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Background. Melanoma is a common tumor characterized by a high mortality rate in its late stage. After metastasis, current
treatment methods are relatively ineffective. Many studies have shown that long noncoding RNA (lncRNA) may participate in
gene mutation and genomic instability in cancer. Methods. We downloaded transcriptome data, mutation data, and clinical
follow-up data of melanoma patients from+eCancer GenomeAtlas.We divided samples into groups according to the number of
somatic cell mutations and then performed a differential analysis to screen out the differentially expressed genes. We then divided
samples into genomic unstable and genomic stable groups. We compared lncRNA expression profiles in these groups and
constructed a protein-coding genes network coexpressed with selected lncRNA to analyze the pathways enriched by these genes.
Two machine learning methods, least absolute shrinkage and selector operation (LASSO) and support vector machine-recursive
feature elimination (SVM-RFE), were applied to conduct the lncRNA-related prognostic model. Afterward, we performed
survival analysis, risk correlation analysis, independent prognostic analysis, and clinical subgroup model validation. Finally,
through wound healing assay and transwell assay, the function of AATBC was verified by A375 cell lines. Results. We screened 61
prognostic-related lncRNAs and constructed an lncRNA-mRNA coexpression network based on these lncRNAs. Seven lncRNAs
were selected as common characteristic factors based on the two machine learning methods. +e model formula was as follows:
risk score� 0.085∗AATBC+ 0.190∗ AC026689.1−0.117∗AC083799.1 + 0.036∗ AC091544.6−0.039∗ LINC01287−0.291∗
SPRY4.AS1 + 0.056∗ ZNF667.AS1. +e seven lncRNAs in this formula are key candidates. Cell experiments have verified that
knocking down AATBC in A375 cell lines can reduce the proliferation and invasion ability of melanoma cells. Conclusion. +e
lncRNA we identified provides a new way to study lncRNA’s role in the genomic instability of melanoma. Our findings may
provide essential candidate biomarkers for the diagnosis and treatment of melanoma.

1. Introduction

Melanoma is a malignant tumor that originates in mela-
nocytes. +e incidence of melanoma has increased in recent
decades. Although most patients benefit from early diag-
nosis and treatment and have a good prognosis, advanced
melanoma is associated with poor outcome [1]. Early
melanoma can be treated surgically. After advanced me-
tastasis, the main treatment methods are systemic

chemotherapy and biochemical therapy [2]. +erefore, it is
essential to identify melanoma genes that might improve
diagnosis, treatment, and outcome.

About 93% of DNA is transcribed into RNA in the
human genome, while only 2% encodes proteins. A large
portion of the rest is transcribed into RNA encoding no
proteins, the so-called noncoding RNAs. RNAs of more than
200 bases are called long noncoding RNA (lncRNA) [3].
Several lines of evidence showed that these lncRNAs are not
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junk or transcriptional noise; they have critical biological
purposes. +ey participate in structural and regulatory
functions in translation mechanisms [4]. +e lncRNA me-
diates a wide range of biological functions through inter-
actions with one or more protein chaperones [5]. +e
lncRNA is involved in many cell-signaling pathways and
participates in the occurrence, development, and metastasis
of cancer.+e lncRNAmaymediate carcinogenesis or tumor
inhibition [6].

Genomic instability refers to the process by which the
genome is prone to change or has an increased propensity to
change. Genomic instability during cell division is associated
with parental cells’ inability to replicate the genome accu-
rately and the precise distribution of genomic materials
among their daughter cells. Tumorigenesis can be seen as the
accumulation of genomic changes in cell division series [7].
Genomic instability has long been recognized as one of the
tumorigenesis drivers and the source of treatment resistance.
Numerous studies have shown that genomic changes found
in cancer genomes are transcribed. Replication stress and
oxidative stress contribute to genomic instability and sub-
sequent genomic changes [8]. +e instability of cancer ge-
nomes exacerbates the phenomenon of genetic
heterogeneity within tumors. Andor et al. stated that high
genomic instability might be the basis for tumor suscepti-
bility to DNA damage therapy [9].

In addition to traditional experimental methods, bio-
informatics is used to identify genes associated with disease
and to build risk scoring models. In addition to the common
model composed of mRNA, the model composed of lncRNA
and miRNA has also attracted more and more attention. Liu
et al. screened seven lncRNA signatures as prognostic
markers for melanoma by comprehensively analyzing the
competitive endogenous RNA network [10]. Zhu et al.
constructed a global triple network and found that MALAT1
and LINC00943 may be closely related to melanoma oc-
currence [11]. Bao et al. and Geng et al. explored lncRNA
signatures associated with gene instability in lung adeno-
carcinoma and breast cancer, respectively [12, 13]. Never-
theless, the relationship between lncRNA in melanoma and
genetic instability was not discussed in these bioinformatic
studies.

