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Abstract

PAS domains are widespread, versatile domains found in proteins from all kingdoms of life. The 

PAS fold is composed of an antiparallel β-sheet with several flanking α-helices, and contains a 

conserved cleft for cofactor or ligand binding. The last few years have seen a prodigious increase 

in identified PAS domains and resolved PAS structures, including structures with effector and 

other domains. New bacterial PAS ligands have been discovered, and structure-function studies 

have improved our understanding of PAS signaling mechanisms. The list of bacterial PAS 

functions has now expanded to include roles in signal sensing, modulation, transduction, 

dimerization, protein interaction, and cellular localization.
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PAS DOMAINS: WIDESPREAD, VERSATILE AND ADAPTABLE

Per-ARNT-Sim (PAS) domains are widespread sensing, signaling and dimerization domains 

found in proteins from all kingdoms of life [1]. The number of identified PAS domains has 

rapidly risen due to increased sequencing and algorithm refinements. As of May 2020, Pfam 

33.1 includes 222,716 PAS sequences of which 84% derive from bacterial proteins, 12% are 

from eukaryotic proteins, and 4% are archaeal [2]. PAS domains are associated with 18,219 

different protein architectures [2], although in bacteria, they most often reside at the N-
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terminus of histidine kinases, diguanylate cyclases/phosphodiesterases, and methyl-

accepting chemotaxis proteins, where they regulate the functions of those proteins [3].

PAS domains are 100–120 amino acids in length and classically have divergent sequences 

(<20% average pairwise sequence identity), but conserved three-dimensional structures. The 

globular PAS core comprises an antiparallel β-sheet (with strands Aβ, Bβ, Gβ, Hβ, and Iβ) 

and several flanking α-helices (Cα, Dα, Eα, and Fα) (Figure 1a–d). The PAS core can also 

have adjoining N-terminal (Aα′) or C-terminal (Jα) helices that pack against the β-sheet. 

The β-sheet is the most conserved region of PAS domains, whereas the orientation, length, 

and number of α-helices, as well as loop lengths, vary between domains [4]. Commonly, 

PAS domains assemble into homodimers through a patch of hydrophobic residues on the 

outer surface of their β-sheet, often with contributions from the adjoining N-or C-terminal 

helices (Figure 1e, [4]). Less commonly, the β-sheet interfaces with another domain, e.g., 

PAS/HAMP interaction in the aerotaxis receptor Aer (Figure 1f, [5]).

PAS domains were originally defined as intracellular sensors and it was recently argued that 

extracytoplasmic PAS domains should instead be classified as Cache domains [6]. For this 

review, we have only included PAS domains as defined by Pfam and have focused on recent 

findings on sensing and signaling in bacterial PAS, rather than Cache, domains.

PAS SENSORS: DIVERSE COFACTORS, LIGANDS AND SIGNALS

The best studied PAS domains have sensory functions derived from their ability to bind 

small molecules. The first small molecule identified was p-coumaric acid bound to PYP 

from Halorhodospira halophila (Figure 1a and Table 1), while the newest ligand is the 

pyrazine autoinducer 3,5-dimethyl-pyrazine-2-ol (DPO) bound to VqmA-PAS from Vibrio 
cholerae (Figure 1b and Table 1). PYP is a blue light sensor implicated in phototaxis, 

whereas VqmA is a member of the quorum-sensing LuxR-family that regulates gene 

expression (Figure 2a, [7,8]). Ligands can serve as either a primary PAS signal (like DPO 

binding to VqmA) or as a secondary signal after binding to an embedded cofactor. Examples 

include flavin cofactors, which are activated by electron reduction or photon absorption, and 

hemes, which are activated by gas binding (Table 1). Despite the diversity of PAS cofactors 

and ligands, most are bound within a conserved cleft formed by the inner surface of the PAS 

β-sheet and the Eα and Fα helices (Figure 1, [4]). The region around Eα-Fα is the least 

structurally conserved part of the PAS core [4]. In the case of VqmA, DPO recognition and 

binding requires four key PAS residues, including an Fα-Phe whose benzene ring provides 

π-π stacking interactions with the pyrazine ring of DPO (Figure 1b, [7]).

