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a b s t r a c t 

This paper aims to develop an automatic method to segment pulmonary parenchyma in chest CT images 

and analyze texture features from the segmented pulmonary parenchyma regions to assist radiologists in 

COVID-19 diagnosis. A new segmentation method, which integrates a three-dimensional (3D) V-Net with 

a shape deformation module implemented using a spatial transform network (STN), was proposed to seg- 

ment pulmonary parenchyma in chest CT images. The 3D V-Net was adopted to perform an end-to-end 

lung extraction while the deformation module was utilized to refine the V-Net output according to the 

prior shape knowledge. The proposed segmentation method was validated against the manual annota- 

tion generated by experienced operators. The radiomic features measured from our segmentation results 

were further analyzed by sophisticated statistical models with high interpretability to discover significant 

independent features and detect COVID-19 infection. Experimental results demonstrated that compared 

with the manual annotation, the proposed segmentation method achieved a Dice similarity coefficient 

of 0.9796, a sensitivity of 0.9840, a specificity of 0.9954, and a mean surface distance error of 0.0318 

mm. Furthermore, our COVID-19 classification model achieved an area under curve (AUC) of 0.9470, a 

sensitivity of 0.9670, and a specificity of 0.9270 when discriminating lung infection with COVID-19 from 

community-acquired pneumonia and healthy controls using statistically significant radiomic features. The 

significant features measured from our segmentation results agreed well with those from the manual an- 

notation. Our approach has great promise for clinical use in facilitating automatic diagnosis of COVID-19 

infection on chest CT images. 

© 2021 Elsevier Ltd. All rights reserved. 

1

a

t

a

[

w

v

m

l

f

f

a

p

a

p

c

p

a

h

0

. Introduction 

The coronavirus disease 2019 (COVID-19) is spreading rapidly 

nd widely since the end of 2019. By December 24 th, 2020, more 

han 78.7 million COVID-19 cases have been confirmed worldwide, 

nd what is even worse, 1.73 million of the patients lost their lives 

1] . Early detection is essential because infected subjects with or 

ithout symptoms who were not successfully detected spread the 

irus to healthy people [2] . Real-time reverse transcriptase poly- 

erase chain reaction (rRT-PCR) is recognized as the gold standard 
∗ Corresponding author. 
∗∗ Corresponding author at: Department of Applied Computing, Michigan Techno- 

ogical University, Houghton, MI 49931, USA 

E-mail addresses: shiyuxin@shphc.org.cn (Y. Shi), whzhou@mtu.edu (W. Zhou). 
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or detecting COVID-19 [3] . However, it is time-consuming and suf- 

ers from a high false negative response. Moreover, many countries 

re not ready for PCR tests in the early stage of the coronavirus 

andemic while imaging devices are widely available; thus a di- 

gnosis system based on imaging is practical and vital for early 

revention and diagnosis of COVID-19 infection [4] . 

Imaging techniques, such as chest X-Ray (CXR) and chest 

omputed tomography (CT), have been widely used to assess 

ulmonary lesions. Although X-Ray scanners demonstrate higher 

ccessibility, most COVID-19 subjects show bilateral pulmonary 

arenchymal ground-class opacities and lung consolidation with a 

ounded morphology [5] , making it difficult to distinguish COVID- 

9 infection from CXR scans. In contrast, 3D chest CT is effective in 

iscriminating soft tissue and visualizing the morphological pat- 

erns of pulmonary parenchyma, which has been widely used for 

he diagnosis of COVID-19 and regarded as an important comple- 

https://doi.org/10.1016/j.patcog.2021.108071
http://www.ScienceDirect.com
http://www.elsevier.com/locate/patcog
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patcog.2021.108071&domain=pdf
mailto:shiyuxin@shphc.org.cn
mailto:whzhou@mtu.edu
https://doi.org/10.1016/j.patcog.2021.108071
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Fig. 1. The workflow of the proposed approach for lung segmentation and COVID-19 detection. A thresholding method was applied to generate the shape prior of the 

pulmonary parenchyma; the combination of the original image and shape prior was input to the proposed shape prior V-Net segmentation model (SP-V-Net). Statistical 

analyses were applied to the radiomic features extracted from the segmentation results to discover the statistically significant features and build the prediction model for 

COVID-19 detection. 
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ent to rRT-PCR tests [ 3 , 6 ]. Automatic extraction and computer- 

ided interpretation of lung regions of interest (ROIs) play a key 

ole in assisting radiologists to detect the infection and assess the 

rogression, and thus benefit the precise diagnosis and treatment. 

Medical image processing using deep learning plays a vital 

ole due to its accurate and robust performance [7] . Some re- 

earchers have dedicated their studies to computer vision using 

eep learning for COVID-19 diagnosis with chest CT. Unlike most 

xisting AI approaches in the diagnosis of COVID-19, which are 

ocused on the end-to-end classification, our goal is to extract 

nd understand the image features and discover clinically inter- 

retable knowledge. In this paper, we proposed a new method 

ntegrating three-dimensional (3-D) V-Net with shape priors (SP- 

-Net) for pulmonary parenchyma segmentation and then per- 

orming COVID-19 detection with the interpretable radiomic fea- 

ures measured from the segmentation results. The proposed seg- 

entation method included a V-Net for lung segmentation using 

 two-channel image containing the original chest CT scans and 

ulmonary shape prior, and a shape deformation module based 

n a spatial transform network (STN) to restrict the V-Net out- 

ut to optimize the weights of the V-Net. Significant texture fea- 

ures on the extracted pulmonary parenchyma were selected for 

OVID-19 detection. Instead of building an end-to-end model, our 

roposed approach contains two separate models, including im- 

ge segmentation and statistical feature analysis, and has high in- 

erpretability to support clinical use. The flowchart of our pro- 

osed approach is shown in Fig. 1 . Our code is available now at

ttps://github.com/MIILab-MTU/KD4COVID19 . 

The innovations and main contributions of our approach are: 

(1) A new deep-learning-based method that integrates a 3D V- 

Net with shape priors was proposed for medical image seg- 

mentation. The shape prior was used to optimize the model 

weights in both V-Net input and output, which significantly 

improved the model performance. 

(2) Instead of building an end-to-end model, our approach em- 

ployed models with high interpretability in analyzing fea- 

tures and generating detection results. It has a great promise 

to support the computer-aided diagnosis of COVID-19 infec- 
tion. 

2 
. Related work 

.1. COVID-19 detection using deep learning 

Due to the powerful performance of feature representation, 

eep-learning-based approaches have demonstrated impressive ca- 

ability for COVID-19 detection. Both transfer learning-based net- 

orks [8] and customized deep networks [9] have been developed 

or classification and segmentation related to COVID-19 infection. 