To study the lncRNA associated with genomic instability
in melanoma patients, we combined the mRNA expression
spectrum, lncRNA expression spectrum, somatic mutation
spectrum, and clinical follow-up data frommelanoma tumor
genomes to establish the prognosis model of melanoma
using the machine learning method. We also explored the
possibility of using lncRNA signature as an indicator of
genomic instability in melanoma.

2. Materials and Methods

2.1. Data Collection. TCGA-SKCM FPKM RNA matrix,
clinical follow-up information, and somatic mutation in-
formation of melanoma patients were obtained from +e
Cancer Genome Atlas (TCGA) (https://portal.gdc.cancer.gov/)
[14]. TCGA-SKCM long noncoding RNA ex-
pression matrix was obtained from the TANRIC database

(http://bioinformatics.mdanderson.org/main/TANRIC:
Overview, version 1.0.6) [15]. We retained 470 melanoma
samples with paired long noncoding RNA and mRNA
expression profiles, clinical follow-up information, and
somatic mutation information for further study. We
randomly allocated all patients with melanoma into
training and validation sets. We used the training set to
conduct the genome stability-related prognosis lncRNA
signature. We used the validation set to verify the ac-
curacy of the model in the training set.

2.2. Identification Genome Stability-Related lncRNAs. We
calculated the number of somatic mutations in each sample.
Based on the number of somatic mutations, we defined the
25% with the most somatic mutations as the high mutation
group and the 25% with the least somatic mutations as the
low mutation group. We conducted a differential analysis of
the lncRNA of samples from the high and low mutation
groups and determined the difference in lncRNA between
the two groups according to |logFC> 1|, P< 0.05.

2.3. �e Functional Analysis of lncRNA. To evaluate the
relative biological functions of the differential lncRNA ob-
tained above, we indirectly characterized the biological
functions of these lncRNAs by constructing protein-coding
genes coexpressed by lncRNA and enriching the functions of
these coexpressed genes. After obtaining the coexpression
network, we determined the top ten mRNAs related to
lncRNA according to the Pearson correlation coefficient’s
size and included them in the subsequent functional analysis
[16]. We analyzed Gene Ontology (GO) [17] and the Kyoto
Encyclopedia of Genes and Genomes (KEGG) [18] using
cluster-Profiler software in R 3.6.3. We verified the corre-
lations between lncRNA and sample pathway scores and
determined whether these lncRNAs were associated with
pathways related to genome stability.

2.4. Feature Selection Based on Machine Learning.
Univariate Cox regression analysis was performed based on
these genomic mutation-related lncRNAs. After combining
the lncRNAs selected by the LASSO [19] and SVM-RFE [20]
algorithms, lncRNAs were selected simultaneously by the
two algorithms. Using the seven lncRNAs, we segregated the
470 discovery-phase samples into gene stable and gene
unstable clusters. We then used a multi-Cox regression
model to further narrow down the lncRNA-based signature
for patients with melanoma in the training cohort.

2.5. Cell Lines and Culture. +e human melanoma A375 cell
line was purchased from Fuheng Biology (Shanghai, China).
+ey were previously stored in liquid nitrogen, and the
frozen cells were quickly removed for cell resuscitation. It
was cultured at 37°C, 5% CO2 medium with high glucose
DMEM (Hyclone Laboratories Inc., Logan, UT, USA), and
10% fetal bovine serum (FBS) (Solely Biomall, Shanghai,
China).
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2.6. Cell Transfection. +e medium was changed 6 hours
after transfection. +e SiRNA sequences were as follows: 5ʹ-
CAUGCAGACUUCUACAUCA-3ʹ 5ʹ-GGACCCACGU-
GACCAUCAA-3ʹ.

2.7. Wound Healing Assay. Cells were seeded into 6-well
culture plates. When the cells reached 80%–90% confluency,
2 scratches were evenly drawn in the Petri dish with 1000 μL
pipetting nozzle. +e cells were then washed with phosphate
buffer solution and incubated at 37°C in a low-serum me-
dium of 3% FBS. After that, the picture was taken under a
microscope, and the area of the scratch was calculated. After
incubation for 24 hours, the wound area was calculated
again.

