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A B S T R A C T   

Coronavirus Disease 2019 (COVID-19) has become one of the most urgent public health events worldwide due to 
its high infectivity and mortality. Computed tomography (CT) is a significant screening tool for COVID-19 
infection, and automatic segmentation of lung infection in COVID-19 CT images can assist diagnosis and 
health care of patients. However, accurate and automatic segmentation of COVID-19 lung infections is faced with 
a few challenges, including blurred edges of infection and relatively low sensitivity. To address the issues above, 
a novel dilated dual attention U-Net based on the dual attention strategy and hybrid dilated convolutions, namely 
D2A U-Net, is proposed for COVID-19 lesion segmentation in CT slices. In our D2A U-Net, the dual attention 
strategy composed of two attention modules is utilized to refine feature maps and reduce the semantic gap 
between different levels of feature maps. Moreover, the hybrid dilated convolutions are introduced to the model 
decoder to achieve larger receptive fields, which refines the decoding process. The proposed method is evaluated 
on an open-source dataset and achieves a Dice score of 0.7298 and recall score of 0.7071, which outperforms the 
popular cutting-edge methods in the semantic segmentation. The proposed network is expected to be a potential 
AI-based approach used for the diagnosis and prognosis of COVID-19 patients.   

1. Introduction 

COVID-19 pandemic caused by SARS-nCov-2 continues to spread all 
over the world [1], and most of the countries have been affected in this 
unprecedented public health event. By March 2021, more than 116 
million of cases of COVID-19 have been reported and more than 2,580, 
000 people died [2] of COVID-19 infection. Due to the strong infectivity 
of SARS-nCov-2, identification of people infected by COVID-19 is sig
nificant to cut off the transmission and slow down virus spread. Reverse 
transcriptase-polymerase chain reaction (RT-PCR) is considered as the 
gold standard of diagnosis [3] for its high specificity, but it is 
time-consuming and laborious. Also, the capacity of RT-PCR tests can be 
rather insufficient in the less-developed regions, especially during the 
pandemic. Computed tomography (CT) imaging is one of the most 
commonly used screening methods to detect lung infection and has 
proved to be efficient in the diagnosis and follow-up prognosis of 
COVID-19. 

Compared with chest X-ray images, CT imaging is more sensitive, 

especially in the early stage of infection. Ground glass pattern is the most 
common finding in COVID-19 infections, usually in the early stage, 
while pulmonary consolidation can be observed in the later stage. 
Pleural effusion can also be observed in pathological CT slices. These 
typical features of COVID-19 lung infection are shown in Fig. 1. 

Thus, chest CT imaging is regarded as a convenient, fast and accurate 
approach to diagnose COVID-19. The evaluation of the localization and 
geometric features of the infection area could provide adequate infor
mation on disease progression and help physicians make better treat
ments [5–7]. However, manual annotation of the infection regions is a 
time-consuming and laborious work. Also, the annotation made by ra
diologists may be subjective and biased due to personal judgements. 

Recently, numerous deep learning algorithms using convolutional 
neural networks (CNNs) have been proposed to detect COVID-19 
infection. For instance, Wang and Wong [8] have developed a 
COVID-Net to perform ternary classification among healthy people, 
COVID-19 patients and people infected with other pneumonia in chest 
X-ray images, which achieves an overall accuracy of 93.3%. In terms of 
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deep learning algorithms for CT imaging, Zhou and Canu [9] have 
proposed an automatic network facilitated with attention mechanism to 
segment the infection area from CT slices. Fan et al. [10] developed an 
Inf-Net and corresponding semi-supervision algorithm to perform CT 
segmentation. Zheng et al. [11] proposed a weakly-supervised deep 
learning method to detect the COVID-19 infection in CT volumes. Xi 
et al. [12] presented a dual-sampling attention network to diagnose 
COVID-19 from community acquired pneumonia. However, the detec
tion of the lung infections caused by COVID-19 in CT images remains 
challenging, because infection regions vary in shape, position and 
texture, and the boundaries between lesions and normal tissues can be 
rather blurred. These features increase the difficulty of COVID-19 
detection and limit the model performance, especially in terms of 
sensitivity. 

