the registration process compared to the traditional unsupervised algorithms, 

however, they do not significantly improve the registration accuracy, as the similarity 

measures used are the same.

In the recent 2019 MS-CMRSeg challenge,6, 7 researchers proposed an alternative approach 

to learning features from one image type and using them to segment the other image type - 

training adversarial networks to generate synthetic LGE CMR images from bSSFP cine 

CMR images, followed by training U-Net architectures on these synthetic LGE images to 
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segment cardiac chambers from the LGE images.8–11 Although these methods result in good 

segmentation performance, they are time consuming, as they involve training adversarial 

networks followed by U-Net models.

In our previous work, we showed that a STN based RoI-guided CNN can be used to 

accurately register bSSFP cine CMR images with its corresponding LGE CMR images in a 

time-efficient manner.12 Here, we propose a joint deep learning framework that consists of 

three branches - a STN-inspired CNN for supervised registration of bSSFP cine CMR 

images and LGE CMR images, an U-Net model13 for segmentation of bSSFP cine CMR 

images and an U-Net model for segmentation of LGE CMR images. Inspired by Qin et al.,14 

we optimize a composite loss function by training all three networks simultaneously. The 

aim of the proposed joint deep learning model is to further improve registration accuracy by 

sharing the weights learned from the segmentation models. We train the proposed joint 

network on the 2019 MS-CMRSeg challenge dataset using the provided manual annotations 

of the LV blood-pool, LV myocardium, and RV blood-pool.

2. METHODOLOGY

2.1 Dataset

The dataset used in our experiments was made available through the 2019 MS-CMRSeg 

challenge.6, 7 The dataset consists of LGE and bSSFP cine CMR images acquired at end-

diastole for 45 patients diagnosed with cardiomyopathy.

The bSSFP cine CMR images consisted of 8–12 slices with an in-plane resolution of 1.25 

mm × 1.25 mm and a slice thickness of 8–13 mm, while the LGE CMR images consisted of 

10–18 slices featuring an in-plane resolution of 0.75 mm × 0.75 mm and a 5 mm slice 

thickness. To deal with the heterogeneity in slice thickness, image sizes and in-plane image 

resolution between LGE and bSSFP cine CMR images, all the images are resampled to a 

slice thickness of 5 mm, in-plane image resolution of 0.75 mm × 0.75 mm and resized to 

224 × 224 pixels.

2.2 STN-based Registration

The conventional STN consists of three parts - a localisation network, a grid generator and a 

differentiable image sampler. In our experiments, the input to the localisation network is a 

concatenated bSSFP cine CMR image and a LGE CMR image. The localization network 

outputs a six-dimensional vector θ, that results in the transformation matrix Tθ,

Tθ =
θ11 θ12 θ13
θ21 θ22 θ23

, (1)

containing the parameters for affine registration. The grid generator uses these predicted 

transformation parameters to generate a sampling grid i.e., a set of points where the input 

map should be sampled to produce the transformed output. In the training phase, this 

sampling grid and the ground truth (GT) map of the LGE CMR image are the inputs to the 

differentiable image sampler, resulting in a transformed GT map of the LGE CMR image 

(Fig. 2). In the testing phase, the sampling grid generated by the grid generator is input to 
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the differentiable image sampler along with the LGE image slice to produce a transformed 

LGE image slice.

2.3 Joint Deep Learning Model for Registration and Segmentation

As shown in earlier works,14–16 image registration and segmentation tasks are closely 

related and it has been shown that learning features from one task can benefit the other task. 

In this work, we explore a joint deep learning model for registration of bSSFP cine CMR 

and LGE CMR images, and segmentation of cardiac chambers (LV blood-pool, LV 

myocardium and RV blood-pool) from the bSSFP cine CMR and LGE CMR images (Fig. 

2). The coupling of these registration and segmentation tasks result in sharing of the weights 

learnt from the segmentation task with the registration branch of the network, improving the 

registration accuracy.

2.4 Experiments and Implementation Details

In this study, our experiments are focused on comparing the registration results of the 

proposed joint deep learning model with the stand-alone STN based model.12 We also 

compare the results obtained by training our networks by splitting the available 45 bSSFP 

cine and LGE MRI datasets to 35 for training, 5 for validation and 5 for testing, and the 

results obtained by training our networks by splitting to 25 for training, 15 for validation and 

5 for testing.