2.8. Transwell Assay. Transfected A375 cells were inoculated
on pretreated Matrigel using transwell chambers with 8
micron pores. Add 200 μL serum-free medium and 600 μL
(10% FBS) medium to upper and lower chambers, respec-
tively. After incubation at 37°C for 24 h, it was fixed with 4%
paraformaldehyde and stained with 1.0% crystal violet. Fi-
nally, the EVOSTM XL Core Imaging System (Invitrogen;
+ermo Fisher Scientific, Inc.) was used to observe the
staining of cells and counted the invaded cells and processed
the images using ImageJ software.

2.9. Statistical Analysis. We used Euclidean distances and
Ward’s linkage method to perform hierarchical cluster
analyses between various lncRNA matrices [21]. We per-
formed univariate Cox proportional hazard regression
analysis to identify the independent prognostic value of the
various lncRNAs. We performed a multivariate Cox pro-
portional hazard regression analysis to conduct genome
stability-related lncRNA signature.
GILncSig� a1x1+a2x2+a3x3+, . . ., +anxn. +e genome in-
stability-derived lncRNA signature (GILncSig) is the overall
survival risk score for patients with melanoma. Higher risk
scores imply a greater risk of death in the same period. A1 is
the coefficient of lncRNA in multivariate Cox analysis. For
coefficients >0, the lncRNA is a risk factor; for coefficients
<0, the lncRNA is a protective factor. X1 is the expression
level of a particular lncRNA. We used the median GILncSig
of the melanoma samples in the training cohort as the cutoff
point to separate patients into various risk groups. We used
the Kaplan–Meier method and the log-rank test to evaluate
the survival difference between high and low-risk groups
with a significance level of 5%. We drew time-dependent
receiver operating characteristic (ROC) curves to evaluate
the training and validation cohorts’ prognosis status diag-
nostic ability. We used R-version 3.6.3 for all statistical
analyses.

3. Results

3.1. Genome Stability-Related lncRNAs. We matched the
TCGA-SKCM melanoma cohort with the mutation burden.
We selected the 25% samples with the most somatic

mutations as the high mutation group and the 25% samples
with the least number of cell mutations as the low mutation
group. In the difference analysis of the matrix lncRNA, we
obtained 214 statistically significant and significantly dif-
ferent lncRNAs (Table S1). To determine whether these top
significant 100 differential lncRNAs are genomic stability-
related variables in the overall sample, we conducted a
consensus cluster analysis on the overall sample. We found
that these lncRNAs divide the overall sample into a GS-like
group and a GU-like group (Figure 1(a)). We determined
that the number of somatic mutations (Figure 1(b)) and the
expression of the critical gene MLH1 (Figure 1(c)) for
mismatch repair differed significantly between the groups.
+ese results show that the lncRNAs are related to genome
stability [22].

3.2. lncRNA-mRNA Coexpression Network. +e current
understanding of the related functions of lncRNA is in the
preliminary stages of development. +erefore, we have no
way to use the existing database to perform a functional
analysis of the 25 genomic stability-related lncRNAs.
+erefore, we constructed a lncRNA-mRNA coexpression
network (Figure 2(a)). Using functional analysis of the
protein-coding genes related to the function of these
lncRNAs, we indirectly speculated that these lncRNAsmight
participate in biology by regulating their coexpressed pro-
tein-coding genes in the process of network adjustment.

GO enrichment results showed that these protein-coding
genes are related to biological processes such as respiratory
electron transport chain, chromosome segregation, and
mitotic DNA damage checkpoints (Figure 2(b)). KEGG
enrichment results showed that these protein-coding genes
are related to oxidative phosphorylation (Figure 2(c)).

3.3.Constructionof aGenome Instability-Related lncRNARisk
Model. On this basis, we first selected 61 lncRNAs using
univariate Cox regression analysis. +en, we identified a
group of 24 lncRNAs using the LASSO algorithm. Mean-
while, SVM-RFE algorithm was implemented, and another
group of 24 lncRNAs was screened out. lncRNAs selected by
LASSO and SVM-RFE algorithm were intersected, and a
total of seven key lncRNAs were selected. +e lncRNAs are
as follows: AATBC, AC026689.1, AC083799.1, AC091544.6,
LINC01287, SPRY4.AS1, and NF667.AS1 (Figure 3). +en,
we calculated the risk score as follows using multivariate risk
hazard regression analysis: risk score� 0.085∗
AATBC+ 0.190∗ AC026689.1-0.117∗
AC083799.1 + 0.036∗ AC091544.6-0.039∗ LINC01287-
0.291∗ SPRY4.AS1 + 0.056∗ ZNF667.AS1 (Table 1). We
performed a multivariate analysis of the signature and other
clinical features of these gene instability-related lncRNAs to
verify that its efficacy is independent of other clinical fea-
tures (Table 2). +e risk score model divides TCGA-SKCM
samples into high-risk and low-risk groups based on the
median score. +e survival curve analysis demonstrated a
significant difference in survival between the two groups
(Figure 4(a); P< 0.001). Higher risk scores correlate with
worse outcomes. We then obtained the same results in the

