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Abstract

Background: Freezing of gait (FOG) is a particularly debilitating motor deficit seen in a subset of Parkinson’s
disease (PD) patients that is poorly responsive to standard levodopa therapy or deep brain stimulation (DBS) of
established PD targets such as the subthalamic nucleus and the globus pallidus interna. The proposal of a DBS
target in the midbrain, known as the pedunculopontine nucleus (PPN) to address FOG, was based on its observed
pathology in PD and its hypothesized involvement in locomotor control as a part of the mesencephalic locomotor
region, a functionally defined area of the midbrain that elicits locomotion in both intact animals and decerebrate
animal preparations with electrical stimulation. Initial reports of PPN DBS were met with much enthusiasm;
however, subsequent studies produced mixed results, and recent meta-analysis results have been far less
convincing than initially expected. A closer review of the extensive mesencephalic locomotor region (MLR)
preclinical literature, including recent optogenetics studies, strongly suggests that the closely related cuneiform
nucleus (CnF), just dorsal to the PPN, may be a superior target to promote gait initiation.

Methods: We will conduct a prospective, open-label, single-arm pilot study to assess safety and feasibility of CnF
DBS in PD patients with levodopa-refractory FOG. Four patients will receive CnF DBS and have gait assessments
with and without DBS during a 6-month follow-up.

Discussion: This paper presents the study design and rationale for a pilot study investigating a novel DBS target for
gait dysfunction, including targeting considerations. This pilot study is intended to support future larger scale
clinical trials investigating this target.

Trial registration: ClinicalTrials.gov identifier: NCT04218526 (registered January 6, 2020)

Keywords: Freezing of gait (FOG), Gait dysfunction, Parkinson’s disease, Mesencephalic locomotor region (MLR),
Cuneiform nucleus (CnF), Pedunculopontine nucleus (PPN)
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Background and rationale
Refractory freezing of gait in Parkinson’s disease
Gait dysfunction is a common and heterogeneous fea-
ture of Parkinson’s disease (PD), significantly impacting
patients’ quality of life and increasing their risk for falls
[1]. Common characteristics of parkinsonian gait include
decreased stride length, reduced arm swing amplitude,
and a flexed and stiffened trunk posture [2]. Some of
these aspects of gait are improved with dopaminergic
therapy or deep brain stimulation (DBS) of conventional
targets such as the subthalamic nucleus (STN) or globus
pallidus interna (GPi) [3]. Other deficits, such as pos-
tural instability and freezing of gait (FOG), may not re-
spond or even worsen [4].
FOG is considered the most disabling of these gait def-

icits and is described as the transient and episodic failure
to move forwards, despite intending to walk [5]. Patients
describe feeling as if their feet are “glued” to the floor,
and these episodes result in significantly decreased qual-
ity of life and contribute to falls and their related mor-
bidities [6–8]. FOG is triggered in situations that
highlight both cognitive and sensory influences on gait:
during attempts to initiate stepping or turning, when
navigating narrow corridors and obstacles, and when the
patient is distracted or under duress [9, 10]. Conversely,
these episodes frequently improve or resolve with the
help of auditory or visual cues, such as a metronome set
to a step cadence, or lines marked on the floor set to a
desired stride length [11].
The pathophysiology of FOG is incompletely under-

stood, but observations that it can be refractory to dopa-
minergic therapy suggest that it involves both
dopaminergic and non-dopaminergic mechanisms [12].
FOG is associated with advanced PD [13], though it can
present early [11]. While some controversy remains as
to whether severe gait difficulties represent a distinct
spectrum of the disease or merely a more advanced stage
of the disease [14], many clinicians distinguish between
tremor dominant (TD) and postural instability and gait
difficulty dominant (PIGD) subtypes of PD, both in
terms of their clinical prognoses as well as their manage-
ment [15]. FOG is predominantly seen in the PIGD sub-
type and has an inconsistent response to levodopa or
DBS. The development of an effective treatment for
FOG remains a priority in the field.