The most recently discovered bacterial PAS ligands are autoinducers and fatty acids, 

including fatty acid autoinducers (Table 1). The fatty acid autoinducer, diffusible signal 

factor (DSF) [(2Z)-dodec-2-eoic acid; an α,β-unsaturated carboxylic acid], was recently 

observed in the structure of the Cronobacter turicensis RpfR PAS domain (Figure 1c, [9]). 

The specificity of ligand binding was facilitated by the amide nitrogen of a PAS-Hβ Asn that 

interacts with the electron deficient Cβ of DSF (Figure 1c). DSF binding to RpfR activates 

its phosphodiesterase domain, resulting in c-di-GMP degradation and bacterial biofilm 

dispersal [9].
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In addition to PAS domains that bind ligands within a conserved cleft, some bind metal 

ligands to the PAS surface (Table 1). This was previously demonstrated for PhoQ from E. 
coli [10], and more recently for WalK from Staphylococcus aureus. WalK tetrahedrally 

coordinates Zn2+ to a negatively-charged region on the PAS surface where it negatively 

regulates WalK’s autokinase activity (Figure 1d, [11]).

Lastly, PAS domains can act as adjuvants for cofactor binding to other domains. 

Bacteriophytochromes, for example, harness a PAS-Aα′ extension to assist with GAF 

domain-biliverdin interactions (Table 2). The PAS-Aα′ extension threads through an 

elongated loop of the GAF domain, and a PAS-Cys residue covalently binds to the 

tetrapyrrole chromophore via a thioether linkage (see [12] and [13] for the highest resolution 

crystal and NMR structures of a photosensory module, respectively).

PAS DOMAINS AS SIGNAL MODULATORS AND TRANSDUCERS

A majority of PAS domains have not been shown to bind cofactors or ligands. For some of 

these domains, the ligand-binding cleft is too small to bind ligands; instead these domains 

function as protein interaction or dimerization domains and/or have roles in signal 

modulation or transduction. These functions differ from those of pure sensors. For example, 

the two PAS domains of the Xanthomonas campestris histidine kinase RavS regulate RavS 

function by inhibiting autokinase activity [14]. In RavS, the sensor role appears to be in the 

catalytic domain, which binds c-di-GMP. Complexity increases with V. cholerae Aer2, 

which has tandem PAS domains that both coordinate b-type heme and bind O2 [15]. 

However, PAS2 is an O2 sensor whereas PAS1 modulates the extent of O2-mediated 

signaling from PAS2 (Figure 2b, [15]). PAS domains are often located between input and 

output domains such that signal transduction is likely to be a major role. The PAS domain of 

Bordetella BvgS, for example, transduces signals from a periplasmic Venus fly-trap sensing 

domain to a cytoplasmic histidine kinase (Figure 2c). However, BvgS PAS might also sense 

cytoplasmic signals, and could potentially override Venus fly-trap signals, thus tuning BvgS 

responses to the bacterial environment [16]. Another example is the histidine kinase NifL 

from Azotobacter vinelandii, which has tandem PAS domains: dimeric PAS1 binds FAD and 

serves as a redox sensor (Figure 1e), whereas PAS2 has no cofactor and transduces PAS1-

generated redox signals via changes in PAS oligomerization [17].

PAS DIMERIZATION OR PROTEIN INTERACTION AS A REQUIREMENT FOR 

FUNCTION

PAS domains commonly dimerize, but this can also be essential for protein function. The 

three consecutive PAS domains of the E. coli diguanylate cyclase DgcE were recently shown 

to be essential for dimerization and activation of DgcE’s GGDEF (diguanylate cyclase) 

domain (Figure 2d, [18]). It was suggested that PAS occurs proximal to GGDEF domains 

because GGDEF functions as a dimer and can’t dimerize on its own. In DgcE, the three PAS 

domains are sandwiched between the membrane-bound signal input domain (MASE1) and 

the cytoplasmic catalytic (GGDEF) domain, and are also required for signal transduction. 