Journal of Oncology 3



training and validation sets (Figures 4(b) and 4(c)). We
conducted risk model diagnosis tests on survival status in
TCGA-SKCM, training, and validation sets. +e diagnostic
test results showed that the area under the ROC curve of the
whole set, training set, and the validation set of TCGA-
SKCM was 0.716, 0.641, and 0.802, respectively
(Figures 4(d)–4(f )).

We already demonstrated the clinical prognostic value of
lncRNA related to genome stability. Next, drew expression
heat maps of the risk scoring model in each group and the
corresponding number of somatic mutations and the ex-
pression levels of UBQLN4 (Figure 5) because UBQLN4 is a
factor that indicates gene instability [23]. WRN RecQ-like
helicase encodes a member of the RecQ subfamily of DNA
helicase proteins [24]. +e encoded nuclear protein is es-
sential for maintaining genome stability and participates in
DNA repair, replication, transcription, and telomere
maintenance. Comparison analysis showed significant dif-
ferences in WRN RecQ-like helicase expression pattern
between the samples in the high-risk and low-risk groups

(Figures 5(g)–5(i)). We found that the expression of WRN
was significantly increased in the low-risk group (P< 0.001,
Mann–Whitney U-test), suggesting that the genome is
stable. +e prognostic signature constructed by lncRNAs in
this study should be combined with gene instability;
therefore, we supplemented the characteristic difference
analysis of four KEGG pathways associated with genomic
instability (ssGSEA). +e expression of these KEGG path-
ways was found to be higher in groups with higher risk
scores (Figure S1).

3.4. Clinical Subgroup Model Validation. Based on this
analysis, we determined a prognostic score model related to
genome stability. To demonstrate its prognostic effect in
various subgroups, we conducted a survival analysis. We
found that grouping according to the scores of the sample
documents, the prognostic model related to genomic sta-
bility significantly distinguished patients with different
prognostic status (Figure 6).
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Figure 1: (a) Consensus cluster analysis divided the samples into the gene stable group and gene unstable group. (b) In somatic cell
mutation count, the expression of the GS group and GU group was significantly different (P � 7.8e−10). (c) In MLH1 expression, the
expression of the GS group and GU group was significantly different (P � 0.00029).
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3.5. Elimination of AATBC Can Inhibit the Proliferation and
Migration of Melanoma Cells. In a series of in vitro ex-
periments in A375 cell lines, we demonstrated that the
overexpression of AATBC in melanoma plays an important
role in poor prognosis. In this study, AATBC was knocked
out, and a significant reduction inmelanoma cell activity was
observed (Figure 7). +e results of wound healing assay and
transwell assay also showed that the elimination of AATBC
could inhibit the migration and invasion of A375 cells.

4. Discussion

We downloaded gene transcriptome data, gene mutation
data, and clinical follow-up data of melanoma patients from
TCGA. Based on the somatic cell mutation number of
melanoma patients, we screened the top 25% and the last
25% for differential analysis, and we screened out 25 dif-
ferentially expressed lncRNAs. Using consensus cluster
analysis, we divided all samples divided into an unstable
genomic group (GU) and a genomic stable group (GS). After
constructing the coexpression network of lncRNA-mRNA,
we analyzed the pathways enriched in the network. Uni-
variate Cox regression analysis was used to initially screen
lncRNAs, and then, LASSO regression and SVM-RFE, two
machine learning methods, were combined to select the key

lncRNAs. After establishing an lncRNA-related multivariate
Cox proportional risk regression model, we performed
survival analysis, risk correlation analysis, independent
prognostic analysis, clinical subgroup model validation, and
in vitro validation according to selected vital factors to
determine whether the model had good predictive ability
(Figure 8).