Rationale for DBS of the mesencephalic locomotor region
The mesencephalic locomotor region (MLR) is a physio-
logically defined area in the midbrain tegmentum, where
electrical stimulation was found to initiate locomotion in
cats [16, 17]. Since its discovery in 1966, the MLR has
been identified in multiple species, as a phylogenetically
preserved node in the supraspinal locomotor network
[18–23], with studies suggesting therapeutic potential in

animal models of gait disorders [24–26]. Electrophysio-
logical and functional imaging evidence also supported
its existence in humans [27–29], encouraging clinical
interest in the region as a DBS target to promote gait.
Specifically, this was thought to be a potential treatment
for patients with the PIGD subtype of PD [15] and FOG
that did not respond to levodopa therapy or conven-
tional DBS of the STN or GPi [30–32].
Over the past 15 years, several centers have reported on

DBS of the pedunculopontine nucleus (PPN), a putative
anatomical component of the MLR, for postural instability
and gait dysfunction in PD [33]. Despite initially promis-
ing case reports [34, 35], the efficacy of this therapy has
since been called into dispute through the results of
double-blinded studies and meta-analyses [36–39].
Several reasons have been posited to explain this lack

of efficacy, including potential species differences in
MLR function, and the degeneration of MLR neurons in
PD [40–42]. A recent clinical study of DBS assessed
FOG outcomes using a responder analysis. Of the re-
ported subjects, there was a “good responder” cluster
with near resolution of percent time spent in FOG with
DBS on compared to off (34.1 ±14% vs. 2.7 ±2.6%) [43].
The best responders had active electrodes in the dorsal
part of the MLR in the cuneiform nucleus (CnF) rather
than the PPN (Fig. 1) [43]. This aligns with recent opto-
genetic studies in rodents, which showed that stimula-
tion of glutamatergic neurons in the CnF effectively and
specifically caused locomotor initiation [47, 48] (For re-
view see [46]). It also agrees with preclinical electro-
physiological studies in the cat, where stimulation of low
threshold sites within the MLR primarily showed CnF
neuron activation [49]. The importance of electrode tar-
geting on efficacy in this region is reinforced by com-
puter modeling studies, demonstrating that targeting
errors of 1 mm can significantly decrease target activa-
tion selectivity [50].
Thus, this pilot study is designed to test the safety,

feasibility, and preliminary efficacy of CnF DBS in allevi-
ating FOG. Through this and future larger scale studies,
we ultimately aim to explore the hypothesis that the
CnF represents the neuroanatomic basis of the MLR and
that suboptimal targeting may have played a role in the
equivocal results of prior PPN DBS studies. We hope to
confirm the findings in Goetz et al. [43], which suggest
that minute changes in DBS target location in this area
have significant impacts on clinical outcome and deter-
mine if CnF DBS may be a viable therapy for FOG and
other gait dysfunctions.

Methods/design
Study design and overview
This study is a prospective, non-randomized, single-arm,
open-label, pilot clinical trial designed to evaluate the
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safety and feasibility of delivering DBS to the CnF to al-
leviate freezing of gait in PD patients with severe,
levodopa-resistant gait freezing. This study was approved
by the University of Miami Human Subject Research Of-
fice (UM HSRO) and the US Food and Drug Adminis-
tration with an Investigational Device Exemption as a
phase I trial. The trial is registered in ClinicalTrials.gov:
(NCT04218526). The study outline is shown in Fig. 2.
Suitable eligible patients will be screened for study

participation and begin the consenting process, where
the study objectives and the risks and benefits of par-
ticipating are explained to them. Informed consent
forms for the study will be filled out by subjects to
confirm enrollment and they will undergo a baseline
assessment, including a thorough neurological and
neuropsychiatric examination, as well as standardized
subjective and objective gait assessments. The
Columbia Suicide Severity Rating Scale is included
during screening given the known risk of suicidality
with DBS for PD [51]. After enrolment and baseline

Fig. 1 Three-dimensional anatomy of the human MLR and expected side effects of DBS. Reconstructions were made using Lead-DBS and
available MNI-space subcortical atlases [44]. A separate CnF (cyan) NIfTI object was created in relation to the PPN (dark purple) based on
Olszewski and Baxter’s Atlas [45]. A Sagittal projection (5 mm lateral to midline) of the CnF (cyan) and PPN (dark purple) with overlay of active
contacts from PPN DBS patients with poor (red), good (green), best (blue), and unevaluated (yellow) gait outcomes from Goetz et al. [43].
B Diagonal 3D view with right ML and STT absent to visualize the MLR, projected on to a transverse slice of the brain at the level of the pons.
C Chart lists nearby structures, their relation to the CnF, and expected side effects of stimulation. CnF Cuneiform nucleus, CTT central tegmental
tract, dSCP decussation of superior cerebellar peduncle, LC locus coeruleus, ML medial lemniscus, PPN Pedunculopontine nucleus, RN red
nucleus, STT spinothalamic tract. Adapted from Fig. 2 of [46] with permission