Some bacterial PAS domains also promote protein-protein interaction. CetA and CetB from 

Campylobacter jejuni comprise a bipartite Aer-type receptor, whereby the PAS-CetB sensor 
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interacts with the CetA-HAMP domain to control the activity of the kinase control module 

(Figure 2e, [19]).

PAS DOMAINS AS REGULATORS OF CELLULAR LOCALIZATION

In addition to the recognized roles of PAS in sensing, signaling and dimerization, a newly 

identified role for PAS domains is to regulate cellular localization for the spatiotemporal 

control of cell signaling. This has been elegantly demonstrated for the bifunctional histidine 

kinase/phosphatase CckA from the asymmetrically-dividing bacterium Caulobacter 
crescentus. CckA has two PAS domains, PAS-A and PAS-B, both of which direct CckA to 

cell poles: PAS-A directs CckA to either cell pole, whereas PAS-B targets CckA to new cell 

poles (Figure 2f, [20]). PAS-A is also required for density-dependent kinase activity through 

PAS-A mediated oligomerization of CckA [20,21]. In contrast, PAS-B inhibits kinase 

activity and stimulates CckA phosphatase activity through c-di-GMP-binding and interaction 

with a kinase called DivL [20,21]. CckA thus uses its two PAS domains to integrate multiple 

signals and modulate kinase versus phosphatase activity depending on its subcellular 

location and environment. Kinase activity is favored at new cell poles, with subsequent 

phosphotransfer to the transcription factor CtrA, which controls the expression of cell cycle-

regulated promoters. In addition to CckA, the single domain PAS protein MopJ from C. 
crescentus also localizes to cell poles [22]. In Sinorhizobium meliloti, the PAS domain of 

RgsP similarly regulates RgsP localization [23]. RgsP is a phosphodiesterase involved in cell 

wall biogenesis, and its PAS domain helps target RgsP to new cell poles and to cell division 

sites where it connects c-di-GMP signaling to the control of peptidoglycan synthesis [23].

PAS SIGNALING MECHANISMS

Signals that originate within PAS cores most often propagate from the cofactor/ligand site to 

the PAS β-sheet as a conformational or dynamic signal. Aer2 receptors, for example, have a 

PAS-heme whose ligand-binding site is occupied by an Hβ-Leu. When O2 binds, the Hβ-

Leu moves out of the ligand-binding site and an Iβ-Trp rotates ~90° to bond with and 

stabilize heme-bound O2 (Figure 1g, [15,23,24]). This initiates a conformational signal at 

the PAS β-sheet that propagates to C-terminal HAMP and kinase control domains. 

Perturbations in PAS β-sheets can also cause flanking N- or C-terminal helices to reposition 

or unfold, altering dimer interactions and inducing signaling. Ligand-binding to Aer2-PAS 

moves the Aα′ helices ~4 Å (Figure 1g), and a PAS signal-on mutant has an unfolded Aα′ 
helix that is dissociated from the PAS core [15]. Perhaps the best understood mechanism 

comes from a subset of PAS called LOV (Light-O2-Voltage) domains (Table 1). In LOV 

domains, light-induced protonation of the flavin cofactor (e.g., via formation of a thioadduct, 

Figure 1h) results in a PAS Iβ-Gln flipping its sidechain 180°; its oxygen-atom then bonds 

with the proton while the amide bonds with a residue on PAS-Aβ. This destabilizes 

interactions between the PAS β-sheet and flanking N- or C-terminal helices, promoting their 

detachment or rearrangement (reviewed by [26]). In a chimeric protein of the YtvA LOV 

domain (Figure 1h) fused to the effector module of FixL (YF1), weakening PAS β-sheet/Aα
′ interactions rotates and tilts the PAS domains and separates the Jα helices, providing a 

mechanistic basis for signaling to the effector domain [26]. The tilting and rotating of short 

