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This paper aims to develop an automatic method to segment pulmonary parenchyma in chest CT images
and analyze texture features from the segmented pulmonary parenchyma regions to assist radiologists in
COVID-19 diagnosis. A new segmentation method, which integrates a three-dimensional (3D) V-Net with
a shape deformation module implemented using a spatial transform network (STN), was proposed to seg-
ment pulmonary parenchyma in chest CT images. The 3D V-Net was adopted to perform an end-to-end

Keywords: lung extraction while the deformation module was utilized to refine the V-Net output according to the
COVID-19 prior shape knowledge. The proposed segmentation method was validated against the manual annota-
Chest CT tion generated by experienced operators. The radiomic features measured from our segmentation results

Pulmonary parenchyma segmentation
Deep learning
3D V-Net

were further analyzed by sophisticated statistical models with high interpretability to discover significant
independent features and detect COVID-19 infection. Experimental results demonstrated that compared
with the manual annotation, the proposed segmentation method achieved a Dice similarity coefficient
of 0.9796, a sensitivity of 0.9840, a specificity of 0.9954, and a mean surface distance error of 0.0318
mm. Furthermore, our COVID-19 classification model achieved an area under curve (AUC) of 0.9470, a
sensitivity of 0.9670, and a specificity of 0.9270 when discriminating lung infection with COVID-19 from
community-acquired pneumonia and healthy controls using statistically significant radiomic features. The
significant features measured from our segmentation results agreed well with those from the manual an-
notation. Our approach has great promise for clinical use in facilitating automatic diagnosis of COVID-19
infection on chest CT images.

© 2021 Elsevier Ltd. All rights reserved.

1. Introduction for detecting COVID-19 [3]. However, it is time-consuming and suf-

fers from a high false negative response. Moreover, many countries

The coronavirus disease 2019 (COVID-19) is spreading rapidly
and widely since the end of 2019. By December 24t 2020, more
than 78.7 million COVID-19 cases have been confirmed worldwide,
and what is even worse, 1.73 million of the patients lost their lives
[1]. Early detection is essential because infected subjects with or
without symptoms who were not successfully detected spread the
virus to healthy people [2]. Real-time reverse transcriptase poly-
merase chain reaction (rRT-PCR) is recognized as the gold standard
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are not ready for PCR tests in the early stage of the coronavirus
pandemic while imaging devices are widely available; thus a di-
agnosis system based on imaging is practical and vital for early
prevention and diagnosis of COVID-19 infection [4].

Imaging techniques, such as chest X-Ray (CXR) and chest
computed tomography (CT), have been widely used to assess
pulmonary lesions. Although X-Ray scanners demonstrate higher
accessibility, most COVID-19 subjects show bilateral pulmonary
parenchymal ground-class opacities and lung consolidation with a
rounded morphology [5], making it difficult to distinguish COVID-
19 infection from CXR scans. In contrast, 3D chest CT is effective in
discriminating soft tissue and visualizing the morphological pat-
terns of pulmonary parenchyma, which has been widely used for
the diagnosis of COVID-19 and regarded as an important comple-
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Fig. 1. The workflow of the proposed approach for lung segmentation and COVID-19 detection. A thresholding method was applied to generate the shape prior of the
pulmonary parenchyma; the combination of the original image and shape prior was input to the proposed shape prior V-Net segmentation model (SP-V-Net). Statistical
analyses were applied to the radiomic features extracted from the segmentation results to discover the statistically significant features and build the prediction model for

COVID-19 detection.

ment to rRT-PCR tests [3,6]. Automatic extraction and computer-
aided interpretation of lung regions of interest (ROIs) play a key
role in assisting radiologists to detect the infection and assess the
progression, and thus benefit the precise diagnosis and treatment.

Medical image processing using deep learning plays a vital
role due to its accurate and robust performance [7]. Some re-
searchers have dedicated their studies to computer vision using
deep learning for COVID-19 diagnosis with chest CT. Unlike most
existing Al approaches in the diagnosis of COVID-19, which are
focused on the end-to-end classification, our goal is to extract
and understand the image features and discover clinically inter-
pretable knowledge. In this paper, we proposed a new method
integrating three-dimensional (3-D) V-Net with shape priors (SP-
V-Net) for pulmonary parenchyma segmentation and then per-
forming COVID-19 detection with the interpretable radiomic fea-
tures measured from the segmentation results. The proposed seg-
mentation method included a V-Net for lung segmentation using
a two-channel image containing the original chest CT scans and
pulmonary shape prior, and a shape deformation module based
on a spatial transform network (STN) to restrict the V-Net out-
put to optimize the weights of the V-Net. Significant texture fea-
tures on the extracted pulmonary parenchyma were selected for
COVID-19 detection. Instead of building an end-to-end model, our
proposed approach contains two separate models, including im-
age segmentation and statistical feature analysis, and has high in-
terpretability to support clinical use. The flowchart of our pro-
posed approach is shown in Fig. 1. Our code is available now at
https://github.com/MIILab-MTU/KD4COVID19.

The innovations and main contributions of our approach are:

(1) A new deep-learning-based method that integrates a 3D V-
Net with shape priors was proposed for medical image seg-
mentation. The shape prior was used to optimize the model
weights in both V-Net input and output, which significantly
improved the model performance.

Instead of building an end-to-end model, our approach em-
ployed models with high interpretability in analyzing fea-
tures and generating detection results. It has a great promise
to support the computer-aided diagnosis of COVID-19 infec-
tion.

(2

—

2. Related work
2.1. COVID-19 detection using deep learning

Due to the powerful performance of feature representation,
deep-learning-based approaches have demonstrated impressive ca-
pability for COVID-19 detection. Both transfer learning-based net-
works [8] and customized deep networks [9] have been developed
for classification and segmentation related to COVID-19 infection.

It requires a great number of data and high computational
power to train a deep neural network. Transferring pre-trained
weights into a deep network facilitates the convergence while
keeping the feature representation. Weights trained using Im-
ageNet for natural image classification were widely applied to
COVID-19 detection tasks. Li et al. used 2D U-Net to segment lung
ROIs on CT slices, and then developed a COVNet which incorpo-
rated ResNet-50 as the backbone to perform COVID-19 detection
[10]. The features were locally extracted from each slice and a
max-pooling layer was used to capture the global features from
the set of local features. Javaheri et al. proposed a CovidCTNet,
which contained a BCDU-Net for lung segmentation and a convo-
lution neural network (CNN) to distinguish COVID-19, community-
acquired pneumonia (CAP), and healthy control subjects [11]. The
BCDU-Net was pre-trained using the data from a Kaggle lung seg-
mentation competition [12]. Chen et al. [13] employed a U-Net++
with ResNet-50 pretrained weights for COVID-19 infection detec-
tion. Ardakani et al. tested ten state-of-the-art CNNs for COVID-19
diagnosis using the labeled infected regions [14]. Most of the ex-
isting transfer learning-based CNNs focused on importing weights
from the 2D image classification network to predict COVID-19 in-
fection. However, 2D networks cannot fully use the information
from 3D CT scans, and thus influence the accuracy of infection de-
tection.