Using GO analysis, we found that these lncRNAs are
enriched in biological processes, including nuclear division,
mitotic DNA damage checkpoint, chromosome segregation,
and mitotic DNA integrity checkpoint. We know that ge-
nomes need to replicate precisely when cells divide and pass
genetic material to their offspring. Changes that occur
during DNA repair, chromosome replication, or recombi-
nation provide a natural genetic variation source. +is low-
frequency inherent variability of the genome is called ge-
nomic instability [25]. Such unstable events may be asso-
ciated with chromosome loss, total chromosome
rearrangement, copy number variation, and other genetic
changes. Faulty DNA synthesis and defective excision or
mismatch repair lead to genetic mutations. Chromosome
misclustering leads to abnormal gain or loss of chromo-
somes during mitosis and chromosome number changes,
also known as chromosome instability [26]. Cell cycle
checkpoints detect DNA damage and regulate the cell cycle
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Figure 2: (a) Coexpression network of lncRNA-mRNA. Blue represents for lncRNA and red represents for mRNA. (b) GO analysis of the
lncRNA-mRNA coexpression network. +ese candidate genes are related to biological processes such as respiratory electron transport
chain, chromosome segregation, and mitotic DNA damage checkpoints. (c) KEGG analysis of the lncRNA-mRNA coexpression network.
+ese candidate genes are related to oxidative phosphorylation.
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to ensure that the critical phase of the cell cycle is completed
before entering the next phase and ensure the integrity of
chromosomes [27]. In eukaryotes, cell cycle checkpoints

ensure the coordination of DNA synthesis and DNA repair
with cell division. +e checkpoint monitors the DNA in-
tegrity, and if the DNA is damaged, it triggers a checkpoint

Table 1: +e prognosis model established by multivariate risk ratio regression analysis.

lncRNA Coef P value HR
AATBC 0.085 0.093 1.089
AC026689.1 0.190 <0.001 1.210
AC083799.1 −0.117 <0.001 0.889
AC091544.6 0.036 0.020 1.037
LINC01287 −0.039 0.010 0.962
SPRY4.AS1 −0.291 0.003 0.747
ZNF667.AS1 0.056 0.005 1.057

Table 2: Variables in the equation.

B SE Wald Df Sig Exp (B)
Age 0.012 0.005 5.144 1 0.023 1.012
Gender −0.028 0.168 0.027 1 0.869 0.973
Stage 0.278 0.116 5.768 1 0.016 1.320
T 0.187 0.079 5.600 1 0.018 1.205
M 0.488 0.474 1.062 1 0.303 1.629
Risk score 0.785 0.135 33.629 1 6.6698E-9 2.192
Df, degree of freedom; Sig, significance.
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reaction that stops the cell cycle from moving forward until
the damage is repaired. Some tumors inactivate checkpoint
responses [28].

For more than a century, people have used chemo-
therapy to treat cancer. Radiation and DNA-destroying
drugs have been routine cancer treatments until now [29].
Anticancer chemotherapy causes genotoxic damage and
activates molecular factors that regulate cell cycle check-
points, leading to cell death and tumor regression. Anti-
mitotic chemotherapy affects mitotic cells and interferes
with normal mitotic processes, including spindle formation
[30].

+eir enrichment’s cell components include the respi-
ratory chain, mitochondrial innermembrane, mitochondrial
protein complex, and the spindle body. Using KEGG
analysis, we found that these lncRNAs were concentrated in
thermogenesis and oxidative phosphorylation. +e respi-
ratory chain, also known as the electron transport chain,
comprises a series of electronic carriers. It is a continuous
reaction system consisting of a series of hydrogen and
electron transfer reactions. It gives the pair of hydrogen
atoms removed from the metabolite to oxygen to form
water, and the energy released enables adenosine diphos-
phate and phosphate to form adenosine triphosphate. +e
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coupling mechanism between electron transport and ATP
formation is called oxidative phosphorylation (OxPhos).+e
respiratory chain progressively releases this energy, facili-
tating ATP and the maintenance of transmembrane po-
tentials. Prokaryotic cells’ respiratory chain is located on the
plasma membrane, while eukaryotic cells are located on the
inner membrane of mitochondria [31, 32].