To address the issues above, we proposed a dilated dual attention U- 
Net (D2A U-Net) framework to automatically segment the lung infection 
in COVID-19 CT slices. Since the infected tissues can be hardly distin
guishable from the normal tissues, we introduce a dual attention strat
egy consisting of a gate attention module (GAM) and a decoder attention 
module (DAM) to refine feature maps and produce more informative 
feature representation. The proposed GAM is utilized by fusing features 
and semantic-rich gate signals to refine the skip connections in the 
network. The proposed DAM is introduced to the model decoder to 
improve the decoding quality, especially when segmenting the blurred 
lesions. As COVID-19 infection varies in position and size, we utilize 
hybrid dilated convolutions with different dilation rate in the model 
decoder to obtain larger receptive fields and balance the segmentation 
performance on both large and tiny objects, which thus provides better 
segmentation results. The sensitivity for infection segmentation has 
been improved significantly due to these refinements, which leads to 
better segmentation performance. 

The paper is organized as follows: Section 2 offers a review of related 
works on CT segmentation. Section 3 describes the overview of this work 
and details our proposed model. Section 4 presents the details of our 
experiments and provides both quantitative and qualitative segmenta
tion results. Section 5 discusses the proposed method and concludes our 
work. 

2. Related works 

In this section, we will go through 4 types of most related works, 

which includes chest CT segmentation, attention mechanism, dilated 
convolution and AI-based COVID-19 segmentation systems. 

2.1. Chest CT segmentation 

Chest CT imaging is one of the most popular screening methods for 
lung disease diagnosis [13]. Segmentation of organs and lesions pro
vides crucial information for the diagnosis and prognosis of many dis
eases. However, since manual segmentation remains time-consuming, 
laborious and subjective, automatic CT segmentation has gained much 
popularity in the research fields. Recent researches upon automatic CT 
segmentation mainly focus on utilizing machine learning techniques. 
Related works most feature a pixel-wise classifier to infer from extracted 
features and make dense predictions. For example, Mansoor et al. [14] 
proposed a texture-based feature classifier for pathological lung seg
mentation in the CT images. Yao et al. [15] utilized texture analysis and 
support vector machine to segment infections in the lung tissues. These 
algorithms have realized automatic segmentation in the chest CT images 
but several issues remain unsolved, including subjective bias in feature 
extraction and difficulties in segmenting nodule regions. Deep learning 
algorithms feature powerful fitting capacity and require no laborious 
preprocessing. Most cutting-edge segmentation algorithms are based on 
deep learning approaches. For example, Shaziya et al. [16] used U-Net to 
segment lung tissues in the chest CT scans. Zhao et al. [17] proposed a 
fully convolutional neural network with multi-instance and conditional 
adversary loss for pathological lung segmentation. 

2.2. Attention mechanism 

Attention plays an important role in human perception and visual 
cognition [18]. One significant property in human perception is that 
humans hardly process visual information as a whole. Instead, humans 
usually process visual information recurrently, where top information is 
utilized to guide bottom-up feedforward process [19]. Inspired by this 
principle, attention mechanism has been widely used in computer 
vision, especially in the image classification [20–22]. Related algorithms 
typically refine feature maps in the spatial dimension, channel dimen
sion or both. For example, Hu et al. [20] introduced a 
Squeeze-and-Excitation module, where global average pooling is per
formed on the input features to produce channel-wise attention. Woo 
et al. [21] proposed a convolutional block attention module (CBAM) to 

Fig. 1. Example of COVID-19 CT slices, where the red, green and blue masks denote the ground glass, consolidation and pleural effusion respectively. The images are 
collected from Ref. [4]. 
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introduce a fused attention consisting of channel attention and spatial 
attention. Wang et al. [22] presented a residual attention network, 
which contains an attention module featuring an encoder-decoder ar
chitecture. Attention mechanism has also been utilized in semantic 
segmentation tasks to make more accurate dense predictions. For 
instance, Li et al. [23] proposed a Pyramid Attention Network to exploit 
the impact of global contextual information in semantic segmentation. 

These typical algorithms resemble in some aspects. Certain opera
tions, such as global pooling, convolution, and the combination of 
downsampling and upsampling, are utilized to enhance the informative 
regions in the feature maps and suppress irrelevant information, which 
allows the network to learn more generalized visual structures and 
improve the robustness against noisy inputs. 

2.3. Dilated convolution 

Traditional deep convolutional networks usually involve strided 
convolution or pooling operations to improve the receptive fields, in 
which the input images are downsampled. However, these operations 
often lead to the loss of global information in dense predictions, such as 
semantic segmentation and object detection. Yu and Koltun [24] intro
duced dilated convolution to deep networks, which has proved to be 
useful in dense predictions. The basic idea of dilated convolution is to 
insert “holes” (zeros) in the convolution kernels to obtain larger recep
tive fields without downsampling. Dilated convolution avoids informa
tion loss during downsampling and has been widely used in the semantic 
segmentation tasks [25–27]. However, it has been observed that simply 
stacking dilated convolution in CNNs may cause grid effects [24], which 
could lead to severe performance deterioration. Wang et al. [28] pro
posed a hybrid dilated convolution (HDC) framework to avoid grid ef
fects, which improves the segmentation performance on both large and 
tiny objects. 