Compared with transfer learning-based networks, the CNN ar-
chitectures from scratch are not limited by existing weights. Hasan
et al. presented a combined deep learning model that contained a
Q-deformed entropy feature extraction module and a CNN for dis-
criminating COVID-19 infection from CAP and healthy controls us-
ing CT scans [15]. In this study, a long short-term memory (LSTM)
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layer was employed to process the feature sequences extracted
from the CT slices and the designed network achieved an accu-
racy of 99.68% for classifying COVID-19, pneumonia and healthy
cases. A multi-task deep learning model, which contained COVID-
19 lesion segmentation and COVID-19 classification was proposed
by Amyar et al [16]. The designed model achieved a Dice score of
0.78 for lung segmentation and an area under the receiver operat-
ing characteristic (ROC) curve of 93% for COVID-19 detection. Singh
et al. proposed a CNN that was fine-tuned by multi-objective dif-
ferential evolution for feature extraction and severity assessment
of COVID-19 [17]. The model achieved the best accuracy of 93%
for distinguishing COVID-19 subjects from healthy controls. Using
customized CNN, the function of the CNN is not limited to clas-
sification and segmentation, which provides the ability to design
flexible architectures for the specific applications and improves the
consistency and accuracy [9].

Redundant and non-related regions of interest limit the per-
formance of infection detection and degrade the effectiveness
of feature extraction and further analysis [18]. The pulmonary
parenchyma segmentation remains a challenge even though ex-
isting models achieved impressive performance for COVID-19
detection.

2.2. Shape priors in image segmentation

Image segmentation has been widely investigated using tra-
ditional image processing techniques, such as a clustering-based
method [19], and a filter-based method [20]. Recently, medical im-
age segmentation using deep learning models has achieved excel-
lent performance. Nevertheless, it is beneficial and important to
incorporate shape priors of the segmentation object with the seg-
mentation models for improved performance and accelerated con-
vergence. A strong reason is that shape is one of the most impor-
tant geometric attributes of anatomical objects [21], and the shape
priors can reduce the searching space of the potential segmenta-
tion outputs for deep learning models [22]. In addition, the shape
mesh provides sufficient information for the identification of 3D
objects [23]. However, it is challenging to develop an effective and
pervasive approach by integrating shape priors to improve model
generalizations.

Zheng et al. embedded the conditional random fields (CRFs)
into CNN as a post-processing module to perform image segmenta-
tion and trained an end-to-end neural network [24] to refine seg-
mentation results. Ravishankar et al [25] demonstrated that au-
toencoders, such as deep belief networks and convolutional au-
toencoders, could capture a low dimension of shape representation
for image segmentation. In [26], CNN was first employed to per-
form object detection, and a stacked autoencoder was used to infer
the shape of the object. Then, the shape deformation module was
used to incorporate the predicted shape to improve the segmen-
tation accuracy. In addition, non-machine learning-based methods,
such as level set and active contour models, were combined with
deep learning models to refine the segmentation results [27,28].
However, most of the existing methods only incorporated shape
priors into model inputs, and there are only a limited number of
studies that incorporate shape priors into model outputs. It is dif-
ficult to generate shape priors automatically. Even if possible, the
generated shape priors are inaccurate, making it less effective to
guide model training.

3. Methodology

3.1. Image acquisition and pre-processing

In total, 112 CT scans were enrolled into this retrospective study
from Shanghai Public Health Clinical Center, including 58 subjects
with confirmed COVID-19 infection, 24 subjects with CAP and 30
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healthy controls. Within the COVID-19 subjects, 30 cases were in-
fected with severe COVID-19 and 7 of them died eventually. The
study was approved by the ethics committee of the Shanghai Pub-
lic Health Clinical Center.

Rescaling and resampling strategies were applied to CT images
to overcome the GPU memory limit and accelerate the training/test
process. For all CT scans, the slice thickness was resampled into 5
mm. The in-plane pixel size ranged from 0.579 mm to 0.935 mm.
For each CT slice, we cropped the central part with a fixed size of
384x384 for further analysis. As a result, the number of CT slices
ranged from 52 to 90 for each subject. Then, experienced operators
manually delineated the contours of the bilateral lungs for all the
112 subjects. Because the number of subjects was relatively limited
in terms of the segmentation task, data augmentation, including
random flipping, random cropping and random rotation, was ap-
plied. In the following COVID-19 diagnosis task, all subjects were
categorized into the COVID-19 and non-COVID-19 groups for a bi-
nary classification based on statistical analyses.

3.2. Pulmonary parenchyma segmentation

The architecture of the proposed segmentation is a unified net-
work containing two modules, as illustrated in Fig. 2. Basically, our
SP-V-Net has a 3D V-Net and a shape deformation module. The 3D
V-Net was used to perform an end-to-end lung extraction and the
shape deformation module was utilized to refine the V-Net output
using prior shape knowledge.

3.2.1. Shape prior generation

A thresholding method was applied to generate the shape pri-
ors of the pulmonary parenchyma. In CT slices in our dataset, the
Hounsfield unit (HU) values of voxels ranged from -2048 to +4000.
-2048 represented the area without the CT scan. Air has the value
of -1000 HU, and water has the value of 0 HU. The air-filled struc-
ture, such as the lung, ranges from -830 HU to -200 HU. A binary
thresholding method was applied with the threshold of -320 to
extract pulmonary parenchyma. Because the HU scale is typically
regarded as a calibrated scale [29], the thresholding method’s gen-
eralizability is guaranteed.

In practice, the binary thresholding method often generates dis-
crete regions due to the variation of the brightness and contrast of
the lung CT. To remove the discrete regions, we calculated the vol-
ume of the extracted regions. If the volume of a region was greater
than 1% percent of the whole CT volume, the region was kept; oth-
erwise, the region was removed. After that, a morphological clos-
ing operation, which contained a morphological dilation followed
by erosion, was performed to smoothen the boundaries of the ex-
tracted regions.

