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Abstract 

The outbreak of mysterious pneumonia at the end of 2019 is associated with widespread research interest worldwide. The coronavirus disease-19 

(COVID-19) targets multiple organs through inflammatory, immune, and redox mechanisms, and no effective drug for its prophylaxis or treatment has been 

identified until now. The use of dietary bioactive compounds, such as phenolic compounds (PC), has emerged as a putative nutritional or therapeutic adjunct 

approach for COVID-19. In the present study, scientific data on the mechanisms underlying the bioactivity of PC and their usefulness in COVID-19 mitigation 

are reviewed. In addition, antioxidant, antiviral, anti-inflammatory, and immunomodulatory effects of dietary PC are studied. Moreover, the implications of 

digestion on the putative benefits of dietary PC against COVID-19 are presented by addressing the bioavailability and biotransformation of PC by the gut 

microbiota. Lastly, safety issues and possible drug interactions of PC and their implications in COVID-19 therapeutics are discussed. 

© 2021 Elsevier Inc. All rights reserved. 
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1. Introduction 

The outbreak of severe acute respiratory syndrome at the end of

2019 has resulted in a huge health concern worldwide. The disease

caused by coronavirus (COVID-19) was initiated in Wuhan (China)

and has spread around the world. Therefore, the World Health Or-

ganization (WHO) declared the disease as a pandemic. Until April

28, 2021, WHO registered more than 145 million infected cases,

and the number of deaths exceeded 3 million [172] . The pathogen,

a novel severe acute respiratory syndrome coronavirus 2 (SARS-

CoV-2), belongs to a large family of viruses that can infect animals

and humans, causing respiratory, gastrointestinal, hepatic, and neu-

rologic diseases [168] . The SARS-CoV-2 has higher transmissibility

and infectivity but a lower mortality rate, when compared with

other coronaviruses (CoVs), such as those causing severe acute res-

piratory syndrome (SARS-CoV) and Middle East respiratory syn-

drome (MERS-CoV) [93] . 

The majority of SARS-CoV-2-infected individuals are asymp-

tomatic or have mild symptoms, most likely due to the activation

of the immune system. However, the disease evolves into acute

respiratory distress syndrome (ARDS), acute cardiac complications,

multiple organ dysfunction syndromes, septic shock, and death in

about 20% of infected (usually people with some comorbidity) [52] .

These complications are believed to be associated with severe in-

flammatory and oxidative stress responses induced by viral repli-

cation [175] . 

Despite the severity of the disease, no effective therapy is

available to improve the outcomes in patients with either sus-

pected or confirmed COVID-19. In this context, nutritional strate-

gies for reducing the risk or mitigating the symptoms of COVID-

19 have gained considerable attention. As a non-pharmacological

complementary approach, dietary supplementation of nutraceu-

ticals and probiotics is easily available and displays no or few

side effects [66 , 67] . In this regard, phenolic compounds (PC) have
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emerged as putative nutritional or adjunct therapeutics for COVID-

19 because these compounds are associated with health bene-

fits against several pathologies [47] . Moreover, PC exhibit prebi-

otic effects, influencing the gut microbiota and attenuating gas-

trointestinal complications reported in COVID-19. PC are metabo-

lized by colonic microbiota and the resulting products may be ab-

sorbed in the gut and exert beneficial effects on several organs

[149] . 

Despite the existing literature on the effects of PC against sev-

eral viruses, only a few studies have demonstrated their action

against CoVs [8 , 98] . A recent study reviewed the potential abil-

ity of PC in the prevention and therapeutics of COVID-19 by ad-

dressing molecular pathways modulated by PC [89] . However, this

review did not discuss the impact of digestion and metabolism

on the bioavailability of PC or the effects of gut microbiota-

derived PC metabolites on the putative role of PC in COVID-19.

Moreover, safety issues and possible drug interactions were not

addressed. 

This review summarizes the current evidence regarding the

bioactive mechanisms of dietary PC against COVID-19 manifesta-

tions, as well as the influence of bioavailability and gut microbiota

transformations on the putative effects of PC. Moreover, safety is-

sues and the interaction of dietary PC with drugs used to mitigate

certain COVID-19 manifestations have been addressed. 