2.4. AI-based COVID-19 segmentation systems 

Artificial intelligence (AI) has been widely utilized in fighting against 
COVID-19. We mainly focus on AI-based semantic segmentation systems 
upon CT scans. Many works focus on learning robust and noise- 
insensitive representations from limited or noisy inputs. For example, 
Xie et al. [29] proposed a RTSU-Net for segmenting pulmonary lobes in 
the CT scans. A non-local neural network module was introduced to 
learn both visual and geometric relationships among the feature maps to 

produce self-attention. Wang et al. [30] presented a noise-robust 
framework for COVID-19 lesion segmentation. They utilized a 
noise-robust Dice loss and an adaptive self-ensembling strategy to learn 
from noisy labels. Chen et al. [31] proposed a residual attention U-Net 
which introduced aggregated residual transformations and soft atten
tion mechanism to learn robust feature representations. Also, re
searchers have investigated segmentation schemes that achieve both 
high speed and accuracy. For example, Zhou et al. [32] developed a 
rapid, accurate and machine-agnostic segmentation and quantification 
method for automatic segmentation of COVID-19 lesions. The innova
tion of their work lies in the first CT scan simulator for COVID-19 and a 
novel network architecture which solves the large-scene-small-object 
problem. Qiu et al. [33] developed a parameter-efficient framework to 
achieve fast segmentation of COVID-19 lung infection with relatively 
low computational cost. 

3. Methods 

In this section, we will go through the details of the proposed D2A U- 
Net architecture. In the first part, we will offer an overview of the pro
posed network. We then provide details about the proposed attention 
modules. Finally we introduce our proposed model decoders with hybrid 
dilated convolutions. 

3.1. Overview of network architecture 

Basically, our proposed network is based on the U-Net [34] archi
tecture, which is quite popular in medical image segmentation. 
Compared with the original U-Net, dilated convolutions and a novel 
combination of attention mechanism are integrated in our framework to 
obtain better feature representation. We integrate the dual attention 
strategy in the model decoder. A gated attention module is inserted in
side the skip connections to utilize feature representations from different 
levels and reduce the semantic gap between the encoder and the 
decoder. Also, we introduce another fused attention mechanism in the 
model decoder to refine feature maps after upsamling. Specifically, a 
hybrid dilated convolution module [28] is utilized as the basic block of 
the model decoder to enlarge receptive fields and produce better dense 
predictions. For the model encoder, both VGG-style encoder proposed in 
the original U-Net [34] and ResNeXt-50 (32 × 4d) [35] pretrained on 
ImageNet are utilized. The network scheme is shown in Fig. 2. 

Fig. 2. The proposed D2A U-Net architecture with a ResNeXt-50 (32 × 4d) backbone, which takes a CT slice as input and outputs infection region predictions.  
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3.2. Dual attention 

We introduce a dual attention strategy composed of a gate attention 
module (GAM) and a decoder attention module (DAM) to our network. The 
motivation behind utilizing dual attention strategy instead of single 
attention module is to further highlight the infection area and suppress 
false positives. GAM is utilized to refine the features extracted by the 
model encoder and to reduce the semantic gap by fusing high and low 
level feature maps, which highlights potential infection regions and 
improves the sensitivity to COVID-19 infection. DAM is inserted in the 
model decoder to refine the feature representations after upsampling, 
which is used to suppress the noise that may be introduced during 
upsampling and inhibit false positives. 

3.2.1. Gate attention module 
Feature concatenation from the encoder to the decoder is the typical 

topological structure in U-Net, where the combination of high- 
resolution features in the encoder and upsampled features in the 
decoder enables better localization of segmentation targets [34]. How
ever, not all visual representations in the encoder feature maps 
contribute to precise segmentation. In addition, the semantic gap be
tween the encoder and the decoder can limit the performance of the 
model. Therefore, we introduce a gate attention module prior to concat
enation to refine the features from the encoder and reduce the semantic 
gap. 