α-helices (many of which are amphipathic and form coiled-coils) appears to be a common 
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theme in PAS-to-effector-domain signaling. PAS-Iβ often connects to this helix via a 

conserved “DxT” motif. The Asp residue of “DxT” forms a salt-bridge to a positively-

charged PAS-GH loop residue, whereas the Thr actually begins the adjoining helix and H-

bonds to a backbone amide in PAS-Hβ, thus providing a structural basis for coupling PAS to 

other domains (Figure 1g, [4]). The critical role of the “DxT” motif is evident for the 

Treponema denticola histidine kinase Hpk2, where an Asp to Lys mutant reduces PAS 

cofactor (hemin) binding, protein dimerization, and autophosphorylation [27].

The last decade has seen substantial increases in PAS structures containing effector and 

other domains (Table 2), but few structures have been resolved for the same protein in 

different signaling states. Generally, PAS signaling is thought to alter effector domain 

dynamics and quaternary structure. For example, DPO-binding to VqmA likely stabilizes the 

PAS β-sheet and modulates the PAS-effector domain interface, promoting enhanced DNA 

binding (Figure 2a, [7]). Similarly, zinc-binding to WalK stabilizes PAS and potentially 

modulates the angle between the PAS and C-terminal catalytic domains, regulating kinase 

activity [11]. Bacteriophytochrome PAS domains show minimal crystallographic changes 

between dark-adapted and photoactivated states (e.g., [28]), but recent NMR data suggests 

substantial light-induced remodeling at the PAS-GAF interface that could be involved in 

signaling [13]. Finally, protein interactions can also induce conformational shifts in PAS 

domains. When the DhaL kinase binds to the E. coli transcription factor DhaR, the DhaR 

coiled-coil linker region reorganizes and the connected PAS domain pivots, displacing some 

Cα atoms up to 15 Å; this triggers DhaR’s ability to activate gene expression [29].

CONCLUSIONS

The last few years has seen a surge in identified PAS domains, resolved PAS structures, and 

multidomain structures. New PAS ligands have been discovered, and structure-function 

studies have improved our understanding of PAS sensing and signaling mechanisms. The list 

of PAS functions is growing, highlighting their incredible versatility and utility. In addition 

to classic roles as sensors and dimerization domains, PAS domains modulate protein 

function and interactions, transduce signals, and determine cellular localization. Future 

progress will be facilitated by developing tools to identify non-covalently bound PAS 

ligands, and by exploiting PAS-effector domains in different signaling states to uncover 

structure-function relationships.
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HIGHLIGHTS

• PAS domains are common sensing, signaling, dimerization, and localization 

domains

• Sensing versatility derives from a conserved cleft that binds cofactors and 

ligands

• PAS signaling involves repositioning of the PAS β-sheet and adjoining helices

• PAS connects to diverse effector domains to regulate distinct cellular 

functions

• PAS-effector domain structures have begun to clarify protein signaling 

mechanisms
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Figure 1. 
Examples of PAS domain structures and models with bound cofactors and/or ligands. In all 

examples, the PAS β-strands occur in the order B-A-I-H-G, and the β-sheet is surrounded by 

helices C-D-E-F. Adjoining N-terminal Aα′ helices are also shown. (a-d) PAS monomer 

structures: (a) The PAS structural prototype photoactive yellow protein (PYP) from 

Halorhodospira halophila with its cofactor p-coumaric acid (PDB: INWZ). The inset shows 

p-coumaric acid covalently bound to PAS via an Eα-Cys residue and stabilized by Bβ-Tyr 

and Cα-Glu residues [30]. (b) Vibrio cholerae VqmA PAS with its ligand 3,5-dimethyl-

pyrazine-2-ol (DPO) (PDB: 6UGL). The inset shows DPO, which is stabilized by PAS Cα-