. Methods 

The PubMed ( https://pubmed.ncbi.nlm.nih.gov ) and ScienceDirect ( https://

www.sciencedirect.com ) databases were used to search articles by a combination

of terms: coronavirus, COVID-19, SARS, MERS, influenza, NF-kB, cytokine storm, im-

munomodulation AND phenolic compounds, anthocyanins, flavonoids, isoflavones,

nutrition, phytochemicals, bioactive compounds, and oxidative stress. As this was

not a systematic review, exclusion and inclusion criteria were not defined. All ar-

ticles up to and including August 20, 2020, were considered, and those providing
relevant data for the discussion were included in the review. 

https://pubmed.ncbi.nlm.nih.gov
https://www.sciencedirect.com
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3. Overview on SARS-CoV-2 infection 

CoVs are enveloped and single-stranded RNA viruses that infect

a wide variety of host species. Structurally, CoVs have four struc-

tural proteins: spike (S), membrane, envelop, and nucleocapsid

[181] . S protein mediates the entering of SARS-CoV-2 into the

host cell through binding to the angiotensin-converting enzyme

2 (ACE2) receptor in host cells [145] . The CoV entry activates

the transmembrane protease serine 2 (TMPRSS2); this, along with

ACE2, is the main determinant of the entry of this virus [145] . 

CoV replication is mediated by RNA polymerase to produce

polyproteins. These polyproteins are processed by virus pro-

teases, papain-like protease (PLPro), and serine main protease

(chymotrypsin-like protease-3CLPro). Next, viral messenger RNA

(mRNA) is used to construct viral proteins (maturation) that are

subsequently released [185] . Helicase (Nsp13) is a highly conserved

enzyme in all CoVs and is crucial for viral replication, making it a

promising target for antiviral therapies [137] . 

After the SARS-CoV-2 infection, the increase in viral load

causes an inflammatory cytokine storm, an out-of-control cytokine

release, leading to a hyperinflammatory condition in the host

[96] . The nuclear factor kappa B (NF- κB) plays a significant role

in regulating the expression of a multitude of genes involved

with immune and inflammatory responses [176] . Once activated,

the NF- κB pathway also promotes T and B cell differentiation

[92 , 117] . 

One of the major pathways for NF- ĸ β activation after CoV infec-

tion is the myeloid differentiation primary response 88 (MyD88)

pathway through pattern recognition receptors (PRRs). This path-

way induces a variety of pro-inflammatory cytokines, including in-

terleukin (IL)-6 and TNF- α [60 , 153] . ACE2 is endocytosed along

with SARS-CoV-2, resulting in the reduction of ACE2 on cells, fol-

lowed by an increase in serum angiotensin II (Ang II) [61] . Ang

II acts both as a vasoconstrictor and pro-inflammatory cytokine

via the Ang II-receptor type 1 (AT1R). The Ang II-AT1R axis ac-

tivates NF- ĸ β and induces tumor necrosis factor- α (TNF- α), epi-

dermal growth factor receptor (EGFR), and soluble form of IL-6 re-

ceptor (sIL-6R α) via disintegrin and metalloprotease 17 (ADAM17)

[60 , 61 , 153] . Thus, the higher the viral load, the lower the concen-

tration of ACE-2 due to virus binding, which causes increased lev-

els of Ang II in the serum, thus activating the NF- ĸ β pathway. Cer-

tain glucocorticoids, such as methylprednisolone, prednisone, and

dexamethasone, have been reported to inhibit NF- κβ activation

and are used in the management of COVID-19 in several countries

[150] . Thus, substances with this same mechanism of action would

be important putative agents for containing this disease. 

The overproduction of reactive oxygen species (ROS) and depri-

vation of antioxidant mechanisms are crucial events for viral repli-

cation and the subsequent virus-associated disease [21 , 33] . In ad-

dition, variations in cellular pH, decrease in reduced glutathione

(GSH) levels, and the activity of NADPH oxidase (NOX) family are

important events. The NOX4-derived ROS production is modulated

by ACE2 [21 , 33] . Furthermore, free radicals, such as superoxide an-

ion radical (O 2 
• –), chlorine oxide (ClO 

–), nitric oxide (NO), and per-

oxynitrite (ONOO 

–) could be the cause of virus-induced pneumo-

nia death [173] . In addition, oxidative stress occurs not only due to

ROS released but also due to pro-oxidant cytokines, such as TNF- α
and IL-1, released by phagocyte activation [141] . 