It requires a great number of data and high computational 

ower to train a deep neural network. Transferring pre-trained 

eights into a deep network facilitates the convergence while 

eeping the feature representation. Weights trained using Im- 

geNet for natural image classification were widely applied to 

OVID-19 detection tasks. Li et al. used 2D U-Net to segment lung 

OIs on CT slices, and then developed a COVNet which incorpo- 

ated ResNet-50 as the backbone to perform COVID-19 detection 

10] . The features were locally extracted from each slice and a 

ax-pooling layer was used to capture the global features from 

he set of local features. Javaheri et al. proposed a CovidCTNet, 

hich contained a BCDU-Net for lung segmentation and a convo- 

ution neural network (CNN) to distinguish COVID-19, community- 

cquired pneumonia (CAP), and healthy control subjects [11] . The 

CDU-Net was pre-trained using the data from a Kaggle lung seg- 

entation competition [12] . Chen et al. [13] employed a U-Net ++ 

ith ResNet-50 pretrained weights for COVID-19 infection detec- 

ion. Ardakani et al. tested ten state-of-the-art CNNs for COVID-19 

iagnosis using the labeled infected regions [14] . Most of the ex- 

sting transfer learning-based CNNs focused on importing weights 

rom the 2D image classification network to predict COVID-19 in- 

ection. However, 2D networks cannot fully use the information 

rom 3D CT scans, and thus influence the accuracy of infection de- 

ection. 

Compared with transfer learning-based networks, the CNN ar- 

hitectures from scratch are not limited by existing weights. Hasan 

t al. presented a combined deep learning model that contained a 

-deformed entropy feature extraction module and a CNN for dis- 

riminating COVID-19 infection from CAP and healthy controls us- 

ng CT scans [15] . In this study, a long short-term memory (LSTM) 

https://github.com/MIILab-MTU/KD4COVID19
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ayer was employed to process the feature sequences extracted 

rom the CT slices and the designed network achieved an accu- 

acy of 99.68% for classifying COVID-19, pneumonia and healthy 

ases. A multi-task deep learning model, which contained COVID- 

9 lesion segmentation and COVID-19 classification was proposed 

y Amyar et al [16] . The designed model achieved a Dice score of

.78 for lung segmentation and an area under the receiver operat- 

ng characteristic (ROC) curve of 93% for COVID-19 detection. Singh 

t al. proposed a CNN that was fine-tuned by multi-objective dif- 

erential evolution for feature extraction and severity assessment 

f COVID-19 [17] . The model achieved the best accuracy of 93% 

or distinguishing COVID-19 subjects from healthy controls. Using 

ustomized CNN, the function of the CNN is not limited to clas- 

ification and segmentation, which provides the ability to design 

exible architectures for the specific applications and improves the 

onsistency and accuracy [9] . 

Redundant and non-related regions of interest limit the per- 

ormance of infection detection and degrade the effectiveness 

f feature extraction and further analysis [18] . The pulmonary 

arenchyma segmentation remains a challenge even though ex- 

sting models achieved impressive performance for COVID-19 

etection. 

.2. Shape priors in image segmentation 

Image segmentation has been widely investigated using tra- 

itional image processing techniques, such as a clustering-based 

ethod [19] , and a filter-based method [20] . Recently, medical im- 

ge segmentation using deep learning models has achieved excel- 

ent performance. Nevertheless, it is beneficial and important to 

ncorporate shape priors of the segmentation object with the seg- 

entation models for improved performance and accelerated con- 

ergence. A strong reason is that shape is one of the most impor- 

ant geometric attributes of anatomical objects [21] , and the shape 

riors can reduce the searching space of the potential segmenta- 

ion outputs for deep learning models [22] . In addition, the shape 

esh provides sufficient information for the identification of 3D 

bjects [23] . However, it is challenging to develop an effective and 

ervasive approach by integrating shape priors to improve model 

eneralizations. 

Zheng et al. embedded the conditional random fields (CRFs) 

nto CNN as a post-processing module to perform image segmenta- 

ion and trained an end-to-end neural network [24] to refine seg- 

entation results. Ravishankar et al [25] demonstrated that au- 

oencoders, such as deep belief networks and convolutional au- 

oencoders, could capture a low dimension of shape representation 

or image segmentation. In [26] , CNN was first employed to per- 

orm object detection, and a stacked autoencoder was used to infer 

he shape of the object. Then, the shape deformation module was 

sed to incorporate the predicted shape to improve the segmen- 

ation accuracy. In addition, non-machine learning-based methods, 

uch as level set and active contour models, were combined with 

eep learning models to refine the segmentation results [ 27 , 28 ].

owever, most of the existing methods only incorporated shape 

riors into model inputs, and there are only a limited number of 

tudies that incorporate shape priors into model outputs. It is dif- 

cult to generate shape priors automatically. Even if possible, the 

enerated shape priors are inaccurate, making it less effective to 

uide model training. 

. Methodology 

.1. Image acquisition and pre-processing 

In total, 112 CT scans were enrolled into this retrospective study 

rom Shanghai Public Health Clinical Center, including 58 subjects 

ith confirmed COVID-19 infection, 24 subjects with CAP and 30 
3 
ealthy controls. Within the COVID-19 subjects, 30 cases were in- 

ected with severe COVID-19 and 7 of them died eventually. The 

tudy was approved by the ethics committee of the Shanghai Pub- 

ic Health Clinical Center. 

Rescaling and resampling strategies were applied to CT images 

o overcome the GPU memory limit and accelerate the training/test 

rocess. For all CT scans, the slice thickness was resampled into 5 

m. The in-plane pixel size ranged from 0.579 mm to 0.935 mm. 

or each CT slice, we cropped the central part with a fixed size of 

84 ×384 for further analysis. As a result, the number of CT slices 

anged from 52 to 90 for each subject. Then, experienced operators 

anually delineated the contours of the bilateral lungs for all the 

12 subjects. Because the number of subjects was relatively limited 

n terms of the segmentation task, data augmentation, including 

andom flipping, random cropping and random rotation, was ap- 

lied. In the following COVID-19 diagnosis task, all subjects were 

ategorized into the COVID-19 and non-COVID-19 groups for a bi- 

ary classification based on statistical analyses. 

.2. Pulmonary parenchyma segmentation 

The architecture of the proposed segmentation is a unified net- 

ork containing two modules, as illustrated in Fig. 2 . Basically, our 

P-V-Net has a 3D V-Net and a shape deformation module. The 3D 

-Net was used to perform an end-to-end lung extraction and the 

hape deformation module was utilized to refine the V-Net output 

sing prior shape knowledge. 

.2.1. Shape prior generation 

A thresholding method was applied to generate the shape pri- 

rs of the pulmonary parenchyma. In CT slices in our dataset, the 

ounsfield unit (HU) values of voxels ranged from -2048 to + 40 0 0. 

2048 represented the area without the CT scan. Air has the value 

f -10 0 0 HU, and water has the value of 0 HU. The air-filled struc-

ure, such as the lung, ranges from -830 HU to -200 HU. A binary 

hresholding method was applied with the threshold of -320 to 

xtract pulmonary parenchyma. Because the HU scale is typically 

egarded as a calibrated scale [29] , the thresholding method’s gen- 

ralizability is guaranteed. 

In practice, the binary thresholding method often generates dis- 

rete regions due to the variation of the brightness and contrast of 

he lung CT. To remove the discrete regions, we calculated the vol- 

me of the extracted regions. If the volume of a region was greater 

han 1% percent of the whole CT volume, the region was kept; oth- 

rwise, the region was removed. After that, a morphological clos- 

ng operation, which contained a morphological dilation followed 

y erosion, was performed to smoothen the boundaries of the ex- 

racted regions. 