Fig. 2 Flow chart of study outline
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evaluation, subjects will be consented for surgery
prior to bilateral implantation of DBS electrodes in
the CnF, with a post-operative CT scan to localize
final electrode positions. For ethical reasons, all sub-
jects will receive active stimulation beginning at 2
weeks post-implantation and will undergo repeated
gait assessments in the clinic at 2-, 6-, 12-, and 24-
weeks post implantation (Table 1). Gait assessment
tests will be performed on medication, with DBS on
and off, and assessors will be blinded to whether the
DBS is on or off to minimize the risk of bias. A
more detailed kinematics and EMG gait assessment,
using the Nexus system (Vicon Motion Systems Ltd)
will take place at study onset and conclusion. At
study conclusion, subjects will decide whether they
want to continue with stimulation or discontinue
stimulation; in both cases, they will continue to re-
ceive their usual standard care and follow up with
their neurologist.

Participants
We are actively screening and recruiting patients for this
study from the Movement Disorders Clinic at the Uni-
versity of Miami Hospital. As this is a pilot study, we
plan to enroll 4 patients with PD with levodopa-resistant
FOG. A movement disorder neurologist will assess the
eligibility of a patient based on the inclusion and exclu-
sion criteria are detailed below.

Inclusion criteria

� Age 40–75
� FOG is the primary complaint despite optimized

dopaminergic therapy by a movement disorder
neurologist

� Clinical observation of FOG in the ON/OFF states
by a movement disorder neurologist

� PD stage 3 with good response to levodopa (defined
as greater than 20% improvement in MDS-UPDRS
score), except for severe gait disorder

Table 1 Detailed study schedule

Assessment Visit 1 Visit 2 Visit 3 Visit 4 Visit 5 Visit 6 Visit 7 Visit 8 Visit 9

Screen Baseline
assessment

Surgical
screening

Surgery 2-week
F/U

6-week
F/U

12-week
F/U

24-week
F/U

25-week
F/U

Screening ICF X

Pre-op work up* (CBC, CMP, β-hCG, INR/
PTT/PT, U/A, EKG, CXR)

X X

Neuropsychiatric evaluation (including
MDRS and BDI)

X X X X X X X

Columbia Suicide Severity Rating Scale X X X X X X X

Gait assessment X X X X X X

MDS-UPDRS X X X X X X

FOG Questionnaire X X X X X

Timed Up and Go test X X X X X

Velocity test X X X X X

Variability test X X X X X

PDQ-39 X X X X X X

PDQL X X X X X X

Brief pain history and NPSI X X X X X X

Surgical ICF X

MRI X

Device implantation X

CT scan X

EMG analysis X X X

Programming X X X X X

Gait kinematics X X

BDI Beck Depression Inventory, β-hCG Beta human chorionic gonadotropin, CBC complete blood count, CMP comprehensive metabolic panel, CT computed
tomography, CXR chest x-ray, EKG electrocardiogram, EMG electromyogram, FOG freezing of gait, F/U follow-up, INR international normalized ratio, NPSI
Neuropathic Pain Symptom Inventory, MDRS Mattis Dementia Rating Scale, MDS-UPDRS Movement Disorder Society Unified Parkinson’s Disease Rating Scale, MRI
magnetic resonance imaging, PDQ-39 Parkinson’s Disease Questionnaire-39, PDQL Parkinson’s Disease Quality of Life questionnaire, PT prothrombin time, PTT
partial thromboplastin time, U/A urinalysis
*Pre-op labs are viable for 30 days before surgery. After 30 days, they must be repeated before surgical procedure
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� PD stage 3 with severe gait dysfunction and
predominant axial symptoms defined as TD/PIGD
ratio ≤ 0.90 (mean value of MDS-UPDRS items 2.10,
3.15a, 3.15b, 3.16a, 3.16b, 3.17a, 3.17b, 3.17c, 3.17d,
3.17e, and 3.18 divided by the mean value of MDS-
UPDRS items 2.12, 2.13, 3.10, 3.11, and 3.12) [15]
and FOGQ score> 12

� Minimal tremor, bradykinesia, and rigidity, or well
controlled with levodopa.