The three branches of our joint deep learning model are trained using the following dual-loss 

function:

ℒdual − loss = α . ℒcross − entropy + 1 − α . ℒDice − loss (2)

where ℒcross − entropy and ℒdice − loss are cross-entropy loss and Dice loss, respectively. The 

loss function is calculated using the predicted segmentation maps and their corresponding 

GT maps for the bSSFP cine and LGE CMR segmentation networks (ℒcine − seg and 

ℒlge − seg, respectively). For the supervised RoI-guided registration network, the dual-loss 

function is computed using the transformed GT map of the LGE images and the GT of cine 

bSSFP images (ℒrge). Therefore, the resulting composite loss function is given by

ℒ = λ1 . ℒreg + λ2 . ℒcine − seg + λ3 . ℒlge − seg (3)

where λ1, λ2 and λ3 are the trade-off parameters for the three branches of the joint deep 

learning model.

We train our networks by randomly augmenting both the bSSFP cine CMR and the LGE 

CMR images on-the-fly using a series of translation, rotation and gamma correction 

operations. In all our experiments, the networks are trained using the Adam optimizer with a 

learning rate of 10−4 and a gamma decay of 0.99 every alternate epoch for fine-tuning for 

100 epochs on a machine equipped with NVIDIA RTX 2080 Ti GPU with 11GB of memory.
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2.5 Evaluation metrics

To quantify our registration accuracy, we calculate the Euclidean distance between the LV 

and RV blood-pool centers i.e. center distance (CD) of the LGE CMR image and bSSFP 

cine CMR image, and compare it with the CD of the transformed LGE CMR image and the 

bSSFP cine CMR image. These blood-pool centers are identified as the centroid of the LV 

and RV blood-pool segmentation masks. We also evaluate our registration using the average 

surface distance (ASD) between the LV blood-pool, LV myocardium and RV blood-pool 

segmentation masks of the LGE and bSSFP cine CMR images, before and after registration.

3. RESULTS AND DISCUSSION

In Table 1, we summarize the registration performance of the stand-alone STN-based RoI-

guided CNN and the proposed joint deep learning model. We compare the mean CD and 

mean ASD achieved by both the stand-alone STN based CNN and the joint deep learning 

model by training 25 of the 45 available image datasets and by training 35 of the 45 

available image datasets. We can observe that the registration performance of the joint deep 

learning model achieved by training only 25 image datasets is comparable to that of the 

stand-alone STN based registration when trained using 35 image datasets and significantly 

better than the stand-alone STN based registration when trained using 25 image datasets (p-

value < 0.1 for RV blood-pool CD, and LV blood-pool CD and ASD). We can also observe 

that when the joint deep learning model is trained using 35 image datasets, the LV blood-

pool CD and LV myocardium ASD is significantly lower than the rest of the models (Fig. 3). 

In Fig. 4, we show an example of the manual annotations of the cardiac chambers of a 

bSSFP cine CMR image overlaid on its corresponding LGE CMR image before registration 

and after registration using both stand-alone STN-based RoI-guided CNN model and the 

joint deep learning model.

In our previous work,12 we showed that a STN inspired RoI-guided CNN architecture can be 

reliably used to register the bSSFP cine CMR and LGE CMR images. The major drawback 

of the method is the need for annotations of cardiac structures for large number of training 

data. In this paper, we investigate whether the joint deep learning framework is a viable 

option for registration of LGE and bSSFP cine CMR images. Our results reveal that the 

proposed joint deep learning model leverages the weights learnt from the segmentation task 

to improve the registration accuracy and produces reliable registration results using lesser 

number of training data and manual annotations.

The mean Dice scores achieved by the segmentation branches of the bSSFP cine CMR 

images and LGE CMR images are 84.73% and 71.49%, respectively. The poor results of the 

segmentation branches are due to the limited number of the training data, however, the 

weights learnt from these segmentation branches improve the registration accuracy in the 

joint deep learning model. The computational time required for each epoch for a stand-alone 

STN model is around 63 seconds and 67 seconds to train 25 and 35 of the 45 available 

image datasets, respectively, whereas the joint deep learning model requires around 110 

seconds and 155 seconds to train 25 and 35 of the 45 available image datasets, respectively. 