3.2.2. The proposed 3D V-Net

The 3D V-Net designed in this study was a volume-based deep
learning neural network. The input of the V-Net was two-channel
3D images with a size of 384x384x32x2 containing a cropped CT
volume and a binary mask of the lung from the shape prior. The V-
Net output was the probability map of the pulmonary parenchyma
with the size of 384x384x32, where 1 indicates the lung region
and 0 represents the background. The V-Net contained an encoder
to extract hierarchical features and a decoder to restore the ex-
tracted features and generate the final segmentation probability
map. The architecture of the designed V-Net is shown in Fig. 2(a).

The encoder contained three max-pooling layers and several
convolutional layers. Each convolutional layer was followed by a
batch normalization layer and a ReLU activation function. The ker-
nel size of the convolutional layers was fixed as 3x3x3. The stride
of the max-pooling layers was set as 2 through each axis, and thus
the size of the feature maps shrunk by half after applying each
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Fig. 2. The architecture of the proposed SP-V-Net for pulmonary parenchyma segmentation. (a) An end-to-end 3D V-Net for lung segmentation. (b) The shape prior defor-
mation module is based on a spatial transformation network (STN) to refine the V-Net output.

pooling operation. By extracting features from the feature maps
with different sizes, the hieratical features were obtained and the
receptive fields of the deep neural network were enhanced. The
deconvolutional layers in the decoder were responsible for restor-
ing the down-sized feature maps. The stride of the deconvolution
layer was 2 so that the size of the feature maps was enlarged twice
after applying each deconvolution layer. Moreover, a dropout tech-
nique [30] was adopted to prevent overfitting. One dropout layer
was inserted before the last convolutional layer in the V-Net, as
shown in Fig. 2(a). During the training period, the dropout proba-
bility was set as 0.5.

3.2.3. Incorporating shape priors by spatial transformer network

Since the size of pre-defined shape priors is not the same as
that of the manually delineated pulmonary parenchyma, direct in-
corporation of shape priors into the V-Net input limits the model
performance. To further utilize the shape prior of the pulmonary
parenchyma, improve the accuracy of the V-Net output and restrict
the V-Net output, an image deformation module was applied to
align the V-Net output according to the shape prior. In our SP-V-
Net, the shape deformation module performed a non-rigid affine
transformation.

In detail, a non-rigid shape deformation module which was im-
plemented by a spatial transformer network (STN) [31], was em-
bedded in the SP-V-Net. The STN inputs were the pre-defined
shape prior to the pulmonary parenchyma and the V-Net gen-
erated probability map of the pulmonary parenchyma mask. The
sizes of the two inputs were the same and they were concatenated
as a two-channel image. The output of the STN was the 12 param-
eters of the affine transformation matrix 8. The parameters of the
optimal affine transformation were trained by the difference be-
tween the probability map generated by the V-Net and the pre-
defined shape prior.

Denote the input CT volume with the size of W x H x D as X,
and the pre-defined shape prior as T, where T is a binary image
and it has the same size as X. The ground truth of the pulmonary
parenchyma is defined as Y. The V-Net output is defined as V with
the same size as X, where V is a probability map of the pulmonary
mask. The affine transformed output is denoted by V. The shape
deformation module takes both the V-Net output V and the binary
template T as a two-channel input image to calculate the param-

eters of the affine transformation matrix 6. The basic affine trans-
form containing translation, scaling and shearing matrices is con-
stituted by:

1 0 0 Ax sx 0 0 O
|10 1 0 Ay |10 s, 0 O
translate = 0 0 1 Az scale = 00 s, 0
0 0 0 1 0 0 0 1
1 hy he O
_|hx 1 hy; O
shear = hx hy 1 0
0 0 0 1

Because the numbers at the last row of the above three matri-
ces are fixed constants, the calculated affine transformation matrix
0 is a 3 x 4 matrix as follows:

On 6 013 6O
0y 02 O3 Oy
931 932 933 934

where 6q1, 6,5;, 633 represent the scaling parameters, 014, 654, 034
are the translation parameters, and 6y, 613, 63, 031, 031,63, in-
dicate the shearing parameters.

Suppose that the coordination of a voxel in V is (x,y7,2}) and
the coordination of a voxel in V is (£, y%,zb). The affine transfor-
mation performed by the STN is shown in Eq. (1).

xt xt
X} yi On 6 O3 Ou y-%
y; | =0 Z} =[0n On O3 0On Z} =Tp(V) (M
A 1‘ 031 O 033 O3 1‘
where T, represents the transformation function, and

ie [1, 2, ...,HWD] is the index of the voxels. Note that the
coordinate mapping is from the target volume V to the source
volume V. The shape deformation module tends to find the map-
ping that fills all the voxels in the target according to the source;
thus, the module is required to iterate each voxel in the target
volume rather than in the source volume. Typically, to limit the
model output space and prevent the model from collapsing, the
coordinates of the voxels in the source and target volumes are
scaled into [0, 1], respectively.
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Algorithm 1
Multi-step strategy for training the SP-V-Net.
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Inputs: X: a cropped CT volume; T: the pre-defined shape prior;
Y: ground truth of pulmonary parenchyma; e: the number of the training epochs.

Output: trained SP-V-Net.
In epoch 1 to epoch 0.2e:

Step 1: Training V-Net while fixing the weights of the STN using the loss function defined in Eq. (3).

In epoch 0.2e to epoch 0.4e:

Step 2: Training STN while fixing the weights of the V-Net using the loss function defined in Eq. (4).

In epoch 0.4e to epoch e.

Step 3: Training SP-V-Net jointly using the loss function defined in Eq. (5).

The coordinates obtained by the affine transformation were
float numbers that could not be used as the positions of the vox-
els. Thus, a trilinear interpolation module was applied to sample
the coordinates and prevent the transformed voxel from extrapo-
lating the outside of the 3D volume, as defined in Eq. (2):

H W D
Vi=Y"3"> Vymmax (0,1- ‘Xf—n|)max(0,1 - |yl$_m|)
m

n

xmax (0,1 |z —1).Vie[1,...,HWD] ()

The architecture of the designed shape deformation network is
shown in Fig. 2(b). Three convolutional layers and max-pooling lay-
ers were employed to extract hierarchical features from the con-
catenated two-channel input image. An average pooling layer con-
verted the extracted feature maps into a flattened feature vector,
and the fully connected layer generated the transformation matrix.