.2.2. The proposed 3D V-Net 

The 3D V-Net designed in this study was a volume-based deep 

earning neural network. The input of the V-Net was two-channel 

D images with a size of 384 ×384 ×32 ×2 containing a cropped CT 

olume and a binary mask of the lung from the shape prior. The V- 

et output was the probability map of the pulmonary parenchyma 

ith the size of 384 ×384 ×32, where 1 indicates the lung region 

nd 0 represents the background. The V-Net contained an encoder 

o extract hierarchical features and a decoder to restore the ex- 

racted features and generate the final segmentation probability 

ap. The architecture of the designed V-Net is shown in Fig. 2 (a). 

The encoder contained three max-pooling layers and several 

onvolutional layers. Each convolutional layer was followed by a 

atch normalization layer and a ReLU activation function. The ker- 

el size of the convolutional layers was fixed as 3 ×3 ×3. The stride 

f the max-pooling layers was set as 2 through each axis, and thus 

he size of the feature maps shrunk by half after applying each 
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Fig. 2. The architecture of the proposed SP-V-Net for pulmonary parenchyma segmentation. (a) An end-to-end 3D V-Net for lung segmentation. (b) The shape prior defor- 

mation module is based on a spatial transformation network (STN) to refine the V-Net output. 
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ooling operation. By extracting features from the feature maps 

ith different sizes, the hieratical features were obtained and the 

eceptive fields of the deep neural network were enhanced. The 

econvolutional layers in the decoder were responsible for restor- 

ng the down-sized feature maps. The stride of the deconvolution 

ayer was 2 so that the size of the feature maps was enlarged twice 

fter applying each deconvolution layer. Moreover, a dropout tech- 

ique [30] was adopted to prevent overfitting. One dropout layer 

as inserted before the last convolutional layer in the V-Net, as 

hown in Fig. 2 (a). During the training period, the dropout proba- 

ility was set as 0.5. 

.2.3. Incorporating shape priors by spatial transformer network 

Since the size of pre-defined shape priors is not the same as 

hat of the manually delineated pulmonary parenchyma, direct in- 

orporation of shape priors into the V-Net input limits the model 

erformance. To further utilize the shape prior of the pulmonary 

arenchyma, improve the accuracy of the V-Net output and restrict 

he V-Net output, an image deformation module was applied to 

lign the V-Net output according to the shape prior. In our SP-V- 

et, the shape deformation module performed a non-rigid affine 

ransformation. 

In detail, a non-rigid shape deformation module which was im- 

lemented by a spatial transformer network (STN) [31] , was em- 

edded in the SP-V-Net. The STN inputs were the pre-defined 

hape prior to the pulmonary parenchyma and the V-Net gen- 

rated probability map of the pulmonary parenchyma mask. The 

izes of the two inputs were the same and they were concatenated 

s a two-channel image. The output of the STN was the 12 param- 

ters of the affine transformation matrix θ . The parameters of the 

ptimal affine transformation were trained by the difference be- 

ween the probability map generated by the V-Net and the pre- 

efined shape prior. 

Denote the input CT volume with the size of W × H × D as X , 

nd the pre-defined shape prior as T , where T is a binary image

nd it has the same size as X . The ground truth of the pulmonary

arenchyma is defined as Y . The V-Net output is defined as V with

he same size as X , where V is a probability map of the pulmonary

ask. The affine transformed output is denoted by ˆ V . The shape 

eformation module takes both the V-Net output V and the binary 

emplate T as a two-channel input image to calculate the param- 
4 
ters of the affine transformation matrix θ . The basic affine trans- 

orm containing translation, scaling and shearing matrices is con- 

tituted by: 

ranslate = 

⎡ 

⎢ ⎣ 

1 0 

0 1 

0 �x 
0 �y 

0 0 

0 0 

1 �z 
0 1 

⎤ 

⎥ ⎦ 

scale = 

⎡ 

⎢ ⎣ 

s x 0 

0 s y 

0 0 

0 0 

0 0 

0 0 

s z 0 

0 1 

⎤ 

⎥ ⎦ 

hear = 

⎡ 

⎢ ⎣ 

1 h xy 

h yx 1 

h xz 0 

h yz 0 

h zx h zy 

0 0 

1 0 

0 1 

⎤ 

⎥ ⎦ 

Because the numbers at the last row of the above three matri- 

es are fixed constants, the calculated affine transformation matrix 

is a 3 × 4 matrix as follows: 
 

θ11 θ12 

θ21 θ22 

θ13 θ14 

θ23 θ24 

θ31 θ32 θ33 θ34 

] 

here θ11 , θ22 , θ33 represent the scaling parameters, θ14 , θ24 , θ34 

re the translation parameters, and θ12 , θ13 , θ23 , θ21 , θ31 , θ32 in- 

icate the shearing parameters. 

Suppose that the coordination of a voxel in V is ( x s 
i 
, y s 

i 
, z s 

i 
) and 

he coordination of a voxel in 

ˆ V is ( x t 
i 
, y t 

i 
, z t 

i 
) . The affine tr ansfor-

ation performed by the STN is shown in Eq. (1) . 

 

x s 
i 

y s 
i 

z s 
i 

) 

= θ

⎛ 

⎜ ⎝ 

x t 
i 

y t 
i 

z t 
i 

1 

⎞ 

⎟ ⎠ 

= 

[ 

θ11 θ12 θ13 θ14 

θ21 θ22 θ23 θ24 

θ31 θ32 θ33 θ34 

] 

⎛ 

⎜ ⎝ 

x t 
i 

y t 
i 

z t 
i 

1 

⎞ 

⎟ ⎠ 

= T θ ( V i ) (1) 

here T θ represents the transformation function, and 

 ∈ [1 , 2 , . . . , HWD ] is the index of the voxels. Note that the

oordinate mapping is from the target volume ˆ V to the source 

olume V . The shape deformation module tends to find the map- 

ing that fills all the voxels in the target according to the source; 

hus, the module is required to iterate each voxel in the target 

olume rather than in the source volume. Typically, to limit the 

odel output space and prevent the model from collapsing, the 

oordinates of the voxels in the source and target volumes are 

caled into [0, 1], respectively. 
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Algorithm 1 

Multi-step strategy for training the SP-V-Net. 

Inputs: X: a cropped CT volume; T : the pre-defined shape prior; 

Y : ground truth of pulmonary parenchyma; e : the number of the training epochs. 

Output: trained SP-V-Net. 

In epoch 1 to epoch 0.2 e: 

Step 1: Training V-Net while fixing the weights of the STN using the loss function defined in Eq. (3) . 

In epoch 0.2e to epoch 0.4e: 

Step 2: Training STN while fixing the weights of the V-Net using the loss function defined in Eq. (4) . 

In epoch 0.4e to epoch e. 