Oktay et al. [36] proposed an attention gate to refine the encoder 
features with attention mechanism. But in their proposed attention gate, 
only spatial attention mechanism is implemented to refine features. 
However, the introduction of both channel attention and spatial 

attention will improve the efficiency of attention mechanism. Thus, 
inspired by the global attention upsample module proposed in pyramid 
attention network [23] and CBAM [21], we propose a novel design of a 
gate attention module to enable both channel attention and spatial 
attention. Detailed scheme of the proposed GAM is shown in Fig. 3. Two 
feature maps are fed into the attention module. The guiding signal refers 
to the feature map from the model decoder (or the last convolution block 
in the model encoder), and the feature refers to the feature map fed to 
the skip connections. G ∈ RCg×Hg×Wg denotes the guiding signal and F ∈

RCf×Hf×Wf denotes the feature. 
In the U-shaped mesh structure, G contains more deep semantic in

formation which is encoded in the channel dimension compared with F. 
We utilize a global average pooling operation followed by a multilayer 
perception (MLP) to create the channel attention map Zc(F) ∈ RCf×1×1. 
The output size of the MLP is smaller than the input size, which enables 
the suppression of irrelevant feature representations in the channel 
dimension. In short, we compute the channel attention as follows: 

Zc(F) = σ
(
MLP

(
Pavg(G)

))
= σ

(
WCf

(
ReLU

(
WCg/r

(
Pavg(G)

))))
(1)  

where σ denotes sigmoid activation, Pavg denotes global average pooling, 
WCg ∈ RCg/r×Cg and WCf ∈ RCf×Cg/r, r denotes reduce ratio and in our 
experiments it is set to 16. 

Spatial attention is guided by both the guiding signal and the input 
feature itself. We use convolution operation with one filter to squeeze 
the channel dimension of G and F. Then the reduced feature map from G 
is upsampled to match the size of F. A combination of convolution 
operation with different kernel size is utilized to produce spatial atten
tion Zs(F) ∈ R1×Hf×Wf . In short, we compute spatial attention as: 

Fig. 3. The proposed gate attention module, which takes guiding signal and features as input to generate fused attention. The number shown in the parentheses inside 
conv block means the number of outchannels. The shape of tensors are also shown in the figure, where N denotes the batch size, C denotes the number of channels, H 
denotes the height and W denotes the width. 
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Zs(F) = σ(f3×3([Fr,Gr]) + f5×5([Fr,Gr]) + f7×7([Fr,Gr]))

where Fr = f r
1×1(F), Gr = upsample(f r

1×1(G))
(2)  

where σ denotes sigmoid activation, f3×3, f5×5 and f7×7 denote convo
lution operation with corresponding kernel size. f r

1×1 is used to squeeze 
channel dimension. 

Then we use element-wise multiplication to combine spatial and 
channel attention to produce the fused attention Z(F): 

Z(F) = F∘Zs(F)∘Zc(F) (3)  

where ◦ denotes element-wise multiplication. 

3.2.2. Decoder attention module 
In semantic segmentation, high-resolution visual representations in 

the encoder need to be upsampled to make dense predictions. Trans
posed convolution and interpolation are both popular solutions to image 
upsampling, but both have their drawbacks. Compared with interpola
tion, transposed convolution is trainable and offers more nonlinearity to 
deep networks, which improves the model capacity. However, grid ef
fects are hard to avoid if hyperparameters are not properly configured, 
and this drawback can be more troublesome when stacking more than 

one transposed convolution layer. Thus we propose a combination of 
bilinear interpolation and following convolution to upsample the feature 
maps. However, as interpolation is not trainable, it is inevitable to 
introduce irrelevant information or noise to the upsampling process. 
Thus, we introduce a decoder attention module to solve this issue. A fused 
attention mechanism is utilized to refine the post-upsampling feature 
maps in both channel and spatial dimensions. The scheme is shown in 
Fig. 4. Compared with the proposed GAM, DAM is more simplified and 
only takes one input, but the implementation of both channel and spatial 
attention is quite similar. We use Zc(F) ∈ RC×1×1 to denote channel 
attention, Zs(F) ∈ R1×H×W to denote spatial attention and Z(F) to denote 
fused attention. In short, DAM is computed as follows: 

Zc(F) = σ
(
MLP

(
Pavg(F)

))
= σ

(
W1

(
ReLU

(
W0

(
Pavg(F)

))))
(4)  

where σ denotes sigmoid activation, Pavg denotes global average pooling, 
W0 ∈ RC/r×C and W1 ∈ RC×C/r, r denotes the reduce ratio and it is set to 
16 in our experiments. 