3.2.4. Loss function and optimization

The proposed SP-V-Net contained a V-Net for pulmonary
parenchyma segmentation and a shape deformation module im-
plemented by STN for refinement of the segmentation. The dis-
crepancy between the V-Net output and the corresponding ground
truth was calculated by pixel-wise loss. To train the V-Net, a sig-
moid cross entropy was employed to minimize the discrepancy be-
tween the V-Net output V and the ground truth Y as follows:

H W D

LV—Net = Z Z Z ( - Vnml lOg (Singid(Ynml)) - (1 - Vnml)
n om |

x log (1 — sigmoid (Vo)) ) + Wi | (3)

where W; represents all weights in the V-Net and ||W;]|, is a L2
regularizer.

However, the STN is an unsupervised network since the gold
standard of the calculated affine transformation parameters is un-
known. Instead of directly optimizing the weights of the shape
deformation module using the gold standard of the transforma-
tion parameters, the affine transformation was applied to the V-
Net output V to generate V, and then the discrepancy between the
transformed output V and the ground truth Y was utilized to fine-
tune the weights of the shape deformation module. To train the
shape deformation module, another sigmoid cross entropy was uti-
lized to penalize the discrepancy between V and Y, as illustrated in

Eq. (4).
LDeform = Zln{ Z‘r/nv ZP ( - Vnml log (Singid Yamp))

—(1 = Vymi) log (1 — sigmoid(Ynm,))> + [Wall

where V = Ty (V), and W, represents the weights of the shape de-
formation module.

During the model training, the shape deformation module and
the designed V-Net were trained jointly with the loss function de-

fined in Eq. (5).
L = Lv_net + Lpeform
= S5 5P (= Vamilog (sigmoid (Yom) — (1 = Vi)
x log (1 — sigmoid (Ypmi)) — Vit log (sigmoid (Yym))  (5)
—(1 = Vum) log (1 — sigmoid(Ynm,)))
+IWillz2 + [Wall2

The entire architecture of the proposed SP-V-Net contained two
parts: a V-Net and an STN. At first, the two different parts were
trained separately, and then the two parts were trained jointly. To
train the SP-V-Net, a multi-step training strategy was used. The
strategy is shown in Algorithm 1.

In the beginning, the weights in the V-Net and shape deforma-
tion module were randomly initialized. Thus, the affine transfor-
mation matrix was randomly generated, and the calculated defor-
mation loss in Eq. (4) was extremely high. In addition, the V-Net
generated mask, V, was not close to the ground truth of the lungs.
Randomly transforming the V-Net segmentation result V biases the
V-Net weights and could cause the model to collapse. Thus, in
step 1, the weights in the shape deformation module were fixed
at the initial training epochs, and the training was only performed
on the V-Net. In step 2, the V-Net was well-trained; however, the
shape deformation module was still randomly initialized. Because
the loss calculated by Eq. (4) is substantial compared with the loss
calculated by Eq. (3) at this point, fine-tuning the weights in the
shape deformation module and the V-Net jointly causes a great
bias to the weights of V-Net. Thus, the V-Net weights were fixed,
and the training process was only performed on the shape defor-
mation module. In step 3, we adopted Eq. (5) as the loss function
to fine-tune the SP-V-Net jointly for the rest epochs.

Our SP-V-Net model was implemented in Python using Ten-
sorFlow, and the model was trained on a workstation with an
NVIDIA Titan V GPU. The Adam Optimizer was used to fine-tune
the weights of the SP-V-Net. The model was trained for 1000
epochs with a batch size of 1. A 5-fold stratified cross-validation
was performed to validate the model, and the subjects were ran-
domly selected according to the proportion of subjects in each cat-
egory, i.e. CAPs, healthy controls and COVID-19 patients. In the 5-
fold cross-validation, 80% of the subjects were used as the train-
ing set, and the rest 20% were used in the testing set. Data aug-
mentation techniques, such as rotation, flipping, brightness trans-
form, and Gaussian noise transform were randomly applied to the
cropped CT volumes. The corresponding rotation and flipping were
applied to the generated shape priors as well.

3.3. Feature extraction and analysis for COVID-19 detection

After segmentation, the lung regions were cropped for feature
extraction and analysis. Among the 85 radiomic features mea-
sured from the lung regions [32], in order to overcome the high-
dimensional curse, only a small number of features were selected
using feature selection algorithms for statistical analyses to de-
tect COVID-19 infection. These selected features were investigated
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Fig. 3. Workflow of the feature extraction and analysis for COVID-19 detection. ROC,receiver operating characteristic (ROC) curves; AUC, area under the curve.

to evaluate their classification performance by the univariate and
multivariate regression, and ROC curves. Furthermore, the multi-
variate analysis was tested to build the COVID-19 diagnosis model.
The correlation between the features measured from our segmen-
tation results and manual annotation was analyzed as well.

3.3.1. Feature extraction

Eighty-five texture features, as presented in [32], were mea-
sured. They can be divided into seven types of features, includ-
ing first-order histogram-based features, gray level co-occurrence
matrix (GLCM) features, gray level size zone matrix (GLSZM) fea-
tures, gray level run length matrix (GLRLM) features, neighboring
gray-tone difference matrix (NGTDM) features and gray level de-
pendence matrix (GLDM) features. All these CT texture features are
associated with histopathology, such as pulmonary fibrosis [33],
which have been shown in more than one-third of COVID-19 pa-
tients after recovery [34].

3.3.2. Feature selection and COVID-19 detection

The feature selection and COVID-19 detection were imple-
mented by statistical analysis, as shown in Fig. 3. After feature ex-
traction, a univariate binary logistic regression analysis was applied
to evaluate the potential features for COVID-19 classification. In the
univariate binary logistic regression analysis, each feature was used
as the independent variable, and the label (0 or 1) of a subject
was used as the dependent variable. '1” means that the subject has
COVID-19 and '0’ means that the subject does not have COVID-19.
The output of the univariate binary logistic regression analysis is
the probability of the subject having COVID-19 given the value of
the feature. The p-value for the univariate binary logistic regression
analysis was calculated using a likelihood-ratio test [35].

Using the univariate binary logistic regression analysis, all the
features with p<0.05 (which are statistically significant) were se-
lected to construct a feature set for further analysis. After that, for
each feature in the selected feature set, we computed the Pearson’s
correlation coefficient between this feature and each other feature
in the feature set. If the Pearson’s correlation coefficient was more
than a threshold (0.83 in this paper), then the feature with a lower
AUC value was removed from the feature set.