Step 3: Training SP-V-Net jointly using the loss function defined in Eq. (5) . 
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The coordinates obtained by the affine transformation were 

oat numbers that could not be used as the positions of the vox- 

ls. Thus, a trilinear interpolation module was applied to sample 

he coordinates and prevent the transformed voxel from extrapo- 

ating the outside of the 3D volume, as defined in Eq. (2) : 

 i = 

H ∑ 

n 

W ∑ 

m 

D ∑ 

l 

ˆ V nml max 
(
0 , 1 −

∣∣x s i − n 

∣∣)max 
(
0 , 1 −

∣∣y s i − m 

∣∣)
× max 

(
0 , 1 −

∣∣z s i − l 
∣∣), ∀ i ∈ [ 1 , . . . , HWD ] (2) 

The architecture of the designed shape deformation network is 

hown in Fig. 2 (b). Three convolutional layers and max-pooling lay- 

rs were employed to extract hierarchical features from the con- 

atenated two-channel input image. An average pooling layer con- 

erted the extracted feature maps into a flattened feature vector, 

nd the fully connected layer generated the transformation matrix. 

.2.4. Loss function and optimization 

The proposed SP-V-Net contained a V-Net for pulmonary 

arenchyma segmentation and a shape deformation module im- 

lemented by STN for refinement of the segmentation. The dis- 

repancy between the V-Net output and the corresponding ground 

ruth was calculated by pixel-wise loss. To train the V-Net, a sig- 

oid cross entropy was employed to minimize the discrepancy be- 

ween the V-Net output V and the ground truth Y as follows: 

 V −Net = 

H ∑ 

n 

W ∑ 

m 

D ∑ 

l 

(
− V nml log ( sigm oid ( Y nml ) ) − ( 1 − V nml ) 

× log ( 1 − sigm oid ( Y nml ) ) 

)
+ || W 1 || 2 (3) 

here W 1 represents all weights in the V-Net and | | W 1 | | 2 is a L2 

egularizer. 

However, the STN is an unsupervised network since the gold 

tandard of the calculated affine transformation parameters is un- 

nown. Instead of directly optimizing the weights of the shape 

eformation module using the gold standard of the transforma- 

ion parameters, the affine transformation was applied to the V- 

et output V to generate ˆ V , and then the discrepancy between the 

ransformed output ˆ V and the ground truth Y was utilized to fine- 

une the weights of the shape deformation module. To train the 

hape deformation module, another sigmoid cross entropy was uti- 

ized to penalize the discrepancy between 

ˆ V and Y , as illustrated in 

q. (4) . 

 Defo rm 

= 

∑ H 
n 

∑ W 

m 

∑ D 
l 

(
− ˆ V nml log ( sigm oid ( Y nml ) ) 

−
(
1 − ˆ V nml 

)
log ( 1 − sigm oid ( Y nml ) ) 

)
+ ‖ W 2 ‖ 2 

(4) 

here ˆ V = T θ (V ) , and W 2 represents the weights of the shape de- 

ormation module. 

During the model training, the shape deformation module and 

he designed V-Net were trained jointly with the loss function de- 
5 
ned in Eq. (5) . 

 = L V −Net + L Defo rm 

= 

∑ H 
n 

∑ W 

m 

∑ D 
l 

(
− V nml log ( sigm oid ( Y nml ) ) − ( 1 − V nml ) 

× log ( 1 − sigm oid ( Y nml ) ) − ˆ V nml log ( sigm oid ( Y nml ) ) 

−
(
1 − ˆ V nml 

)
log ( 1 − sigm oid ( Y nml ) ) 

)
+ ‖ W 1 ‖ 2 + ‖ W 2 ‖ 2 

(5) 

The entire architecture of the proposed SP-V-Net contained two 

arts: a V-Net and an STN. At first, the two different parts were 

rained separately, and then the two parts were trained jointly. To 

rain the SP-V-Net, a multi-step training strategy was used. The 

trategy is shown in Algorithm 1 . 

In the beginning, the weights in the V-Net and shape deforma- 

ion module were randomly initialized. Thus, the affine transfor- 

ation matrix was randomly generated, and the calculated defor- 

ation loss in Eq. (4 ) was extremely high. In addition, the V-Net 

enerated mask, V , was not close to the ground truth of the lungs. 

andomly transforming the V-Net segmentation result V biases the 

-Net weights and could cause the model to collapse. Thus, in 

tep 1, the weights in the shape deformation module were fixed 

t the initial training epochs, and the training was only performed 

n the V-Net. In step 2, the V-Net was well-trained; however, the 

hape deformation module was still randomly initialized. Because 

he loss calculated by Eq. (4 ) is substantial compared with the loss 

alculated by Eq. (3 ) at this point, fine-tuning the weights in the 

hape deformation module and the V-Net jointly causes a great 

ias to the weights of V-Net. Thus, the V-Net weights were fixed, 

nd the training process was only performed on the shape defor- 

ation module. In step 3, we adopted Eq. (5 ) as the loss function 

o fine-tune the SP-V-Net jointly for the rest epochs. 

Our SP-V-Net model was implemented in Python using Ten- 

orFlow, and the model was trained on a workstation with an 

VIDIA Titan V GPU. The Adam Optimizer was used to fine-tune 

he weights of the SP-V-Net. The model was trained for 10 0 0 

pochs with a batch size of 1. A 5-fold stratified cross-validation 

as performed to validate the model, and the subjects were ran- 

omly selected according to the proportion of subjects in each cat- 

gory, i.e. CAPs, healthy controls and COVID-19 patients. In the 5- 

old cross-validation, 80% of the subjects were used as the train- 

ng set, and the rest 20% were used in the testing set. Data aug- 

entation techniques, such as rotation, flipping, brightness trans- 

orm, and Gaussian noise transform were randomly applied to the 

ropped CT volumes. The corresponding rotation and flipping were 

pplied to the generated shape priors as well. 

.3. Feature extraction and analysis for COVID-19 detection 

After segmentation, the lung regions were cropped for feature 

xtraction and analysis. Among the 85 radiomic features mea- 

ured from the lung regions [32] , in order to overcome the high- 

imensional curse, only a small number of features were selected 

sing feature selection algorithms for statistical analyses to de- 

ect COVID-19 infection. These selected features were investigated 
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Fig. 3. Workflow of the feature extraction and analysis for COVID-19 detection. ROC,receiver operating characteristic (ROC) curves; AUC, area under the curve. 
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o evaluate their classification performance by the univariate and 

ultivariate regression, and ROC curves. Furthermore, the multi- 

ariate analysis was tested to build the COVID-19 diagnosis model. 

he correlation between the features measured from our segmen- 

ation results and manual annotation was analyzed as well. 

.3.1. Feature extraction 

Eighty-five texture features, as presented in [32] , were mea- 

ured. They can be divided into seven types of features, includ- 

ng first-order histogram-based features, gray level co-occurrence 

atrix (GLCM) features, gray level size zone matrix (GLSZM) fea- 

ures, gray level run length matrix (GLRLM) features, neighboring 

ray-tone difference matrix (NGTDM) features and gray level de- 

endence matrix (GLDM) features. All these CT texture features are 

ssociated with histopathology, such as pulmonary fibrosis [33] , 

hich have been shown in more than one-third of COVID-19 pa- 

ients after recovery [34] . 