� Agrees to full 6-month study participation

Exclusion criteria

� Individuals with major executive dysfunction,
dementia (Mattis Dementia Rating Scale-2 score ≤
130), depression (Beck Depression Inventory II ≥
25), or other neurocognitive impairments

� Presence of major medical co-morbidities and other
surgical contra-indications

� Individuals requiring diathermy, transcranial
magnetic stimulation, or electroconvulsive therapy

� Individuals with prior intracranial surgery
� Individuals with non-MRI compatible metallic im-

plants in their head or active implantable devices
anywhere in the body

� Individuals who are pregnant, breastfeeding, or the
desire to become pregnant during the study

� Individuals on investigational drugs or any other
intervention (not part of the guidelines for
management of PD) known to have a potential
impact on outcome

Assessments
The following assessments will be completed to screen
for study/surgical eligibility:

1. History and physical exam, including a neurological
and clinical gait assessment

2. Blood pressure and postural drop
3. Pre-operative lab work, including 12-lead electro-

cardiogram and chest x-ray
4. Neuropsychiatric evaluation, including the Mattis

Dementia Rating Scale-2, Beck Depression Inven-
tory II, and the Columbia Suicide Severity Rating
Scale

The following assessments will be completed prior to
DBS implantation as well as at each clinic visit post-
implantation:

1. MDS-UPDRS
2. FOG Questionnaire
3. Timed Up and Go (TUG) test

4. Instrumented gait assessment (Opal Inertial
measurement unit, APDM Inc., Portland, OR)
measuring:
a. Stride length (average over 2-min walk)
b. Velocity (average over 2-min walk)
c. Gait variability (measured over a 2-min walk)

5. 360° clockwise and counterclockwise turn on the
spot (time and number of steps)

6. The Parkinson’s Disease Questionnaire (PDQ-39)
and the Parkinson’s Disease Quality of Life
Questionnaire (PDQL)

7. Columbia Suicide Severity Rating Scale
8. A brief pain history and Neuropathic Pain

Symptom Inventory
9. Blood pressure and postural drop assessed in the off

and on DBS stimulation state.

At study conclusion, patients will undergo a detailed
kinematics gait assessment using the Nexus system
(Vicon Motion Systems Ltd) and surface EMG record-
ings in the lower limbs.

Device implantation
The Vercise™ (Boston Scientific Corporation) DBS Sys-
tem and Cartesia™ (Boston Scientific Corporation) direc-
tional leads will be used in this study. Implantation of
electrodes and generator will be performed in one pro-
cedure, as previously described at our institution [52]
but targeting the CnF. A pre-operative 3T MRI will be
obtained prior to surgery. Subjects will be admitted on
the day of surgery, and under intravenous sedation, a
CRW frame will be placed and a CT obtained. The CT
and MRI will be merged to obtain frame-based coordi-
nates for the CnF. The default CnF coordinates will be
calculated based on MRI brainstem landmarks to target
brainstem normalized coordinates of (0.50, 0.25, 0) [43],
and diffusion tractography will be used to ensure that
our target is within the area demarcated by the medial
lemniscus, superior cerebellar peduncle, and central teg-
mental tract. Trajectory planning will be performed to
avoid vessels and ependymal and pial surfaces. Blood
pressure and heart rate will be monitored by arterial line,
and systolic blood pressure will be maintained between
90 and 120 mmHg during electrode insertions to reduce
the risk of hemorrhage. The DBS lead placements will
be preceded by microelectrode recordings and test stim-
ulations to assess intraoperative physiology and rule out
potential side-effects that may warrant repositioning of
the lead (Fig. 1C). Intraoperative lower-extremity EMG
will be used to assess for muscle activation to assist with
targeting, as has been noted in animal studies targeting
the CnF [49, 53]. If no such changes are noted, the lead
positioning is determined only by target coordinates and
avoiding side effects of stimulation. The use of an
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intraoperative O-arm (Medtronic) spin to provide real-
time estimates of lead trajectory and location will be an
option if there are any concerns about targeting or off-
target stimulation effects. After implantation, patients
will be fully anesthesized to undergo subcutaneous im-
plantation of the generator in the chest to complete the
procedure. Patients will be admitted to a post-surgical
unit overnight for monitoring, including blood pressure
and vital signs.

DBS programming
Intraoperative stimulation parameters will be used to
guide initial programming. Programming sessions will
have heart rate, blood pressure, respiratory rate, and
blood oxygenation saturation monitoring to mitigate the
risk of adverse cardiorespiratory events related to stimu-
lation. Additionally, low frequencies will initially be ex-
plored with patients until an adequate stimulation
amplitude is found where gait initiation is under vol-
itional control. Stimulation amplitude will then be in-
creased until an adequate gait speed is achieved. If this is
not immediately apparent, stimulation amplitude will be
increased to just below the threshold for onset of side ef-
fects. Based on other studies, cyclic stimulation with
continuous daily stimulation and night arrests will be
the default protocol to avoid habituation and waning of
effects [43, 54]. Current steering will be used to increase
the therapeutic window and maximize chances of thera-
peutic benefit.