Tyr, Fα-Phe, Hβ-Phe, and Hβ-Lys residues [7]. (c) Cronobacter turicensis RpfR PAS with 

its ligand (2Z)-dodec-2-eoic acid (DSF) (PDB: 6DGJ). The disordered HI loop in RpfR is 

represented by a dashed line. The inset shows DSF, which is stabilized by Fα-Ser, Fα-Asn, 

Gβ-Tyr, Gβ-Arg and Hβ-Asn residues [9]. (d) Staphylococcus aureus WalK PAS with Zn2+ 
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(yellow sphere) bound to the surface (PDB: 4MN5). The inset shows the four metal-

coordinating residues, Asp and His residues on a loop N-terminal to Aβ, an Iβ-His residue, 

and a Glu residue on a loop C-terminal to Iβ [11]. (e-f) Example of PAS dimerization (e) via 

the PAS β-sheet and N-terminal Aα′ helix [Azotobacter vinelandii NifL PAS1 dimer with 

FAD (PDB: 2GJ3)], compared with (f) the PAS β-sheet interfacing with a HAMP domain 

instead (Escherichia coli Aer). Aer PAS and HAMP models are based on the structures of 

NifL PAS1 (PDB: 2GJ3) and Af1503 HAMP (PDB: 2ASX), whereas the Aer PAS-HAMP 

interface is based on experimental data [5]. (g-h) PAS structures in different signaling states: 

(g) Overlay of two Aer2-PAS structures from Pseudomonas aeruginosa including an 

unliganded dimer bound to heme cofactor (Fe3+, PDB: 4HI4, [25]) and a liganded monomer 

with cyanomet heme (Fe3+-CN, PDB: 3VOL, [31]). For clarity, b-type heme is only shown 

bound to the liganded structure. Unlike canonical PAS structures, Aer2 PAS has a combined 

Cα/Dα helix and an Eη (instead of Eα) helix. Arrows depict ligand-induced movements of 

the Aα′ helices and the DxT motifs. The top inset shows how the heme-bound ligand 

displaces the Hβ-Leu residue from the ligand-binding site and the Iβ-Trp rotates ~90° to H-

bond with the ligand [24,25]. Although this structure has CN as the ligand, O2 is the natural 

ligand for Aer2. The bottom inset shows the conserved DxT motif that couples Aer2-PAS to 

the C-terminal AS-1 (amphipathic sequence-1) helix of the adjoining HAMP domain. The 

Iβ-Asp of the DxT motif forms a putative salt-bridge with an Arg residue that begins PAS-

Hβ, whereas the Thr residue (at the beginning of HAMP AS-1) H-bonds to the backbone 

amide of the subsequent Hβ-Arg. For clarity, only one liganded PAS monomer is shown, as 

is a portion of HAMP AS-1 C-terminal to the PAS domain. (h) Overlay of two YtvA-LOV 

monomers from Bacillus subtilis with bound FMN cofactor in dark (PDB: 2PR5), and blue-

light illuminated (PDB: 2PR6), states. Both structures are bound to FMN, but for clarity, 

FMN is only shown bound to the light-illuminated structure. The inset shows how light 

induces the formation of a covalent bond between the Eα-Cys residue and FMN, which 

causes the side chain of the Iβ-Gln to flip 180° [32]. In the dark state, the side chain of the 

Eα-Cys assumes two distinct conformations, which are labelled “a” and “b” [32].
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Figure 2. 
The diversity of PAS domain roles in bacterial proteins. All cartoons show the bacterial 

cytoplasmic membrane and the dimeric form of each protein. (a) PAS as a signal sensor as 

illustrated by VqmA from Vibrio cholerae. VqmA-PAS binds to the autoinducer 3,5-

dimethyl-pyrazine-2-ol (DPO) and signals to a helix-turn-helix (HTH) DNA-binding domain 

to regulate transcription [7,8]. (b) PAS as a signal modulator as illustrated by Aer2 from V. 
cholerae. PAS1 modulates the extent of O2-mediated signaling from PAS2, which sends a 

conformational signal through two HAMP domains and a kinase control module (KCM) 