.3.2. Feature selection and COVID-19 detection 

The feature selection and COVID-19 detection were imple- 

ented by statistical analysis, as shown in Fig. 3 . After feature ex- 

raction, a univariate binary logistic regression analysis was applied 

o evaluate the potential features for COVID-19 classification. In the 

nivariate binary logistic regression analysis, each feature was used 

s the independent variable, and the label (0 or 1) of a subject 

as used as the dependent variable. ’1 ′ means that the subject has 

OVID-19 and ’0 ′ means that the subject does not have COVID-19. 

he output of the univariate binary logistic regression analysis is 

he probability of the subject having COVID-19 given the value of 

he feature. The p-value for the univariate binary logistic regression 

nalysis was calculated using a likelihood-ratio test [35] . 

Using the univariate binary logistic regression analysis, all the 

eatures with p < 0.05 (which are statistically significant) were se- 

ected to construct a feature set for further analysis. After that, for 

ach feature in the selected feature set, we computed the Pearson’s 

orrelation coefficient between this feature and each other feature 

n the feature set. If the Pearson’s correlation coefficient was more 

han a threshold (0.83 in this paper), then the feature with a lower 

UC value was removed from the feature set. 

The features selected from the aforementioned step were used 

or COVID-19 classification. For simplicity and interpretability, we 

stimated a multivariate generalized linear model [36] for classifi- 

ation. During the experiments, a 5-fold cross-validation was per- 

ormed to validate the model performance, in which 80% of the 

ubjects were used as the training set and the rest 20% as the test- 

ng set. 

Instead of using the features automatically extracted in the 

eep CNN, the COVID-19 classification task of our approach is 

ased on statistical analysis with the handcraft radiomic features. 

he proposed classification method focuses on the interpretability 

f the features and the relationship with clinical decision making, 

hich has important advantages to support clinical uses. Since the 
6 
adiomic features were high dimensional and the number of sub- 

ects in our dataset was limited, the univariate, multivariate, Pear- 

on, and ROC analyses were applied to select statistically signifi- 

ant features, remove the redundant features, and build prediction 

odels. 

.4. Evaluation metrics 

Metrics for segmentation. We evaluated the performance of the 

roposed SP-V-Net segmentation model using Dice similarity co- 

fficient (DSC), sensitivity (SN) and specificity (SP). DSC measures 

he proportion of the intersection between the voxels extracted by 

ur segmentation model and the voxels in the ground truth. The 

efinition of DSC is defined as 

SC = 

2 | o ( V ) ∩ Y | 
| o ( V ) | + | Y | (6) 

here o(·) indicates the OTSU binarization method [37] , Y repre- 

ents the ground truth of the lung mask, V represents the pre- 

icted probability map, and | · | indicates the number of foreground 

pulmonary) voxels within a specific CT volume. 

The SN measures the proportion of the true positive (TP) voxels 

hat are correctly detected, while the SP measures the proportion 

f the true negative (TN) voxels that are correctly predicted. The 

efinitions of SN and SP are shown in Eq. (7 ) and Eq. (8 ), respec-

ively. 

N = 

TP 

TP + FN 

(7) 

P = 

TN 

TN + FP 

(8) 

here FN and FP indicate the false negative voxels and the false 

ositive voxels, respectively. 

Because the DSC cannot reflect the accuracy of the extracted 

urface of the lung parenchyma, the surface Dice similarity coef- 

cient (SDSC) was used to measure the surfaces’ overlap instead 

f the volumes in our study. The definition of SDSC is shown in 

q. (9) . 

DSC = 

2 | s ( o ( V ) ) ∩ s ( Y ) | 
| s ( o ( V ) ) | + | s ( Y ) | (9) 

here s is the function used to extract the surface of the corre- 

ponding volume. SDSC calculation was implemented by searching 

he neighbor voxels for each voxel in the volume. 

A DSC, SN, SP, or SDSC of 1 implies a perfect agreement be- 

ween the segmentation results and the ground truth. 

In addition, the Hausdorff distance (HD) was adopted to mea- 

ure the maximum voxel distance between the predicted lung 

asks and the ground truth. The mean surface distance (MSD) 

38] was used to evaluate the average surface distance. An HD or 

SD of 0 indicates a perfect agreement. 
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Fig. 4. Examples of segmentation results. From left to right are three COVID-19 subjects, one CAP subject, and one healthy control. Row 2, ground truth; Row 3, contours from 

shape prior by binary thresholding; Rows 4-6, contours by SP-V-Net, MC-V-Net, and the plain V-Net, respectively. CAP, community-acquired pneumonia. (For interpretation 

of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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Metrics for classification . The COVID-19 detection task is a binary 

lassification task. The AUC, SN and SP were employed to evaluate 

he model performance. 

. Experimental results and discussion 

.1. Segmentation of pulmonary parenchyma 

To demonstrate the effectiveness of the proposed SP-V-Net, two 

aseline models were implemented by removing the shape prior 

nd the shape deformation module, respectively. Therefore, a plain 
7 
-Net with one-channel input (the CT volume) and a multi-channel 

-Net (MC-V-Net) with two-channel input (containing the CT vol- 

me and the shape prior of the CT volume) were obtained as the 

aseline models. In these two baselines, the shape deformation 

odule was removed. And in the experiments, the plain V-Net 

nd MC-V-Net were trained by the loss function defined in Eq. (3 ). 

owever, the architectures of the V-Nets in the three models were 

he same. The segmentation results of five subjects are shown in 

ig. 4 . 
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Fig. 5. Visualization of surface distances for a COVID-19 subject, a CAP subject, and a healthy control subject. All the volumes were resampled with a fixed voxel spacing 

of 1mm and a slice thickness of 1mm. The color bar indicates the surface distances. The areas highlighted by circles represent the areas with a smaller surface distance 

acquired by SP-V-Net (Row 2) than those by MC-V-Net (Row 3) and by plain V-Net (Row 4). (For interpretation of the references to color in this figure legend, the reader is 

referred to the web version of this article.) 
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In our dataset, three different types of subjects were en- 

olled, where the morphological shapes of the pulmonary ROIs 

iffered significantly. According to Fig. 4 , the contours gener- 

ted by the SP-V-Net were smoother than those generated by 

he MC-V-Net and the plain V-Net among all the three types 

f subjects. By visual comparison, it can be noted that irreg- 

larities were removed by applying SP-V-Net, because the con- 

ected small regions away from the pulmonary parenchyma van- 

shed. In addition, the adopted thresholding method was not able 

o generate a precise contour due to the variation of the HU 
n

8 
alues among the COVID-19 subjects, CAP subjects, and healthy 

ontrols. 

To better visualize the results generated by the plain V-Net, 

C-V-Net and SP-V-Net, the surface distances were visualized from 

hree different view angles, as shown in Fig. 5 . The corresponding 

D and MSD are depicted in Fig. 5 as well. 

According to Fig. 5 , even though the shape priors generated by 

he thresholding method were not precise, incorporating shape pri- 

rs into the V-Net was still beneficial to the segmentation model. 

s a result, the MSDs within the selected three subjects were sig- 

ificantly reduced in MC-V-Net and SP-V-Net compared with the 
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Table 1 

Quantitative evaluation for the thresholding method, the plain V-Net, MC-V-Net, and the proposed SP-V-Net for different cohorts. ALL means all enrolled subjects in the 

test set; CAP means community-acquired pneumonia; HC means healthy controls. DSC, Dice similarity coefficient; SDSC, surface Dice similarity coefficient; HD, Hausdorff

distance; MSD, mean surface distance. 