Safety and feasibility
The analyses for safety will be descriptive, focusing on
trends for within-subject differences and changes in
FOG symptoms or off-target side-effects during the dur-
ation of the study. All adverse events (AEs) will be listed
and their incidence compared to historical controls. The
primary safety analysis will be conducted on all patient
data when all 4 participants have completed the study.

Endpoints of safety and feasibility

1. Death
2. Occurrence of pre-defined stoppage rules
3. Successful implantation and complete follow-up of

4 patients

Outcomes of neurological and functional status, gait,
and quality-of-life are collected at several time points
during the study (Table 1).

Secondary outcomes

1. Percent change in FOG Questionnaire (FOGQ),
Parkinson’s Disease Questionnaire (PDQ-39), and

the Parkinson’s Disease Quality of Life
Questionnaire (PDQL)

2. Percent change in Movement Disorders Society
Unified Parkinson’s Disease Rating Scale (MDS-
UPDRS) Part III across study visits relative to pre-
operative baseline evaluation.

3. Percent change in number of falls (between baseline
and final gait testing sessions, and on item 13 of
UPDRS III)

4. Percent change in gait velocity with and without
CnF DBS

5. Percent change in muscle electromyogram (EMG)
amplitude during gait testing at study conclusion
between CnF DBS on and off conditions

Kinematic and EMG evaluation of gait
Lower-limb gait kinematics and EMG will be evaluated
with and without DBS in study subjects (n = 4). Subjects
will be fitted with fifteen reflective markers that will be
tracked at 100 Hz with a 10-camera Nexus system
(Vicon Motion Systems Ltd) attached bilaterally to the
first and fifth distal phalange of the foot, lateral malle-
olus, calcaneus, lateral femoral epicondyle, anterior su-
perior iliac spine, and the mid-shank and mid-thigh. A
reflective marker will also be placed on the lower back
region overlying the sacrum. EMG surface electrodes
will be placed over the tibialis anterior (TA) as well as
the lateral gastrocnemius (LG). Subjects will be asked to
walk along a 25-foot path at a constant, regular walking
pace both without and then with optimal DBS configur-
ation settings (CnF L on/CnF R on), DBS OFF (CnF L
off/CnF R off), DBS RIGHT Only (CnF L off/CnF R on),
and DBS LEFT only (CnF L on/CnF R off) repeating
each condition twice. Kinematic and EMG signals will
be recorded during each trial while the subjects walk for
25 ft. and averaged for each test condition.

Handling of missing data
Because of the 25-week follow-up, efforts will be made
to minimize the number of participants lost to follow-up
by developing good rapport, making the participant feel
comfortable with the research staff and having regular
correspondence between assessments. To maintain con-
tact and continued willingness for study participation at
each visit participants will provide their current address
and phone number and e-mail address as well as contact
information for at least two individuals who live outside
of their household yet are likely to know their where-
abouts. Contact information and contact history will be
entered into an electronic database allowing regular re-
view and update.
Although every attempt will be made to avoid missing

outcome data, missing data is anticipated with any longi-
tudinal study. The missing data can be defined as
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intermittent or dropout. The reason for missing data will
also be recorded and fully examined to confirm this as-
sumption and to minimize this occurrence in any future
confirmatory trials. Where appropriate, non-negligible
missing data will be imputed using regression methods.

Data analysis
The primary goal of this pilot study is to assess the
safety and feasibility of delivering DBS to the CnF in PD
patients with refractory FOG and thus will only involve
4 subjects. We believe this number of subjects will pro-
vide adequate data on safety and feasibility for a larger
study. However, assessment of trend toward efficacy will
be performed for the secondary outcomes. One-way
ANOVA will be used to compare percent improvement
in gait velocity for the four different DBS configurations
(L CnF off/R CnF off, L CnF off/R CnF on, L CnF on/R
CnF off, L CnF on/R CnF on) at each clinic visit, with
the Tukey Honest Significant Difference post hoc test to
compare configurations. The same test will be used to
compare changes in EMG amplitude between the four
DBS configurations at the final gait assessment at the
study’s conclusion. One-way ANOVA with repeated
measures will be used to compare changes in the
UPDRS III, FOG Questionnaire, PDQ-39, and PDQL
over the multiple time points of the study.

