Skip to main content
. 2021 Jun 1;21:1032. doi: 10.1186/s12889-021-11102-2

Table 4.

Regression Models for Home Food Environments, Dietary Intake and Overweight/Obesity

Feature of the Home Food Environment Logistic Regression Model
Met Fruit & Vegetable Guidelines (n = 4921)
Multiple Regression Model for Percent Calories from Fat (n = 4917) Logistic Regression Model for Overweight/Obesity (n = 4735)
OR (95% CI) b SE p-value OR (95% CI)
Fruit & vegetable inventory 1.09 (1.08, 1.11) 0.06 0.01 <.0001 0.98 (0.97, 0.99)
Salty snacks/sweets inventory 1.06 (1.01, 1.12) 0.23 0.04 <.0001 1.00 (0.97, 1.04)
Less healthy beverages inventory 0.95 (0.86, 1.04) 0.51 0.07 <.0001 1.04 (0.97, 1.12)
Food placement 1.49 (1.28, 1.74) −0.37 0.11 0.0008 1.04 (0.94, 1.15)
Meal preparation 1.48 (1.25, 1.76) −0.45 0.13 0.0006 1.02 (0.90, 1.16)
Portion control 1.04 (0.91, 1.18) 0.08 0.10 0.4024 1.03 (0.94, 1.13)
Restaurant food for family meals 1.73 (1.54, 1.94) 2.17 0.10 <.0001 0.97 (0.88, 1.06)
Family TV and eating 0.97 (0.89, 1.06) 0.32 0.07 <.0001 1.14 (1.07, 1.21)
Grocery shopping for fruit 1.52 (1.14, 2.01) −0.50 0.18 0.0047 0.95 (0.80, 1.13)
Own scale 1.04 (0.84, 1.29) −0.01 0.16 0.9327 0.98 (0.84, 1.13)
TV in dining area 1.36 (1.11, 1.67) 0.29 0.15 0.0601 0.99 (0.86, 1.14)

All models controlled for gender, race, age, income and neighborhood rurality/urbanicity