Method Cohort SN SP DSC SDSC HD (mm) MSD (mm) 

Threshold 

method 

ALL 0.9548 0.9741 0.9042 0.4228 33.9402 0.4107 

COVID-19 0.9506 0.9766 0.9017 0.4128 31.8981 0.2618 

CAP 0.9603 0.9761 0.9027 0.4365 34.9263 0.2231 

HC 0.9581 0.9656 0.9121 0.4304 37.6577 0.9933 

V- 

Net 

ALL 0.9781 0.9785 0.9404 0.7365 360.9046 1.5006 

COVID-19 0.9790 0.9765 0.9366 0.7204 364.6403 1.0620 

CAP 0.9643 0.9773 0.9257 0.7161 371.5045 4.0511 

HC 0.9888 0.9868 0.9683 0.8133 337.2297 0.4853 

MC- 

V- 

Net 

ALL 0.9744 0.9954 0.9732 0.9005 41.0517 0.0434 

COVID-19 0.9736 0.9955 0.9705 0.8984 36.5794 0.0524 

CAP 0.9617 0.9976 0.9749 0.8885 71.2026 0.0387 

HC 0.9899 0.9930 0.9819 0.9196 26.5537 0.0167 

SP- 

V- 

Net 

ALL 0.9840 0.9943 0.9796 0.9134 20.2249 0.0318 

COVID-19 0.9822 0.9940 0.9775 0.9068 21.1892 0.0398 

CAP 0.9826 0.9964 0.9830 0.9225 25.6124 0.0211 

HC 0.9918 0.9931 0.9833 0.9277 11.4624 0.0146 
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Table 2 

Quantitative evaluation of COVID-19 detection using radiomic features measured 

from lung regions by different segmentation models. 

Method ACC SN SP AUC 

V-Net 0.9090 0.9167 0.9000 0.9083 

MC-V-Net 0.9445 0.9167 1.0000 0.9383 

SP-V-Net 0.9460 0.9670 0.9270 0.9470 
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esults generated by the plain V-Net. Due to the large slice thick- 

ess (5mm) in our dataset, errors occurred in the first several 

lices of the lung where the contrast was low due to the low den-

ity of the tissue. The areas highlighted by circles demonstrate that 

he proposed SP-V-Net effectively reduced the surface distances in 

he initial slices of the pulmonary parenchyma. The quantitative 

omparison among the segmentation models is listed in Table 1 . 

In Table 1 , the comparisons based on SDSC, HD and MSD illus- 

rate that the proposed SP-V-Net significantly improved the seg- 

entation accuracy in the cohorts of ALL (all enrolled subjects in 

he test set), COVID-19, CAP, and healthy control. The SDSC was 

mproved by 1% in the proposed SP-V-Net than that in the MC-V- 

et among all subjects. Compared with MC-V-Net, the average HD 

f the SP-V-Net was reduced by half, and the MSD was reduced by 

6% (from 0.0434 mm to 0.0318 mm) among all subjects. For the 

OVID-19 cohort, the MSD was reduced from 0.0524 mm in MC-V- 

et to 0.0398 mm in SP-V-Net; and for the CAP cohort, the MSD 

as reduced from 0.0387 mm in MC-V-Net to 0.0211 mm in SP-V- 

et. Accordingly, Table 1 demonstrates that the proposed SP-V-Net 

chieved the best segmentation performance for all cohorts. 

To verify the effectiveness of the proposed multi-step train- 

ng strategy for optimizing SP-V-Net, the loss values for the V-Net 

odule in the SP-V-Net, which are calculated by Eq. (3 ), are de- 

icted in Fig. 6 . For comparison, we trained the SP-V-Net using the 

oss function defined in Eq. (5 ) during the entire training period, 

alled as ’SP-V-Net baseline’. Fig. 6 shows that the proposed SP- 

-Net with the multi-step training strategy achieved a lower loss 

t the epoch 10 0 0. In contrast, the loss of the SP-V-Net baseline

ropped slowly at the initial training epochs. Thus, the proposed 

ulti-step training was effective. The loss values in SP-V-Net were 

uccessfully backpropagated, and the weights of the SP-V-Net were 

ell fine-tuned. 

.2. COVID-19 detection and feature interpretation 

.2.1. COVID-19 detection 

Using the methods listed in Section 3.3.1 , 85 features were ex- 

racted for statistical analysis. All the subjects were included in the 

OVID-19 classification task. In our dataset, a total of 112 CT scans 

ere enrolled, and there were 58 subjects with confirmed COVID- 

9 infection, 24 subjects with CAP, and 30 healthy controls. In the 

OVID-19 detection task, all the COVID-19 subjects were positive 

amples while the rest were negative samples. As a result, the 

ataset used for COVID-19 detection was relatively balanced. 
9 
Eighty-five features were measured from the lung regions for 

he univariate analysis. Features with a p < 0.05 in the univariate 

nalysis were selected as the statistically significant features [39] . 

he Pearson analysis was further applied to investigate the corre- 

ations among these selected features and if the correlation was 

bove a cut-off of 0.83, only the features with the higher AUC score 

ere kept. After this step, only 10 features were kept and used for 

OVID-19 detection. In the experiments, the COVID-19 detection 

as a binary classification task. There are many classification algo- 

ithms available to this task. In this paper, we used a simple gener- 

lized multivariate linear regression model because it is simple and 

as a high interpretability. It achieved the best performance com- 

ared with other machine learning algorithms. For comparison, for 

he lung regions generated by plain V-Net, MC-V-Net and SP-V- 

et, we extracted the same 10 features and used them to train 

he multivariate generalized linear regression model, respectively, 

nd then the trained models were used to detect COVID-19 infec- 

ion. A 5-fold stratified cross validation was used to train and vali- 

ate the model performance. Before the training and test, the data 

as normalized by a z-score method. The detection performance 

s illustrated in Table 2 . According to Table 2 , using the contours 

enerated by SP-V-Net, the generalized linear model achieved the 

ighest AUC score of 0.9470. 

To further demonstrate the effectiveness of the proposed fea- 

ure selection method, data normalization, and generalized linear 

egression model, more experiments were performed. Besides the 

roposed linear regression model, we performed experiments us- 

ng other classification algorithms. These algorithms included logis- 

ic regression model (LR), support vector machine (SVM), random 

orest (RF) and k-nearest neighbors (KNN). The results are listed in 

able 3 . 

The grid search was performed to find the parameters for the 

est performance for each classifier. The best logistic regression 

as obtained by using an L2 regularizer. The number of the neigh- 

ors in the best KNN classifier was 3. The best random forest clas- 

ifier was trained by using Gini impurity with the max depth of 
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Fig. 6. Loss values calculated by Eq. (3 ) for SP-V-Net with multi-step training and without multi-step training. To better reflect the training loss, we only visualized the loss 

between 0 and 0.2. 