Data management
All study documents and files will use an anonymous
study identification number to identify subjects and only
an appointed Study Coordinator will maintain linkages,
to maintain subject confidentiality. Additionally, locally
stored computer data will be password protected and lo-
cated within our institution-based firewall. Physical
study data files including signed consent forms will be
stored securely in the principal investigator’s (JJ) office
within a locked filing cabinet. Subject data will be docu-
mented in source documents initially and then recorded
on electronic case report forms (CRFs). The Study Co-
ordinator will ensure that data is entered into CRFs
within 5 days of data collection and will review the ac-
curacy of entered data by comparison with subjects’
medical records within 30 days. Potential discrepancies
will be flagged and checked and corrected as necessary
by study investigators.
Only personnel listed on study protocols will have ac-

cess to study data, though study data that could medic-
ally benefit subjects will be shared with them. There will
be periodic audits (at least two during the study) of the
data by university’s Office of Research Compliance and
Quality Assurance (RCQA) auditors to ensure compli-
ance with the FDA’s Good Clinical Practices and ICH-
E6. The Principal Investigator will submit all de-
identified CRFs to the Study Sponsors and the FDA

throughout and at the completion of the study, including
any incomplete CRFs and CRFs of those who withdraw
before study completion.
A Data Safety and Monitoring Board (DSMB) has been

established as an independent expert advisory group to
assess adverse events (AEs) and evaluate the general in-
tegrity and conduct of the study. The DSMB chair will
be provided a monthly update on the status of all study
subjects. Furthermore, all AEs related to the study will
be reported to the DSMB, which will make recommen-
dations as to whether the study should continue without
change, be modified, or be terminated early. Pre-
determined stoppage rules have also been established to
aid with early termination decision making (Table 2). No
formal interim analysis of efficacy is planned given the
small number of participants.

Discussion
PD patients with FOG that is refractory to dopaminergic
therapy have limited therapeutic options. Our study
protocol aims to test the safety, feasibility, and prelimin-
ary efficacy of a novel brainstem target to alleviate FOG.
Our strategy is based on a careful revisiting of classical
animal studies [16], newly emerging optogenetics data
[47], and a recent clinical study [43], all of which suggest
that optimizing the location of DBS within the MLR
could significantly improve the effect of DBS on this gait
network. While some have pointed to the inconsistent
outcomes of previous PPN DBS studies as a reason to
abandon this approach altogether [41], that subsets of
patients with FOG show significant improvement with
DBS in this region suggests that refinement of method-
ology may be important. Through this and future larger
scale studies, we hope to determine if CnF DBS could be
an effective therapy for FOG and gait dysfunction in
other neurodegenerative disorders.
A strength of this study is the novel use of directional

electrodes to deliver DBS to this midbrain region. As a
complex area comprised of numerous interleaving fiber

Table 2 Pre-determined study stoppage rules

1 Occurrence of one or more SAEs with unexplained etiology and
unsatisfactory resolution

2 Occurrence of one or more persistent and debilitating stimulation-
related AEs in the CnF

3 Occurrence of hemorrhage, stroke, or paralysis related to device

4 Occurrence of changes in blood pressure, heart rate, and/or
respiratory rate related to device function that occur outside of the
clinic and require medical intervention

5 Significant worsening of any symptom of PD, other than transiently,
including tremor, bradykinesia, rigidity, or gait that would not
otherwise have been expected as part of the natural course of the
disease

AE adverse event, CnF cuneiform nucleus, PD Parkinson’s disease, SAEs serious
adverse event
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tracts and structures, the ability to steer current would
be important in optimizing therapeutic effects while
mitigating stimulation-induced side effects. Limitations
of this study include the small sample size, given the
preliminary nature of this study, and the lack of a con-
trol cohort. Additionally, as some patients with DBS in
this region feel mild paresthesias with stimulation,
complete double blinding of DBS status during gait as-
sessments may be impossible. Finally, there are limita-
tions related to the studying of FOG itself, including
potential heterogeneity of pathobiology, and difficulty in
eliciting FOG in the clinical setting. We hope to mitigate
these difficulties through our rigorous inclusion/exclu-
sion criteria, and by using known triggers for FOG dur-
ing gait assessments, if necessary.

Trial status
Study protocol version 2 was approved March 2, 2020,
by the FDA. Recruitment started April 27, 2020, but was
delayed due to the COVID-19 pandemic and is expected
to be completed by December 31, 2022.
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