It is worth to be noted that although the stand-alone STN model takes less training time for 
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the registration, it nevertheless requires manual annotations, while the joint model requires 

relatively more time for training, the number of manual annotations needed are fewer.

4. CONCLUSION AND FUTURE WORK

In this paper, we present a joint deep learning model for registration of LGE and bSSFP cine 

CMR images, and the segmentation of cardiac chambers from the LGE CMR and the bSSFP 

CMR images. The coupling of the segmentation and the registration tasks enables a multi-

task training and results in obtaining reliable registration results using a lower number of 

training datasets, reducing the need for a large number of manual annotations.

As part of our future work, we will be investigating other variants of U-Net architecture to 

improve the segmentation performance of the joint deep learning model and these obtained 

segmentation masks can be used to further fine-tune the registration in case of sparsely 

annotated datasets, resulting in a weakly-supervised method for registration. Ultimately, we 

intend to build 3D models that help quantify and visualize the compromised myocardial 

regions.
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Figure 1: 
Example of (a) LGE CMR image and associated hyper-enhanced regions marked by red 

contour with (b) overlaid manual annotations - LV blood-pool (LV), LV myocardium (MC) 

and RV blood-pool (RV), and (c) bSSFP cine CMR image with its (d) manual annotations 

overlaid on it.
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Figure 2: 
Schematic architecture of the proposed joint deep learning framework consisting of three 

branches - a STN based CNN for registration of bSSFP cine CMR and LGE CMR images, 

an U-Net model for segmentation of bSSFP cine CMR images and an U-Net model for 

segmentation of LGE CMR images.
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Figure 3: 
Comparison of (a) mean CD and (b) mean ASD values before registration, stand-alone STN 

based supervised registration (training data: 25 patients), stand-alone STN based supervised 

registration (training data: 35 patients), joint deep learning model (training data: 25 patients) 

and joint deep learning model (training data: 35 patients)
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Figure 4: 
Panel 1–1: LGE CMR image and associated hyper-enhanced regions marked by pink 

contour and LV and RV blood-pool centers marked by red dots; Panel 2–1: before 

registration (CD: 3.46 mm, ASD: 1.87 mm); overlaid unregistered LGE CMR image and 

features (from Panel 1–1) onto the bSFFP image showing the RV blood-pool (yellow) and 

LV blood-pool (green) and their centers (marked by blue dots) and the LV myocardium 

(blue) marked on the bSSFP image; Panel 1–2: overlaid LGE CMR image onto the bSSFP 

image following stand-alone STN model registration using 25 patients for training (CD: 2.77 

mm, ASD: 1.62 mm); Panel 2–2: stand-alone STN model registration using 35 patients for 

training (CD: 2.72 mm, ASD: 1.45 mm); Panel 1–3: joint deep learning model registration 

using 25 patients for training (CD: 2.77 mm, ASD: 1.51 mm); and Panel 2–3: joint deep 

learning model registration using 35 patients for training (CD: 2.65 mm, ASD: 1.47 mm).
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Table 1:

Summary of registration evaluation.

LV CD
(mm)

LV ASD
(mm)

MC ASD
(mm)

RV CD
(mm)

RV ASD
(mm)

Before Registration 3.28
(1.83)

2.53
(1.23)

1.78
(0.78)

4.36
(3.79)

2.42
(1.20)

Stand-alone STN Model
Training: 25 patients

2.46

(1.31)**
2.20

(1.23)*
1.52

(0.84)*
2.92

(2.18)**
1.95

(1.02)*

Stand-alone STN Model
Training: 35 patients

2.27

(1.38)**
2.09

(1.14)**
1.40

(1.12)*
2.52

(2.66)**
1.73

(1.02)**

Joint Model
Training: 25 patients

2.26

(1.34)**
1.96

(0.93)**
1.41

(0.71)*
2.60

(2.02)**
1.77

(0.84)**

Joint Model
Training: 35 patients

2.18
(1.46)**

1.94
(0.93)**

1.33
(0.73)**

2.53

(2.14)**
1.72

(0.97)**

Mean (std-dev) center-to-center distance (CD) and average surface distance (ASD) for LV blood-pool (LV), LV myocardium (MC) and RV blood-
pool (RV). The best evaluation metrics achieved are labeled in bold.

Statistically significant differences between the registration metrics before and after registration were evaluated using the Student t-test and are 
reported using * for p < 0.05 and ** for p < 0.005.
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