The features selected from the aforementioned step were used
for COVID-19 classification. For simplicity and interpretability, we
estimated a multivariate generalized linear model [36] for classifi-
cation. During the experiments, a 5-fold cross-validation was per-
formed to validate the model performance, in which 80% of the
subjects were used as the training set and the rest 20% as the test-
ing set.

Instead of using the features automatically extracted in the
deep CNN, the COVID-19 classification task of our approach is
based on statistical analysis with the handcraft radiomic features.
The proposed classification method focuses on the interpretability
of the features and the relationship with clinical decision making,
which has important advantages to support clinical uses. Since the

radiomic features were high dimensional and the number of sub-
jects in our dataset was limited, the univariate, multivariate, Pear-
son, and ROC analyses were applied to select statistically signifi-
cant features, remove the redundant features, and build prediction
models.

3.4. Evaluation metrics

Metrics for segmentation. We evaluated the performance of the
proposed SP-V-Net segmentation model using Dice similarity co-
efficient (DSC), sensitivity (SN) and specificity (SP). DSC measures
the proportion of the intersection between the voxels extracted by
our segmentation model and the voxels in the ground truth. The
definition of DSC is defined as

2lo(VynY|
lo(V)| +1Y]

where o(-) indicates the OTSU binarization method [37], Y repre-
sents the ground truth of the lung mask, V represents the pre-
dicted probability map, and | - | indicates the number of foreground
(pulmonary) voxels within a specific CT volume.

The SN measures the proportion of the true positive (TP) voxels
that are correctly detected, while the SP measures the proportion
of the true negative (TN) voxels that are correctly predicted. The
definitions of SN and SP are shown in Eq. (7) and Eq. (8), respec-
tively.

DSC = (6)

TP

SN “TP+FN (7)
TN

SP =M1 (8)

where FN and FP indicate the false negative voxels and the false
positive voxels, respectively.

Because the DSC cannot reflect the accuracy of the extracted
surface of the lung parenchyma, the surface Dice similarity coef-
ficient (SDSC) was used to measure the surfaces’ overlap instead
of the volumes in our study. The definition of SDSC is shown in
Eq. (9).
2|s(o(V)) ns(Y)|
Is(o(V)| + [s(Y)]
where s is the function used to extract the surface of the corre-
sponding volume. SDSC calculation was implemented by searching
the neighbor voxels for each voxel in the volume.

A DSC, SN, SP, or SDSC of 1 implies a perfect agreement be-
tween the segmentation results and the ground truth.

In addition, the Hausdorff distance (HD) was adopted to mea-
sure the maximum voxel distance between the predicted lung
masks and the ground truth. The mean surface distance (MSD)
[38] was used to evaluate the average surface distance. An HD or
MSD of 0 indicates a perfect agreement.

SDSC = (9)
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Fig. 4. Examples of segmentation results. From left to right are three COVID-19 subjects, one CAP subject, and one healthy control. Row 2, ground truth; Row 3, contours from
shape prior by binary thresholding; Rows 4-6, contours by SP-V-Net, MC-V-Net, and the plain V-Net, respectively. CAP, community-acquired pneumonia. (For interpretation
of the references to color in this figure legend, the reader is referred to the web version of this article.)

Metrics for classification. The COVID-19 detection task is a binary
classification task. The AUC, SN and SP were employed to evaluate
the model performance.

4. Experimental results and discussion
4.1. Segmentation of pulmonary parenchyma
To demonstrate the effectiveness of the proposed SP-V-Net, two

baseline models were implemented by removing the shape prior
and the shape deformation module, respectively. Therefore, a plain

V-Net with one-channel input (the CT volume) and a multi-channel
V-Net (MC-V-Net) with two-channel input (containing the CT vol-
ume and the shape prior of the CT volume) were obtained as the
baseline models. In these two baselines, the shape deformation
module was removed. And in the experiments, the plain V-Net
and MC-V-Net were trained by the loss function defined in Eq. (3).
However, the architectures of the V-Nets in the three models were
the same. The segmentation results of five subjects are shown in
Fig. 4.
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Fig. 5. Visualization of surface distances for a COVID-19 subject, a CAP subject, and a healthy control subject. All the volumes were resampled with a fixed voxel spacing
of Tmm and a slice thickness of Imm. The color bar indicates the surface distances. The areas highlighted by circles represent the areas with a smaller surface distance
acquired by SP-V-Net (Row 2) than those by MC-V-Net (Row 3) and by plain V-Net (Row 4). (For interpretation of the references to color in this figure legend, the reader is

referred to the web version of this article.)

In our dataset, three different types of subjects were en-
rolled, where the morphological shapes of the pulmonary ROIs
differed significantly. According to Fig. 4, the contours gener-
ated by the SP-V-Net were smoother than those generated by
the MC-V-Net and the plain V-Net among all the three types
of subjects. By visual comparison, it can be noted that irreg-
ularities were removed by applying SP-V-Net, because the con-
nected small regions away from the pulmonary parenchyma van-
ished. In addition, the adopted thresholding method was not able
to generate a precise contour due to the variation of the HU

values among the COVID-19 subjects, CAP subjects, and healthy
controls.

To better visualize the results generated by the plain V-Net,
MC-V-Net and SP-V-Net, the surface distances were visualized from
three different view angles, as shown in Fig. 5. The corresponding
HD and MSD are depicted in Fig. 5 as well.

According to Fig. 5, even though the shape priors generated by
the thresholding method were not precise, incorporating shape pri-
ors into the V-Net was still beneficial to the segmentation model.
As a result, the MSDs within the selected three subjects were sig-
nificantly reduced in MC-V-Net and SP-V-Net compared with the
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Table 1
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Quantitative evaluation for the thresholding method, the plain V-Net, MC-V-Net, and the proposed SP-V-Net for different cohorts. ALL means all enrolled subjects in the
test set; CAP means community-acquired pneumonia; HC means healthy controls. DSC, Dice similarity coefficient; SDSC, surface Dice similarity coefficient; HD, Hausdorff

distance; MSD, mean surface distance.