[15]. The KCM regulates a series of downstream chemosensory proteins. (c) PAS as a signal 

transducer as illustrated by BvgS from Bordetella bronchiseptica. BvgS transduces signals 

from a periplasmic Venus fly-trap (VFT) domain via a cytoplasmic PAS domain to C-

terminal histidine kinase (HK; comprised of DHp and CA subdomains), response regulator 

(Rec), and histidine phosphotransfer (Hpt) domains, thus regulating kinase and phosphatase 

functions [16]. (d) PAS as a dimerization motif as illustrated by DgcE from Escherichia coli. 
The three DgcE PAS domains are essential for protein dimerization, which activates DgcE’s 
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GGDEF (diguanylate cyclase) domain to produce c-di-GMP, and overcomes the anti-

oligomerizing effect of the EAL (phosphodiesterase) domain [18]. PAS dimerization occurs 

after a protein complex binds to the membrane-associated sensor (MASE1) domain of 

DgcE. The EAL domain is degenerate and does not degrade c-di-GMP to guanosine 

monophosphate (GMP). (e) PAS as a protein interaction motif as illustrated by CetA and 

CetB from Camplyobacter jejuni. CetA and CetB constitute a bipartite energy-taxis system 

with the domains of the aerotaxis receptor, Aer, divided between two proteins. CetB is a PAS 

domain that is predicted to bind FAD, sense redox, and transmit signals through interaction 

with the HAMP domain of CetA [19]. (f) PAS as a cellular localization determinant as 

illustrated by CckA from Caulobacter crescentus. PAS-A directs CckA to either cell pole, 

whereas PAS-B targets CckA to new cell poles [20]. PAS-A and PAS-B also have sensory 

roles that regulate CckA’s kinase (HK; comprised of DHp and CA subdomains) and 

phosphatase (Rec) functions.
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Table 1:

Cofactors and Ligands of Bacterial PAS Domains

Cofactor Ligands/Signal Example PAS Proteins

p-Coumaric acid Blue light Halorhodospira halophila PYP [30]

Flavin adenine dinucleotide (FAD) Redox
Escherichia coli Aer [33,34]
Azotobacter vinelandii NifL [35]
Methylococcus capsulatus MmoS [36]

Flavin mononucleotide (FMN) Blue light
Light-O2-Voltage (LOV) domains:
Bacillus subtilis YtvA [37]
Brucella abortus LOV-HK [38]

Riboflavin Blue light Erythrobacter litoralis EL346 [39]

Heme O2, CO, NO

b-type heme: Bradyrhizobium japonicum FixL [40]
E. coli DOS [41]
Pseudomonas aeruginosa Aer2 [42] and BdlA [43]
c-type heme: Geobacter sulfurreducens GSU0935 and GSU0582 [44]

FeS cluster O2 Staphylococcus carnosus NreB [45]

- Carbohydrates Cellvibrio japonicus AbfS [46]

- Fatty acids
Chloroflexus aurantiacus MltR [47]
Mycobacterium tuberculosis Rv1364
Cronobacter turicensis RpfR [9]

- Pyrazine Vibrio cholerae VqmA [7]

- Aromatic hydrocarbons Pseudomonas putida TodS [48]

- Metal2+ E. coli PhoQ [10]
Staphylococcus aureus WalK [11]
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Table 2:

Bacterial Multi-Domain Structures Containing PAS Domains

Domain
1

Structure Arrangement
2

Protein (with PDB Identifier and Year Deposited)
3

PAS
PAS-linker

4
-PAS

PAS-linker-PAS-PAS
GAF-PAS-PAS
PAS-linker-PAS

M. capsulatus MmoS (PDB: 3EWK; 2008)
Rhodobacter sphaeroides PpsR (PDB: 4HH2; 2012)
M. tuberculosis Rv3651 (PDB: 4Q6U; 2014)
B. abortus LOV-HK (PDB: 6PPS; 2019)