Zs(F) = σ
(
f3×3(f r

1×1(F)) + f5×5(f r
1×1(F)) + f7×7

(
f r

1×1(F)
)

(5)  

where σ denotes sigmoid activation, f3×3, f5×5 and f7×7 denote 

Fig. 4. The proposed residual attention block (left) and decoder attention module (right). RAB integrates a hybrid dilated convolution module and a DAM; n in the 
parentheses refers to dilation rate. DAM is utilized to refine post-upsample features; the number shown in the parentheses inside conv block means the number of 
outchannels. The shape of tensors are also shown in the figure, where N denotes the batch size, C denotes the number of channels, H denotes the height and W denotes 
the width. 
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convolution operation with corresponding kernel size. And f r
1×1 is used 

to squeeze channel dimension. 

Z(F) = F∘Zs(F)∘Zc(F) (6)  

where ◦ denotes element-wise multiplication. 

3.3. Residual attention block 

Standard convolution hardly reaches a large receptive field with a 
fixed kernel size. Such drawback in traditional U-Net based networks 
may limit the segmentation performance. Inspired by the design of 
hybrid dilated convolution [28], we proposed a residual attention block 
(RAB) as the basic module in the model decoder. We explore to use 
dilated convolutions in the decoder to capture multiscale patterns of the 
upsampled feature maps. The stem of RAB is a stack of dilated convo
lutions with a kernel size of 3 and dilation rate of [1, 2, 5]. Such dilation 
rate settings acquires larger receptive fields and also avoids grid effects 
of vanilla dilated convolutions [28]. Then the RAB is followed by a 
decoder attention module. The scheme is shown in Fig. 4. 

We assume initial receptive field as 1 × 1. The equivalent kernel size 
of dilated convolution is computed as follows: 

K = k + (k − 1)(n − 1) (7)  

where K denotes the equivalent kernel size, k denotes the actual kernel 
size, and n denotes the dilation rate. 

Thus, the equivalent kernel sizes of dilated convolutions with kernel 
size 3 and dilation rate [1, 2, 5] are 3, 5, 11, respectively. According to 
the definition of receptive field, such design of stacked dilated convo
lution obtains a receptive field of 17 × 17, which enables the capture of 
global information. Also, dilated convolution with different dilation rate 
can capture multiscale information in the feature maps, which can 
contribute to the accurate segmentation on both large and small objects. 

In addition, we utilize residual connections in the RAB to avoid 
gradient vanishing. Hybrid dilated convolutions are followed by a DAM 
to refine upsampled features and produce fused attention maps. In short, 
the output of our RAB is computed as follows: 

Y = X + DAM(HDC(X)) (8)  

where X denotes the input feature maps, Y denotes the output feature 
maps, DAM denotes the proposed decoder attention module, and HDC 
denotes the hybrid dilated convolutions. 

4. Experiments 

4.1. CT segmentation dataset 

CT axial slices used in our experiments consist of 3 independent 
datasets [4,37]. The details about the datasets used in our experiments 
are shown in Table 1. Dataset 1 contains 100 axial CT slices from more 

than 40 patients, which have been rescaled to 512 × 512 pixels and 
grayscaled. All slices are segmented by a radiologist using three labels: 
ground-glass opacity, consolidation and pleural effusion. Dataset 2 
contains 9 axial CT volumes, where 373 out of the total 829 slices have 
been evaluated by a radiologist as positive and segmented using 2 labels 
including ground-glass opacity and consolidation. Dataset 3 contains 20 
CT axial volumes, which have been segmented by two radiologists and 
verified by an experienced radiologist. 

Dataset 2 and Dataset 3 contain 29 CT volumes in total, but not all 
slices contain infection regions. We choose to discard all slices con
taining no COVID-19 infection and use slices with annotations only. As 
annotations in Dataset 3 do not distinguish ground-glass opacity and 
consolidation, we take both ground-glass opacity and consolidation in 
Dataset 2 as COVID-19 lesions and do not distinguish them as well, thus 
creating a binary segmentation dataset. An intensity normalization has 
been applied on both datasets and all slices have been rescaled to 512 ×
512 pixels to match Dataset 1. We take all ground-glass, consolidation 
and pleural effusion in Dataset 1 as COVID-19 lesions, just the same as 
what we have done to Dataset 2. 

We do not choose to combine processed Dataset 1 to 3 together and 
then split them randomly, because in this way slices of one subject may 
exist in both training and test datasets, which could be regarded as data 
leakage and cause a virtual-high model performance. Since Dataset 1 
contains the largest number of subjects (40 subjects), which hence best 
suits to be the independent test set, we finally obtain 1645 processed 
slices from processed both Dataset 2 and Dataset 3 and use these slices as 
our final training dataset, and then we use the 100 axial slices from 
Dataset 1 as our final test dataset. Such data split can best evaluate 
model generalization capacity. 