Method Cohort SN SP DSC SDSC HD (mm) MSD (mm)
Threshold ALL 0.9548 0.9741 0.9042 0.4228 33.9402 0.4107
method COVID-19 0.9506 0.9766 0.9017 0.4128 31.8981 0.2618
CAP 0.9603 0.9761 0.9027 0.4365 34.9263 0.2231
HC 0.9581 0.9656 0.9121 0.4304 37.6577 0.9933
V- ALL 0.9781 0.9785 0.9404 0.7365 360.9046 1.5006
Net COVID-19 0.9790 0.9765 0.9366 0.7204 364.6403 1.0620
CAP 0.9643 0.9773 0.9257 0.7161 371.5045 4.0511
HC 0.9888 0.9868 0.9683 0.8133 337.2297 0.4853
MC- ALL 0.9744 0.9954 0.9732 0.9005 41.0517 0.0434
V- COVID-19 0.9736 0.9955 0.9705 0.8984 36.5794 0.0524
Net CAP 0.9617 0.9976 0.9749 0.8885 71.2026 0.0387
HC 0.9899 0.9930 0.9819 0.9196 26.5537 0.0167
SP- ALL 0.9840 0.9943 0.9796 0.9134 20.2249 0.0318
V- COVID-19 0.9822 0.9940 0.9775 0.9068 21.1892 0.0398
Net CAP 0.9826 0.9964 0.9830 0.9225 25.6124 0.0211
HC 0.9918 0.9931 0.9833 0.9277 11.4624 0.0146
Table 2

results generated by the plain V-Net. Due to the large slice thick-
ness (5mm) in our dataset, errors occurred in the first several
slices of the lung where the contrast was low due to the low den-
sity of the tissue. The areas highlighted by circles demonstrate that
the proposed SP-V-Net effectively reduced the surface distances in
the initial slices of the pulmonary parenchyma. The quantitative
comparison among the segmentation models is listed in Table 1.

In Table 1, the comparisons based on SDSC, HD and MSD illus-
trate that the proposed SP-V-Net significantly improved the seg-
mentation accuracy in the cohorts of ALL (all enrolled subjects in
the test set), COVID-19, CAP, and healthy control. The SDSC was
improved by 1% in the proposed SP-V-Net than that in the MC-V-
Net among all subjects. Compared with MC-V-Net, the average HD
of the SP-V-Net was reduced by half, and the MSD was reduced by
26% (from 0.0434 mm to 0.0318 mm) among all subjects. For the
COVID-19 cohort, the MSD was reduced from 0.0524 mm in MC-V-
Net to 0.0398 mm in SP-V-Net; and for the CAP cohort, the MSD
was reduced from 0.0387 mm in MC-V-Net to 0.0211 mm in SP-V-
Net. Accordingly, Table 1 demonstrates that the proposed SP-V-Net
achieved the best segmentation performance for all cohorts.

To verify the effectiveness of the proposed multi-step train-
ing strategy for optimizing SP-V-Net, the loss values for the V-Net
module in the SP-V-Net, which are calculated by Eq. (3), are de-
picted in Fig. 6. For comparison, we trained the SP-V-Net using the
loss function defined in Eq. (5) during the entire training period,
called as 'SP-V-Net baseline’. Fig. 6 shows that the proposed SP-
V-Net with the multi-step training strategy achieved a lower loss
at the epoch 1000. In contrast, the loss of the SP-V-Net baseline
dropped slowly at the initial training epochs. Thus, the proposed
multi-step training was effective. The loss values in SP-V-Net were
successfully backpropagated, and the weights of the SP-V-Net were
well fine-tuned.

4.2. COVID-19 detection and feature interpretation

4.2.1. COVID-19 detection

Using the methods listed in Section 3.3.1, 85 features were ex-
tracted for statistical analysis. All the subjects were included in the
COVID-19 classification task. In our dataset, a total of 112 CT scans
were enrolled, and there were 58 subjects with confirmed COVID-
19 infection, 24 subjects with CAP, and 30 healthy controls. In the
COVID-19 detection task, all the COVID-19 subjects were positive
samples while the rest were negative samples. As a result, the
dataset used for COVID-19 detection was relatively balanced.

Quantitative evaluation of COVID-19 detection using radiomic features measured
from lung regions by different segmentation models.

Method ACC SN SP AUC

V-Net 0.9090 0.9167 0.9000 0.9083
MC-V-Net 0.9445 0.9167 1.0000 0.9383
SP-V-Net 0.9460 0.9670 0.9270 0.9470

Eighty-five features were measured from the lung regions for
the univariate analysis. Features with a p<0.05 in the univariate
analysis were selected as the statistically significant features [39].
The Pearson analysis was further applied to investigate the corre-
lations among these selected features and if the correlation was
above a cut-off of 0.83, only the features with the higher AUC score
were kept. After this step, only 10 features were kept and used for
COVID-19 detection. In the experiments, the COVID-19 detection
was a binary classification task. There are many classification algo-
rithms available to this task. In this paper, we used a simple gener-
alized multivariate linear regression model because it is simple and
has a high interpretability. It achieved the best performance com-
pared with other machine learning algorithms. For comparison, for
the lung regions generated by plain V-Net, MC-V-Net and SP-V-
Net, we extracted the same 10 features and used them to train
the multivariate generalized linear regression model, respectively,
and then the trained models were used to detect COVID-19 infec-
tion. A 5-fold stratified cross validation was used to train and vali-
date the model performance. Before the training and test, the data
was normalized by a z-score method. The detection performance
is illustrated in Table 2. According to Table 2, using the contours
generated by SP-V-Net, the generalized linear model achieved the
highest AUC score of 0.9470.

To further demonstrate the effectiveness of the proposed fea-
ture selection method, data normalization, and generalized linear
regression model, more experiments were performed. Besides the
proposed linear regression model, we performed experiments us-
ing other classification algorithms. These algorithms included logis-
tic regression model (LR), support vector machine (SVM), random
forest (RF) and k-nearest neighbors (KNN). The results are listed in
Table 3.

The grid search was performed to find the parameters for the
best performance for each classifier. The best logistic regression
was obtained by using an L2 regularizer. The number of the neigh-
bors in the best KNN classifier was 3. The best random forest clas-
sifier was trained by using Gini impurity with the max depth of
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Fig. 6. Loss values calculated by Eq. (3) for SP-V-Net with multi-step training and without multi-step training. To better reflect the training loss, we only visualized the loss

between 0 and 0.2.

Table 3

Performance comparison for COVID-19 detection using different models. LR means logistic regression; KNN means k-nearest neighbors; RF means random forest; SVM means
support vector machine; GLM means generalized linear model, which is demonstrated in Section 3.3.2. ACC, accuracy; SN, sensitivity; SP, specificity; AUC, area under the
receiver operating characteristic curve. Feature selection YES means that the features were obtained using the feature selection method proposed in Section 3.3.2 (only 10
features were used). Feature selection NO means that 85 radiomic features were used. The normalization YES means that the features were normalized before classification.