ACT ACT-linker-PAS E. coli TyrR (PDB: 2JHE: 2007)

ANTAR PAS-ANTAR-linker-PAS Nakamurella multipartita PAL (PDB: 6HMJ; 2018)

DHp
PAS-DHp-CA
HAMP-linker-PAS-DHp-CA
PAS-DHpL-CA

Thermatoga maritima ThkA (PDB: 3A0R; 2009)
Streptococcus mutans VicK (PDB: 4I5S; 2012)
E. litoralis EL346 (PDB: 4R3A; 2014)

GAF

N
5
-PAS-GAF

N-PAS-GAF
N-PAS-GAF-PHY
N-PAS-GAF-PHY
N-PAS-GAF
N-PAS-GAF-PHY-linker-PAS
N-PAS-GAF
N-PAS-GAF-PHY-linker-PAS
N-PAS-GAF-PHY
N-PAS-GAF-PHY-linker-GGDEF
N-PAS-GAF-PHY
GAF-linker-PAS
GAF-PAS-PAS

Bacteriophytochromes (Bph):
Deinococcus radiodurans BphP (PDB: 1ZTU; 2005)
Rhodopseudomonas palustris BphP3 (PDB: 2OOL; 2007)
Synechocystis sp. Cph1 (PDB: 2VEA; 2007)
P. aeruginosa BphP (PDB: 3C2W; 2008)
R. palustris BphP2 (PDB: 4E04; 2012)
R. palustris BphP1 (PDB: 4GW9; 2012)
Stigmatella aurantiaca BphP (PDB: 4RQ9; 2014)
Xanthomonas campestris BphP (PDB: 5AKP; 2015)
Agrobacterium fabrum Agp1 (PDB: 5I5L; 2016)
Idiomarina sp. PadC (PDB: 5LLX; 2016)
A. fabrum Agp2 (PDB: 6G1Y; 2018)
Others:
E. coli DhaR (PDB: 4LRZ; 2013)
M. tuberculosis Rv3651 (PDB: 4Q6U; 2014)

GGDEF PAS-linker-GGDEF-linker-EAL P. aeruginosa RbdA (PDB: 5XGB; 2017)

HAMP HAMP-linker-PAS-DHp-CA S. mutans VicK (PDB: 4I5S; 2012)

Hemerythrin Hemerythrin-PAS Pyrococcus furiosus PF0695 (PDB: 3CAX; 2008)

HTH
HTH-linker-PAS
PAS-linker-HTH
PAS-linker-HTH

C. aurantiacus MltR (PDB: 3PXP; 2010)
E. litoralis EL222 (PDB: 3P7N; 2010)
V. cholerae VqmA (PDB: 6IDE; 2019)

STAS PAS-linker-STAS B. subtilis YtvA (PDB: 2MWG; 2014)

1
PAS (Per-ARNT-Sim); ACT (Aspartate kinase, Chorismate mutase, and TyrA); ANTAR (AmiR and NasR Transcription Antitermination 

Regulators); DHp (Dimerization and phospho-accepting Histidine); GAF (cGMP-specific phosphodiesterases, Adenylate cyclases and FhlA); 
HAMP (Histidine kinases, Adenylate cyclases, Methyl-accepting chemotaxis proteins, and Phosphatases); HTH (Helix-Turn-Helix); STAS (Sulfate 
Transporter and AntiSigma factor antagonist).

2
CA (Catalytic); DHpL (DHp-Like); PHY (Phytochrome).

3
Where multiple structures exist for the same protein, the earliest structure is cited

4
α-Helical linkers (e.g., Jα- or S-helices)

5
N-terminal α-helix or unstructured coil containing the covalent Cys anchor for biliverdin
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