Table 3 

Performance comparison for COVID-19 detection using different models. LR means logistic regression; KNN means k-nearest neighbors; RF means random forest; SVM means 

support vector machine; GLM means generalized linear model, which is demonstrated in Section 3.3.2 . ACC, accuracy; SN, sensitivity; SP, specificity; AUC, area under the 

receiver operating characteristic curve. Feature selection YES means that the features were obtained using the feature selection method proposed in Section 3.3.2 (only 10 

features were used). Feature selection NO means that 85 radiomic features were used. The normalization YES means that the features were normalized before classification. 

Feature selection Normalization Methods ACC SN SP AUC 

1 YES YES LR 0.9240 0.9230 0.9250 0.9260 

2 YES YES KNN 0.8210 0.8970 0.7050 0.9150 

3 YES YES RF 0.8570 0.8610 0.8550 0.9390 

4 YES YES SVM 0.9450 0.9850 0.9091 0.9870 

5 YES YES GLM 0.9460 0.9670 0.9270 0.9470 

6 YES NO LR 0.7937 0.8773 0.7055 0.9235 

7 YES NO KNN 0.7502 0.6924 0.7800 0.7673 

8 YES NO RF 0.8660 0.8606 0.8727 0.9400 

9 YES NO SVM 0.4735 0.5500 0.4182 0.5087 

10 YES NO GLM 0.9280 0.9318 0.9272 0.9295 

11 NO YES LR 0.9379 0.9251 0.9091 0.9356 

12 NO YES KNN 0.8213 0.8439 0.6872 0.9056 

13 NO YES RF 0.8217 0.8924 0.7454 0.9012 

14 NO YES SVM 0.9458 0.9233 0.9191 0.9440 

15 NO NO LR 0.4822 0.0000 1.0000 0.6484 

16 NO NO KNN 0.6426 0.8136 0.4618 0.6683 

17 NO NO RF 0.8217 0.8924 0.7454 0.9012 

18 NO NO SVM 0.4545 0.6333 0.2600 0.5541 
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 and an estimator number of 15. The best support vector ma- 

hine was trained with a radial basis function kernel. According to 

able 3 , the generalized linear regression used in this study out- 

erformed other classification methods in terms of ACC and SP for 

he COVID-19 classification. 

Table 3 also demonstrates that the generalized linear regres- 

ion model with the proposed feature selection achieved nearly the 

ame performance when using the normalized or un-normalized 

eatures (Row 5 and Row 10). Using the normalized features, 

he generalized linear model with the proposed feature selection 

chieved the highest accuracy and specificity than other experi- 

ental settings. However, using the normalized selected features, 

he SVM with the proposed feature selection achieved a higher SN 
nd AUC. c

10 
One important finding was that with the normalization, the 

erformance of the machine learning methods was enhanced sig- 

ificantly, while the generalized linear regression model achieved a 

elatively high performance even if without normalization. Another 

nding was that the feature selection processed by the univariate 

nd Pearson correlation analyses (Row 1 to Row 10 in Table 3 ) 

as effective for improving the model performance and reducing 

he computational complexity. The performance of machine learn- 

ng methods using all features and unnormalized data was influ- 

nced significantly by the small training sample size, especially for 

R (Row 6 and Row 15 in Table 3 ) and KNN (Row 7 and Row 16 in

able 3 ). In summary, the proposed feature selection was effective, 

nd the generalized linear model was robust for COVID-19 classifi- 
ation. 



C. Zhao, Y. Xu, Z. He et al. Pattern Recognition 119 (2021) 108071 

Table 4 

Performance comparison of our proposed COVID-19 detection approach with state- 

of-the-arts. ACC, accuracy; SN, sensitivity; SP, specificity; AUC, area under the re- 

ceiver operating characteristic curve. 

Data Type Method ACC SN SP AUC 

CT Zhang et al. [40] 0.9249 0.9493 0.9113 0.9797 

Panwer et al. [41] 0.8810 0.9762 0.8913 0.8810 

Harmon et al. [42] 0.8960 0.8450 0.9160 0.9410 

Proposed 0.9460 0.9670 0.9270 0.9470 
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GLCM features. 
Table 4 compares the performance of our proposed classifica- 

ion method (generalized linear model with the proposed feature 

election and data normalization) with those by the state-of-the- 

rts. Because different subjects were enrolled, Table 4 only pro- 

ides a limited comparison. In Table 4 , our proposed COVID-19 

etection method achieved a higher accuracy and specificity com- 

ared with the method proposed by Zhang et al. [40] and Panwer 

t al. [41] . One reason is that they only used CT slices instead of

he entire CT volumes. In both of their approaches, the features 

ere extracted using deep neural networks. However, our method 

ocuses on radiomic features, which has a high interpretability. 

ur method also achieved a higher AUC score compared with Har- 

on et al. [42] . In [42] , the CT volume was used to perform lung

egmentation and COVID-19 detection. However, their approach 

chieved a DSC of 0.95 for lung segmentation, while our SP-V-Net 

chieved a DSC of 0.9796. Finally, the method in [42] achieved an 

UC of 0.9410 for COVID-19 detection, which is inferior to ours. All 

f these indicate that accurate lung segmentation is important for 

OVID-19 detection, and it is beneficial to use the entire CT volume 

or an overall classification. 

.2.2. Feature analysis and interpretation 

The 10 features selected after applying the univariate and Pear- 

on analysis based on the lung regions extracted by our proposed 

P-V-Net are shown in Table 5 . As a comparison, the results of the

ultivariate analysis using the lung regions from the ground truth 

re depicted in Table 6 . 

According to Tables 5 and 6 , 10 and 9 features were included in

he multivariate analysis using the lung regions from our SP-V-Net 

egmentation and manual annotation, respectively. Furthermore, 3 

eatures from lung regions generated by SP-V-Net were statistically 

ignificant, while 5 features from manual annotation were statisti- 

ally significant. More importantly, 7 shared features were included 

n the two multivariate analysis experiments, which suggested that 

here was a high agreement between the features measured from 

he SP-V-Net segmentation and those from the manual annotation. 

ore details about these features are explained as follows: 

GLSZM features : A GLSZM feature quantifies gray level zones in 

n image. A gray-level zone is denoted as the number of the con- 

ected voxels that share the same gray level intensity, i.e. the same 
Table 5 

Multivariate generalized linear analysis of COVID-19 classification using lung regions ext

cally significant feature. The odds ratio (OR) is listed correspondingly. An asterisk indicat

SP-V-Net segmentation and the ground truth. 

Variable Type Variables 

GLCM Cluster Shade 

Informational Measure of Correlation 

GLSZM Size Zone Non Uniformity ∗

Large Area High Gray Level Emphasis ∗

Small Area Emphasis 

First 

order 

Median ∗

Range ∗

90Percentile ∗

GLDM Small Dependence Low Gray Level Emphas

Large Dependence High Gray Level Emphas

11 
U value in CT slices. In our experiments, the infinity norm was 

mplemented by 26-connected regions. The small area emphasis 

easures the distribution of small size zones. 

First order features : three features, including median, range, and 

0 percentile were selected in both experiments. The first order 

eatures were calculated by the voxel intensities within the lung 

egion. Since the infection area and the abnormal region of inter- 

st for the COVID-19 subjects occupy limited voxels, the intensity- 

ased features are not important for differentiating COVID-19 from 

ealthy controls using CT images. 