4.2. Implementation details 

4.2.1. Model hyperparameters and settings 
Model encoder is a ResNeXt-50 (32 × 4d) pretrained on ImageNet- 

1K. We remove the global average pooling and full connection layers 
from original network. The number of output channels is 64, 256, 512, 
1024, 2048, respectively, which are the same as the original paper of 
ResNeXt. Convolution operations in model decoder are padded and 
without stride, if not specified. Bilinear interpolation is utilized to 
upsample feature maps, and scale factor is set to 2. Dice loss is widely 
utilized in semantic segmentation, but the differential of Dice loss is 
sometimes numerically unstable and may lead to oscillation in training 
process. The combination of Dice loss and cross-entropy could avoid this 
issue. Thus we combine Dice loss ℒd and binary cross-entropy loss ℒc as 
our final loss function: 

ℒseg = ℒd + αℒc (9)  

where α = 1 in our experiments. 

Table 1 
Dataset description.  

Num Dataset Description Split 

1 COVID-19 CT Segmentation Dataset [4] 110 slices with 100 containing annotations. Test Set 
2 Segmentation Dataset nr. 2 [4] 9 CT volumes (373 out of the total of 829 slices have been evaluated by a radiologist as positive and segmented.) Training 

Set 
3 COVID-19 CT Lung and Infection 

Segmentation Dataset [37] 
20 CT volume (Left lung, right lung, and infections are labeled by two radiologists and verified by an experienced 
radiologist, and 1844 out of the total of 3520 slices contains infection regions.) 

Training 
Set  
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4.2.2. Training details 
Our model is implemented using PyTorch on an Ubuntu 16.04 server. 

We use a NVIDIA RTX 2080 Ti GPU to accelerate our training process. 
Data augmentation is utilized in our training process to reduce over
fitting and improve the generalization capacity. First all input images 
are rescaled to 560 × 560, followed by random flip, random rotation, 
random gamma and log transform. Finally images are randomly cropped 
to 448 × 448 and fed into the network. The model is optimized by an 
Adam optimizer with β1 = 0.9, β2 = 0.999, ε = 1e − 8. The L2 regula
rization is utilized to reduce overfitting as well. We set model weight 
decay to 1e − 8. Monte Carlo cross-validation is utilized to find the 
optimal hyper-parameters (i.e., the initial learning rate and number of 
epochs) during the training phase. Initial learning rate is set to 1e-4 and 
is reduced when faced with plateau, with reduce factor being 0.1 and 
patience being 10. The batch size is set to 6 and we perform evaluation 
on test set after 30 epochs. The training process takes approximately 
140 min. 

4.3. Evaluation metrics 

We use Dice similarity coefficient and pixel error as the main metrics 
to evaluate the segmentation performance of our D2A U-Net. Dice is a 
statistic used to gauge the similarity of two samples, and has been widely 
used to evaluate the performance in semantic segmentation. Pixel error 
measures the number of pixels predicted falsely in the image, which 
shows the global segmentation accuracy of the proposed models. 
Compared to the Dice score or recall score, pixel error is easier to 
interpret and more intuitive. Both metrics measure segmentation per
formance in a global way. In addition, we calculate recall score of 
infection regions, as recall score measures model’s sensitivity to lung 
infection, which is rather significant in terms of COVID-19 infection. We 
use G to denote ground truth, P to denote dense predications, TP to 
denote true positive, FP to denote false positive, TN to denote true 
negative and FN to denote false negative. These metrics are calculated as 
follows: 

Dice =
2|G ∩ P|
|G| + |P|

=
2TP

2TP + FP + FN
(10)  

Pixel Error =
FP + FN

TP + TN + FP + FN
(11)  

Recall =
TP

TP + FN
(12)  

4.4. Comparison with cutting-edge methods 

In this section, the proposed D2A U-Net is compared with other 
cutting-edge methods to evaluate the effectiveness of the proposed 
model. Two groups of model comparison have been conducted in the 
experiments to provide a fair comparative observation of the model 
performance from different angles of view. 

First, the proposed D2A U-Net has been compared with popular U- 
Net family models including U-Net [34], Attention U-Net [36] and 
U-Net + + [38]. Models listed above are all trained from scratch and 
share the same backbone structure, i.e. the VGG-style backbone, which 
refers to the encoder design proposed in the original U-Net paper [34]. 
Such experimental settings provide the most fair comparison of those 
U-Net based models, as they share the same model backbone and 
training strategies. 