Feature selection Normalization Methods ACC SN SP AUC
1 YES YES LR 0.9240 0.9230 0.9250 0.9260
2 YES YES KNN 0.8210 0.8970 0.7050 0.9150
3 YES YES RF 0.8570 0.8610 0.8550 0.9390
4 YES YES SVM 0.9450 0.9850 0.9091 0.9870
5 YES YES GLM 0.9460 0.9670 0.9270 0.9470
6 YES NO LR 0.7937 0.8773 0.7055 0.9235
7 YES NO KNN 0.7502 0.6924 0.7800 0.7673
8 YES NO RF 0.8660 0.8606 0.8727 0.9400
9 YES NO SVM 0.4735 0.5500 0.4182 0.5087
10 YES NO GLM 0.9280 0.9318 0.9272 0.9295
11 NO YES LR 0.9379 0.9251 0.9091 0.9356
12 NO YES KNN 0.8213 0.8439 0.6872 0.9056
13 NO YES RF 0.8217 0.8924 0.7454 0.9012
14 NO YES SVM 0.9458 0.9233 0.9191 0.9440
15 NO NO LR 0.4822 0.0000 1.0000 0.6484
16 NO NO KNN 0.6426 0.8136 0.4618 0.6683
17 NO NO RF 0.8217 0.8924 0.7454 0.9012
18 NO NO SVM 0.4545 0.6333 0.2600 0.5541

4 and an estimator number of 15. The best support vector ma-
chine was trained with a radial basis function kernel. According to
Table 3, the generalized linear regression used in this study out-
performed other classification methods in terms of ACC and SP for
the COVID-19 classification.

Table 3 also demonstrates that the generalized linear regres-
sion model with the proposed feature selection achieved nearly the
same performance when using the normalized or un-normalized
features (Row 5 and Row 10). Using the normalized features,
the generalized linear model with the proposed feature selection
achieved the highest accuracy and specificity than other experi-
mental settings. However, using the normalized selected features,
the SVM with the proposed feature selection achieved a higher SN
and AUC.

10

One important finding was that with the normalization, the
performance of the machine learning methods was enhanced sig-
nificantly, while the generalized linear regression model achieved a
relatively high performance even if without normalization. Another
finding was that the feature selection processed by the univariate
and Pearson correlation analyses (Row 1 to Row 10 in Table 3)
was effective for improving the model performance and reducing
the computational complexity. The performance of machine learn-
ing methods using all features and unnormalized data was influ-
enced significantly by the small training sample size, especially for
LR (Row 6 and Row 15 in Table 3) and KNN (Row 7 and Row 16 in
Table 3). In summary, the proposed feature selection was effective,
and the generalized linear model was robust for COVID-19 classifi-
cation.
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Table 4

Performance comparison of our proposed COVID-19 detection approach with state-
of-the-arts. ACC, accuracy; SN, sensitivity; SP, specificity; AUC, area under the re-
ceiver operating characteristic curve.

Data Type Method ACC SN SP AUC

CT Zhang et al. [40] 0.9249 0.9493 0.9113 0.9797
Panwer et al. [41] 0.8810 0.9762 0.8913 0.8810
Harmon et al. [42] 0.8960 0.8450 0.9160 0.9410
Proposed 0.9460 0.9670 0.9270 0.9470

Table 4 compares the performance of our proposed classifica-
tion method (generalized linear model with the proposed feature
selection and data normalization) with those by the state-of-the-
arts. Because different subjects were enrolled, Table 4 only pro-
vides a limited comparison. In Table 4, our proposed COVID-19
detection method achieved a higher accuracy and specificity com-
pared with the method proposed by Zhang et al. [40] and Panwer
et al. [41]. One reason is that they only used CT slices instead of
the entire CT volumes. In both of their approaches, the features
were extracted using deep neural networks. However, our method
focuses on radiomic features, which has a high interpretability.
Our method also achieved a higher AUC score compared with Har-
mon et al. [42]. In [42], the CT volume was used to perform lung
segmentation and COVID-19 detection. However, their approach
achieved a DSC of 0.95 for lung segmentation, while our SP-V-Net
achieved a DSC of 0.9796. Finally, the method in [42] achieved an
AUC of 0.9410 for COVID-19 detection, which is inferior to ours. All
of these indicate that accurate lung segmentation is important for
COVID-19 detection, and it is beneficial to use the entire CT volume
for an overall classification.

4.2.2. Feature analysis and interpretation

The 10 features selected after applying the univariate and Pear-
son analysis based on the lung regions extracted by our proposed
SP-V-Net are shown in Table 5. As a comparison, the results of the
multivariate analysis using the lung regions from the ground truth
are depicted in Table 6.

According to Tables 5 and 6, 10 and 9 features were included in
the multivariate analysis using the lung regions from our SP-V-Net
segmentation and manual annotation, respectively. Furthermore, 3
features from lung regions generated by SP-V-Net were statistically
significant, while 5 features from manual annotation were statisti-
cally significant. More importantly, 7 shared features were included
in the two multivariate analysis experiments, which suggested that
there was a high agreement between the features measured from
the SP-V-Net segmentation and those from the manual annotation.
More details about these features are explained as follows:

GLSZM features: A GLSZM feature quantifies gray level zones in
an image. A gray-level zone is denoted as the number of the con-
nected voxels that share the same gray level intensity, i.e. the same

Table 5
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HU value in CT slices. In our experiments, the infinity norm was
implemented by 26-connected regions. The small area emphasis
measures the distribution of small size zones.

First order features: three features, including median, range, and
90 percentile were selected in both experiments. The first order
features were calculated by the voxel intensities within the lung
region. Since the infection area and the abnormal region of inter-
est for the COVID-19 subjects occupy limited voxels, the intensity-
based features are not important for differentiating COVID-19 from
healthy controls using CT images.

GLDM features: two features were kept in the multi-variable
analysis for both experiments. A GLDM quantifies gray level de-
pendency in the CT images. A gray level dependency is denoted
as the number of connected voxels within the center voxel de-
pendent on the center voxel. The element located at (i, j) in the
GLDM indicates the number of times that a voxel with gray level
i with j dependent voxels in its neighborhood appears in the 3D
volume. The large dependence high gray level emphasis (LDHGLE)
measures the distribution of large dependence with higher gray-
level values. A higher gray value in the lung region indicates the
voxel near lung nodule, ground-class opacities and lung consolida-
tion with a rounded morphology [5]; thus LDHGLE is important for
COVID-19 classification. In addition, by comparing Tables 5 and 6,
only one feature, LDHGLE, was commonly selected in both experi-
ments and was statistically significant for COVID-19 classification.