GLDM features : two features were kept in the multi-variable 

nalysis for both experiments. A GLDM quantifies gray level de- 

endency in the CT images. A gray level dependency is denoted 

s the number of connected voxels within the center voxel de- 

endent on the center voxel. The element located at (i, j) in the 

LDM indicates the number of times that a voxel with gray level 

 with j dependent voxels in its neighborhood appears in the 3D 

olume. The large dependence high gray level emphasis (LDHGLE) 

easures the distribution of large dependence with higher gray- 

evel values. A higher gray value in the lung region indicates the 

oxel near lung nodule, ground-class opacities and lung consolida- 

ion with a rounded morphology [5] ; thus LDHGLE is important for 

OVID-19 classification. In addition, by comparing Tables 5 and 6 , 

nly one feature, LDHGLE, was commonly selected in both experi- 

ents and was statistically significant for COVID-19 classification. 

Table 7 shows the mean values, ranges, and standard deriva- 

ions (STD) of the statistically significant variables (with p < 0.05) 

rom different cohorts in Table 5 . It can be observed that the mean

alue and range of the LDHGLE are significantly different between 

he COVID-19 cohort and other cohorts, which indicates that this 

nterpretable feature is important. 

In Fig. 7 , CT slices from different cohorts are illustrated. The 

ground glass" areas can be seen in the two COVID-19 subjects. 

he difference in the corresponding LDHGLEs between the COVID- 

9 subjects and other cohorts is extremely large, indicating that 

his interpretable feature is also important. 

The Pearson correlations between the features from the lung re- 

ions by the SP-V-Net segmentation and those by manual annota- 

ion are illustrated in Table 8 . A higher Pearson correlation indi- 

ates that the features are significantly correlated, and the SP-V- 

et model has a high accuracy. According to Table 8 , the Pearson 

orrelation analysis indicates the features measured from lung re- 

ions extracted by the SP-V-Net highly correlated with the features 

easured from manual annotation for the 10 selected features, ex- 

ept two features, including the range feature, which belongs to 

he first order features, and cluster shade, which belongs to the 
racted by the SP-V-Net segmentation. P-value < 0.05 indicates that it is a statisti- 

es that the feature was selected in both experiments using lung regions from our 

p-value OR 

0.001 0.999 

0.220 0.006 

0.688 0.999 

0.061 1.000 

0.000 5.464e + 10 

0.185 1.000 

0.534 0.999 

0.054 1.001 

is ∗ 0.488 1.905e + 07 

is ∗ 0.004 1.000 



C. Zhao, Y. Xu, Z. He et al. Pattern Recognition 119 (2021) 108071 

Table 6 

Multivariate generalized linear analysis of COVID-19 classification using lung regions from the manually annotated ground truth. An asterisk indicates that the feature was 

selected in both experiments using lung regions from our SP-V-Net segmentation and the ground truth. OR, odds ratio. 

Variable Type Variables p-value OR 

GLSZM Size Zone Non Uniformity Normalized 0.000 2.245e + 06 

Size Zone Non Uniformity ∗ 0.487 1.000 

Small Area High Gray Level Emphasis 0.005 0.999 

Large Area High Gray Level Emphasis ∗ 0.000 1.000 

First 

order 

Median ∗ 0.000 1.003 

Range ∗ 0.734 0.999 

90Percentile ∗ 0.227 1.000 

GLDM Small Dependence Low Gray Level Emphasis ∗ 0.658 0.000 

Large Dependence High Gray Level Emphasis ∗ 0.001 1.000 

Table 7 

Information about the statistically significant features for COVID-19 detection from different cohorts. CAP, community-acquired pneumonia; HC, healthy controls; STD, stan- 

dard derivations. 

Variable Type Variables Cohort Mean Range STD 

GLCM Cluster Shade COVID-19 6051.7986 [2595.0043, 12735.9115] 2231.6201 

CAP 7475.7171 [3058.1410, 13854.4794] 3071.6227 

HC 6619.6907 [3749.2333, 14663.6807] 2388.6481 

GLSZM Small Area Emphasis COVID-19 0.7424 [0.7092, 0.7730] 0.0163 

CAP 0.7205 [0.6909, 0.7521] 0.0136 

HC 0.7270 [0.6883, 0.7420] 0.0107 

GLDM Large Dependence High COVID-19 15900.5727 [6445.3997, 47463.3938] 8079.9679 

Gray Level Emphasis (LDHGLE) CAP 8116.1659 [5195.6416, 13651.4083] 2110.4785 

HC 2893.1982 [1385.6956, 12329.7105] 2944.3454 

Fig. 7. CT slices from different cohorts. The contours are generated by SP-V-Net. The corresponding LDHGLE values are 7144.72457 in (a), 17754.2829 in (b), 1671.4857 in (c), 

and 1385.6956 in (d). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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Table 8 

Pearson correlations between the features measured from lung regions extracted by the SP-V-Net segmentation and 

those by manual annotation. All the features in Table 5 are included. 

Variable Type Variables Pearson Correlation 

GLCM Cluster Shade 0.7217 

Informational Measure of Correlation 0.9726 

GLSZM Size Zone Non Uniformity ∗ 0.9653 

Large Area High Gray Level Emphasis ∗ 0.9989 

Small Area Emphasis 0.9441 

First 

order 

Median ∗ 0.9962 

Range ∗ 0.5902 

90 Percentile ∗ 0.9571 

GLDM Small Dependence Low Gray Level Emphasis ∗ 0.9998 

Large Dependence High Gray Level Emphasis ∗ 0.9992 
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. Conclusion and future work 

In this paper, a new automatic approach for COVID-19 detec- 

ion in chest CT images is presented. An image deformation-based 

egmentation model, named as SP-V-Net, was proposed to extract 

ulmonary parenchyma first. The designed SP-V-Net contained a 

D V-Net for CT image segmentation and an STN for output re- 

triction and refinement. The features measured from the seg- 

ented lung regions were used for statistical analysis with a high 

nterpretability to detect COVID-19 infection. The proposed seg- 

entation model achieved a DSC of 0.9796, an HD of 20.2249 

m, an SDSC of 0.9134, and an MSD of 0.0318 mm. Furthermore, 

ur COVID-19 classification model using statistically significant ra- 

iomic features achieved an AUC of 0.9470, a sensitivity of 0.9670, 

nd a specificity of 0.9270. 

Our approach has a great promise for clinical use. First, it has 

xcellent interpretability in the radiology lab since our detection 

ethod is based on sophisticated statistical models. Second, seg- 

entation is essential for radiologists’ daily image interpretation. 

ur SP-V-Net produced the state-of-the-art segmentation perfor- 

ance. Its application in large cohorts of subjects would provide 

dditional insights into assessing COVID-19 infection severity, the 

ffectiveness of medication and other factors. The architecture of 

ur proposed SP-V-Net model can also be applied to other medi- 

al image segmentation tasks, where the shape estimation as prior 

nd important knowledge is easy to obtain. In our future studies, 

e will investigate other methods to generate the shape priors, 

uch as active contours [43] , to further improve our approach. 
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