At the beginning of the previous century, Otto Warburg
observed that cancer cells obtain their energy from aerobic
glycolysis by converting glucose into lactic acid. Warburg
hypothesized that this was due to abnormal mitochondrial
function in cancer cells. Hypoxia conditions present in many
solid tumors may not satisfy their need for oxygen, allowing
cancer cells to inhibit oxidative phosphorylation and

promote glycolytic activation. +e activation of oncogenes
or inactivation of tumor suppressor genes may also increase
glycolytic proteins [33]. Many recent studies showed that
oxidative phosphorylation is upregulated in various cancers,
possibly making them sensitive to inhibition of oxidative
phosphorylation, thereby reducing tumor hypoxia. Many
well-tolerated and widely prescribed drugs, including
metformin, carboxylic aminotriazole, arsenic trioxide, and
atroquinine, act as oxidative phosphorylation inhibitors and
have the potential to act as anticancer therapeutics [34].
Investigators proposed several strategies to inhibit oxidative
phosphorylation for treating cancer, including inhibiting
mitochondrial transfer from stromal cells to malignant cells,
inhibiting mitochondrial protein synthesis, using drugs that

Construction of the lncRNA prognostic model based on machine learning
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Figure 8: Flow chart of this study. First, RNA expression data, clinical follow-up data, and gene mutation data of melanoma patients were
downloaded from the TCGA database. After data processing, two groups of samples were screened out according to the number of somatic
cell mutations, and the differences were analyzed. According to the results of the difference analysis, the consensus cluster analysis was
carried out on the total samples, and the samples were divided into the gene stable group and the gene unstable group.+en, a coexpression
network of lncRNA-mRNA was constructed, and GO analysis and KEGG analysis were performed for this network. +e machine learning
method, Lasso regression analysis, and SVM-RFE method were combined to screen out key lncRNAs. Cox proportional hazards regression
model was established, and key lncRNAs were selected. For this model, survival analysis, clinical subgroup analysis, risk correlation analysis,
and in vitro validation were performed.
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disrupt mitochondrial function, and directly inhibiting re-
spiratory chain complexes [35].

Oxidative phosphorylation and glycolysis have essential
roles in malignant tumor cells. Metabolic phenotypes in
melanoma also show some metabolic plasticity between
glycolysis and oxidative phosphorylation [36]. To maintain
their function and proliferation, melanoma cells typically
transfer their metabolism from mitochondria to glycolytic
ATP production. Various oncogenes and tumor suppres-
sors, as well as hypoxia, stimulate mitochondrial meta-
bolism. A key oncogenic factor in melanoma is the mutation
of the BRAF gene. +is protein kinase participates in RAS-
RAF-MEK-ERK mitogen-activated protein kinase signal
transduction [37]. Despite the success of BRAFV600E in-
hibitors, the treatment response in patients with metastatic
melanoma remains transient due to resistance acquired.
Roesch et al. conducted cytotoxic therapy on melanoma cells
and found that the deletion of JARID1B increased mela-
noma treatment sensitivity. Inhibition of the mitochondrial
respiratory chain prevents the JARID1Bhigh subtype and
improves multiple drug resistance in melanoma [38].

A careful literature search revealed that the biological
functions of AC026689.1, AC083799.1, AC091544.6,
SPRY4.AS1, and NF667.AS1 had not been reported to date.
lncRNA AATBC is overexpressed in bladder cancer tissues
and positively correlated with tumor grade and stage [39].
lncRNA AATBC was reported to promote the occurrence
and development of nasopharyngeal carcinoma by regu-
lating pinin through the mir-1237-3P-PNN-ZEB1 axis [40].

Mo et al. reported that the expression level of LINC01287
was increased in both hepatocellular cancer cell lines and
tissues, and downregulation of LINC01287 could inhibit the
growth of hepatocellular cancer cells [41]. In addition, Song
et al. found that LINC01287 also promoted the proliferation
and metastasis of breast cancer cells [42].

In order to compare the advantages of the lncRNA
signature associated with gene instability proposed in this
study, we compared it with the lncRNA-related prognostic
model proposed by other scholars [10, 11]. In this study, the
proposed area under curve (AUC) value of GIsig is 0.716,
that of Liusig is 0.704, and that of Zhusig is 0.520 (Figure 9).
It can be seen from the figure that the model proposed in this
study has a higher AUC value and better predictive ability.

In summary, we combined machine learning method
and other different bioinformatic mining analysis methods
to verify literature mining results and found that the model
we established measured indicators of genomic instability of
melanoma patients and predicted outcomes. We found that
AATBC, AC026689.1, AC083799.1, AC091544.6,
LINC01287, SPRY4.AS1, and NF667.AS1 were biomarkers
for genomic instability of melanoma. +is provides an es-
sential basis for the diagnosis and treatment of melanoma.
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