In addition, utilizing backbone pretrained on ImageNet to accelerate 
convergence and improve segmentation results has been popular in the 
CV tasks of natural images. Thus, we also introduce a pretrained D2A U- 
Net with ResNeXt-50 (32 × 4d) backbone to further improve the seg
mentation performance. The pretrained version is compared with 2 
cutting-edge models widely used for natural image segmentation, 
including FCN8s [39] and DeepLab v3 (output stride = 8) [40], both of 
which contain a pretrained ResNet-101 backbone. 

Apart from model performance comparison, model parameters and 
computational costs (FLOPs) are also compared in our experiments. 

To better evaluate the performance, all the metrics listed in Table 2 
and Table 3 are averaged in 5 reduplicate experiments to report a fair 
and reliable result. 

4.5. Segmentation results 

4.5.1. Quantitative analysis 
Detailed comparison among different models in our experiments is 

shown in Table 2 and Table 3. As shown in Table 2, our proposed 
network outperforms U-Net, Attention U-Net and U-Net + + in terms of 
Dice, pixel error and recall. As these models are identical in the encoder, 
it is clear that the proposed dual attention strategy and RAB contribute 
significantly to the infection segmentation. The utilization of attention 
mechanism aids the model to detect infected tissues more accurately, 
which reduces the number of false positives and improves recall score. 
Also, RAB in the decoder captures both large and tiny visual structures, 
which is helpful to segment infection lesions with different size. In 
addition, it should be noted that the proposed D2A U-Net with VGG-style 
backbone outperforms U-Net + + with comparably lower model pa
rameters and computational costs, which could prove the balance of 
efficiency and performance in our models. 

Utilizing pretrained backbone could also improve model perfor
mance. As can be seen, our D2A U-Net with pretrained ResNeXt-50 (32 
× 4d) backbone outperforms other networks in terms of Dice, pixel error 
and recall by a large margin and yields the best results on our dataset. 
Also, our D2A U-Net with pretrained ResNeXt-50 (32 × 4d) backbone 
takes fewer computational resources than FCN8s and DeepLab v3 
(output stride = 8). As can be seen from Table 3, pretrained encoder 
could offer a better initialization of the parameters and reduce over
fitting, especially when the data amount is insufficient. Overall, the 
proposed architecture performs better than the existing cutting-edge 
models. 

Table 2 
Quantitative analysis of U-Net based models on our dataset, including U-Net, Attention U-Net, U-Net ++ and the proposed D2A U-Net. Metrics include Dice score, pixel 
error and recall score.  

Model Param. FLOPs Dice Pix Err Recall 

U-Net 7.85 M 43.13G 0.6384 0.0332 0.5512 
Att. U-Net 8.12 M 43.78G 0.6646 0.0390 0.6470 
U-Net++ 9.16 M 106.81G 0.6830 0.0332 0.6417 
D2A U-Net 8.95 M 53.19G 0.7047 0.0323 0.6626  
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4.5.2. Qualitative analysis 
We visualized segmentation results, as shown in Fig. 5. It can be seen 

from the visualization that our proposed model outperforms other 
models noticeably. U-Net and Attention U-Net are the least sensitive to 
COVID-19 lesions, and the background pixels have much stronger acti
vation compared with other models. U-Net + + obtains more accurate 
segmentation results, but it is still not promising because some tiny le
sions or lesions with blurred edge are poorly segmented. D2A U-Net with 
VGG-style backbone produces most accurate segmentation masks 
compared with other U-Net based models mentioned above, and when 
backbone is switched to ResNeXt-50 (32 × 4d), D2A U-Net achieves the 
best segmentation results, which is comparably more sensitive to blur
red or tiny lesions than other models. 

4.5.3. Comparison with latest researches 
Apart from common models in the field of computer vision, we also 

conducted the comparison with latest researches, as shown in Table 4. 
Our proposed D2A U-Net yields top performance compared with the 

Fig. 5. Visual comparison of COVID-19 lesions segmentation results.  

Table 3 
Quantitative analysis of CV models on our dataset, including FCN-8s, DeepLab v3 (os = 8) and the proposed D2A U-Net. Backbone ResNet-101 and ResNeXt-50 (32 × 4d) 
are pretrained on ImageNet-1K. Metrics include Dice score, pixel error and recall score.  

Model Backbone Param. FLOPs Dice Pix Err Recall 

DeepLab v3 ResNet-101 58.63 M 185.00G 0.7095 0.0323 0.6780 
FCN8s ResNet-101 51.94 M 165.67G 0.6825 0.0315 0.6348 
D2A U-Net ResNeXt-50 90.05 M 149.97G 0.7298 0.0311 0.7071  

Table 4 
Comparison with the latest researches in the field of COVID-19 CT segmentation.  