Table 7 shows the mean values, ranges, and standard deriva-
tions (STD) of the statistically significant variables (with p<0.05)
from different cohorts in Table 5. It can be observed that the mean
value and range of the LDHGLE are significantly different between
the COVID-19 cohort and other cohorts, which indicates that this
interpretable feature is important.

In Fig. 7, CT slices from different cohorts are illustrated. The
"ground glass" areas can be seen in the two COVID-19 subjects.
The difference in the corresponding LDHGLEs between the COVID-
19 subjects and other cohorts is extremely large, indicating that
this interpretable feature is also important.

The Pearson correlations between the features from the lung re-
gions by the SP-V-Net segmentation and those by manual annota-
tion are illustrated in Table 8. A higher Pearson correlation indi-
cates that the features are significantly correlated, and the SP-V-
Net model has a high accuracy. According to Table 8, the Pearson
correlation analysis indicates the features measured from lung re-
gions extracted by the SP-V-Net highly correlated with the features
measured from manual annotation for the 10 selected features, ex-
cept two features, including the range feature, which belongs to
the first order features, and cluster shade, which belongs to the
GLCM features.

Multivariate generalized linear analysis of COVID-19 classification using lung regions extracted by the SP-V-Net segmentation. P-value < 0.05 indicates that it is a statisti-
cally significant feature. The odds ratio (OR) is listed correspondingly. An asterisk indicates that the feature was selected in both experiments using lung regions from our

SP-V-Net segmentation and the ground truth.

Variable Type Variables p-value OR

GLCM Cluster Shade 0.001 0.999
Informational Measure of Correlation 0.220 0.006

GLSZM Size Zone Non Uniformity* 0.688 0.999
Large Area High Gray Level Emphasis* 0.061 1.000
Small Area Emphasis 0.000 5.464e+10

First Median* 0.185 1.000

order Range* 0.534 0.999
90Percentile* 0.054 1.001

GLDM Small Dependence Low Gray Level Emphasis* 0.488 1.905e+07

Large Dependence High Gray Level Emphasis* 0.004 1.000
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Table 6
Multivariate generalized linear analysis of COVID-19 classification using lung regions from the manually annotated ground truth. An asterisk indicates that the feature was
selected in both experiments using lung regions from our SP-V-Net segmentation and the ground truth. OR, odds ratio.

Variable Type Variables p-value OR
GLSZM Size Zone Non Uniformity Normalized 0.000 2.245e+06
Size Zone Non Uniformity* 0.487 1.000
Small Area High Gray Level Emphasis 0.005 0.999
Large Area High Gray Level Emphasis* 0.000 1.000
First Median* 0.000 1.003
order Range* 0.734 0.999
90Percentile* 0.227 1.000
GLDM Small Dependence Low Gray Level Emphasis* 0.658 0.000
Large Dependence High Gray Level Emphasis* 0.001 1.000
Table 7

Information about the statistically significant features for COVID-19 detection from different cohorts. CAP, community-acquired pneumonia; HC, healthy controls; STD, stan-
dard derivations.

Variable Type Variables Cohort Mean Range STD
GLCM Cluster Shade COVID-19 6051.7986 [2595.0043, 12735.9115] 2231.6201
CAP 7475.7171 [3058.1410, 13854.4794] 3071.6227
HC 6619.6907 [3749.2333, 14663.6807] 2388.6481
GLSZM Small Area Emphasis COVID-19 0.7424 [0.7092, 0.7730] 0.0163
CAP 0.7205 [0.6909, 0.7521] 0.0136
HC 0.7270 [0.6883, 0.7420] 0.0107
GLDM Large Dependence High COVID-19 15900.5727 [6445.3997, 47463.3938] 8079.9679
Gray Level Emphasis (LDHGLE) CAP 8116.1659 [5195.6416, 13651.4083] 2110.4785
HC 2893.1982 [1385.6956, 12329.7105] 2944.3454

Fig. 7. CT slices from different cohorts. The contours are generated by SP-V-Net. The corresponding LDHGLE values are 7144.72457 in (a), 17754.2829 in (b), 1671.4857 in (c),
and 1385.6956 in (d). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Table 8
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Pearson correlations between the features measured from lung regions extracted by the SP-V-Net segmentation and
those by manual annotation. All the features in Table 5 are included.

Variable Type Variables Pearson Correlation
GLCM Cluster Shade 0.7217
Informational Measure of Correlation 0.9726
GLSZM Size Zone Non Uniformity* 0.9653
Large Area High Gray Level Emphasis* 0.9989
Small Area Emphasis 0.9441
First Median* 0.9962
order Range* 0.5902
90 Percentile* 0.9571
GLDM Small Dependence Low Gray Level Emphasis* 0.9998
Large Dependence High Gray Level Emphasis* 0.9992

5. Conclusion and future work

In this paper, a new automatic approach for COVID-19 detec-
tion in chest CT images is presented. An image deformation-based
segmentation model, named as SP-V-Net, was proposed to extract
pulmonary parenchyma first. The designed SP-V-Net contained a
3D V-Net for CT image segmentation and an STN for output re-
striction and refinement. The features measured from the seg-
mented lung regions were used for statistical analysis with a high
interpretability to detect COVID-19 infection. The proposed seg-
mentation model achieved a DSC of 0.9796, an HD of 20.2249
mm, an SDSC of 0.9134, and an MSD of 0.0318 mm. Furthermore,
our COVID-19 classification model using statistically significant ra-
diomic features achieved an AUC of 0.9470, a sensitivity of 0.9670,
and a specificity of 0.9270.

Our approach has a great promise for clinical use. First, it has
excellent interpretability in the radiology lab since our detection
method is based on sophisticated statistical models. Second, seg-
mentation is essential for radiologists’ daily image interpretation.
Our SP-V-Net produced the state-of-the-art segmentation perfor-
mance. Its application in large cohorts of subjects would provide
additional insights into assessing COVID-19 infection severity, the
effectiveness of medication and other factors. The architecture of
our proposed SP-V-Net model can also be applied to other medi-
cal image segmentation tasks, where the shape estimation as prior
and important knowledge is easy to obtain. In our future studies,
we will investigate other methods to generate the shape priors,
such as active contours [43], to further improve our approach.
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