Literature Method Dice 

Wang et al. [41] 3D U-Net 0.704 
Yan et al. [42] COVID-SegNet 0.7026 
Ma et al. [43] 3D U-Net 0.673 
Fan et al. [10] Semi-Inf-Net 0.739 
Ours D2A U-Net 0.7298  
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latest advances in the field of COVID-19 CT segmentation. The perfor
mance of our proposed D2A U-Net attributes its success to the devel
opment of our proposed dual attention strategy and the utilization of 
hybrid dilated convolution blocks. 

4.5.4. Ablation Study 
Several ablation experiments are conducted to evaluate the perfor

mance of components presented in our model, as shown in Table 5 and 
Fig. 6. In addition, we have visualized feature maps to further demon
strate the effectiveness of the proposed network components. 

4.5.4.1. Effectiveness of proposed GAM. To evaluate the validity of the 
proposed GAM in our experiments, we design two baselines shown in 
Table 5, including No.1 (U-Net only) and No.2 (U-Net + GAM). Feature 
maps have been shown in Fig. 7 to provide an intuitive demonstration of 
the effectiveness of the proposed GAM. Experimental results have shown 
that introducing GAM to the U-Net model can highlight the potential 
infection region and thus boost the performance, which leads to a better 
Dice score and recall. 

4.5.4.2. Effectiveness of proposed RAB. We conducted similar experi
ments (No.1 and No.3) to explore the effectiveness of the proposed RAB, 
which includes a hybrid dilated convolution block and a decoder 
attention module. From Fig. 8, it is indicated that the introduction of 
hybrid dilated convolution block into the decoder improves the recall 

score of segmentation, and the following decoder attention module 
further highlights the infection regions and also suppresses false posi
tives. By introducing RAB to our model, the proposed network yields 
better results than the vanilla version. 

4.5.4.3. Effectiveness of combining GAM, RAB and PB. As can be seen 
from Table 5, in No.4, introducing GAM and RAB together (proposed 
D2A U-Net) yields the best results in our experiments, and the perfor
mance boost exceeds the simple addition of each module’s performance 
boost. Such experimental results indicate that introducing GAM and 
RAB together promotes the performance mutually. Also, in No.5, the 
pretrained backbone offers better parameter initialization, and therefore 
could improves the performance further. 

5. Conclusion 

In this paper, we proposed a novel segmentation network, D2A U- 
Net, for COVID-19 CT segmentation. In order to refine the feature maps 
and improve segmentation performance, especially in terms of recall 
score, we present a dual attention strategy consisting of a gate attention 
module and a decoder attention module. Gate attention module is proposed 
to produce a fused attention map on the features extracted by the 
encoder. Decoder attention module is introduced to the model decoder, 
which helps refine the upsampled feature maps after convolution op
erations. Also, hybrid dilated convolution, combined with decoder atten
tion module, referred to as residual attention block, has been introduced as 
the basic block of the model decoder. Hybrid dilated convolution is uti
lized in the decoder to increase receptive field and improve the quality 
of feature representation. Experimental results indicate that the pro
posed network is capable of segmenting COVID-19 lesions from CT slices 
automatically, and achieves the best results among the popular cutting- 
edge models evaluated in our experiments. But our work is still limited 
to some degree, as only binary segmentation is performed in our ex
periments, which can limit model’s potential use in both diagnosis and 
health care. Multi-class segmentation is expected in the future to further 
evaluate the performance of the proposed model. Also, despite the 
significantly better performance of our D2A U-Net with ResNeXt-50 (32 

Fig. 6. Visualization of ablation study.  

Table 5 
Ablation analysis of proposed D2A U-Net, where GAM denotes gate attention 
module, RAB denotes residual attention block and PB denotes pretrained 
backbone.  

Method Dice Pixel Error Recall 

(No.1) U-Net 0.6384 0.0332 0.5512 
(No.2) U-Net + GAM 0.6771 0.0343 0.6445 
(No.3) U-Net + RAB 0.6579 0.0354 0.6154 
(No.4) U-Net + RAB + GAM 0.7047 0.0323 0.6626 
(No.5) U-Net + RAB + GAM + PB 0.7298 0.0311 0.7071  
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× 4d) backbone, the model has much more model parameters than other 
architectures with similar backbones (FCN8s and DeepLab v3). It is 
believed that as ResNet family models have a large number of channels 
(eg. 1024 and 2048 in the last two layers), the parameters of the decoder 
becomes extremely large. Such problem might be addressed by intro
ducing so-called Bottleneck in ResNets to the decoder of D2A U-Net to 
reduce the number of channels and thus model parameters. 
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