Oxidative stress plays a crucial role in the pathogenesis of

COVID-19. It perpetuates the cytokine storm as well as exacerbates

hypoxia, including mitochondrial dysfunction [18] . The interplay

between ROS and cytokine storm generates a self-sustaining cycle

between the cytokine storm and oxidative stress, leading to mul-

tiorgan failure in severe COVID-19 patients whose condition pro-

gresses to sepsis and shock [18 , 173] . 
The Nrf2-mediated antioxidant system is an essential mecha-

nism to protect cells from oxidative injury. Under oxidative stress,

the transcription factor Nrf2 (nuclear factor erythroid 2-related fac-

tor 2) is translocated to the nucleus and coordinately activates cy-

toprotective genes against oxidative stress (OS) by binding to an-

tioxidant responsive element (ARE) in the promoter region of DNA.

In addition, Nrf2 regulates the genes involved in immunity and in-

flammation, as well as in the mechanisms affecting viral suscepti-

bility and replication of respiratory and non-respiratory infections

[73 , 79 , 121 , 152 , 39 , 86] . 

Once COVID-19 has been shown to target multiple organs

through inflammatory, immune, and redox mechanisms, dietary

bioactive compounds that modulate these mechanisms could be a

nutritional alternative to control the disease severity. 

4. Potential role of PC on SARS-CoV-2 manifestations 

PC have at least one aromatic ring with one or more hy-

droxyl groups attached. According to their chemical structure, they

can be divided into several classes: phenolic acids, tannins, lig-

nans, flavonoids, stilbenes, coumarins, and curcuminoids (Supple-

mentary material, Fig. S1). They are products of the secondary

metabolism of plants, providing essential functions, including pro-

tecting plants against herbivores and microbial infection, attraction

for pollinators and seed-dispersing animals, allelopathic effects, UV

protection, and signal molecules during the formation of nitrogen-

fixing root nodules [56 , 32] . In the human diet, PC are responsi-

ble for the health-promoting effects due to their antioxidant, anti-

inflammatory, immune, and prebiotic properties [151] . Increasing

evidence suggests that modest long-term intakes of PC can have

favorable effects on the incidence of chronic diseases ( [114] ; Pa-

quette, 2017; [130] ). Despite a few human intervention studies

on the effect of PC to prevent and possibly treat COVID-19, these

compounds have already been reported to present antiviral activ-

ity against CoV infection as well as strong antioxidant and anti-

inflammatory properties, suggesting their potential role in mitigat-

ing this infectious disease. 

4.1. Antiviral effect of PC against COV infections 

A good antiviral agent should prevent the growth of viruses in

infected cells by inhibiting their attachment, penetration, uncoat-

ing, genome replication, and gene expression. Table 1 summarizes

the studies on antiviral effects of PC against CoVs. 

4.1.1. Tea PC 

PC are the main bioactive components of Camellia sinensis L.,

whose leaves are used for green and black tea preparation [36] .

The antiviral activity of green tea and black tea PC in the prophy-

laxis and treatment of COVID-19 has been recently reviewed [112] .

Molecular docking studies (computational procedures for

searching ligands that fit into the protein’s binding site) have re-

vealed 3-isotheaflavin-3-gallate, theaflavin-3,3-digallate, and tan-

nic acid as effective 3CLPro inhibitors (IC 50 < 10 µM) [22] , which

would putatively affect CoV replication. Researchers reported that

the gallate group attached to the 3’ position is important for in-

teraction with 3CLPro. Another recent in silico study revealed the

strong interaction of epigallocatechin gallate (EGCG), epicatechin

gallate (ECG), and gallocatechin-3-gallate (GCG) with one or both

catalytic residues of 3CLPro [54] . Moreover, the complexes be-

tween protease and these PC were predicted to be highly sta-

ble. Theaflavin, the compound responsible for the orange/black

color of black tea, is a potent inhibitor of the RNA polymerase

of SARS-CoV-2 [94] . Catechin gallate (CG) and gallocatechin gallate
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Table 1 

Antiviral effects of dietary PC against CoVs 

PC Concentration Model Virus type Mechanism of action Reference 

Curcumin EC 50 = 10–40 µM Vero E6 cells SARS-CoV 

• Inhibition of 3CLPro 

• Inhibition of S protein 

and its receptor ACE2 

[169] 

Theaflavin-3,3’- 

digallate 

IC 50 < 10 µM Peptide 

cleavage assay 

SARS-CoV 

• Inhibition of 3-CLPro [22] 

EGCG IC 50 = 73 µM FRET assay SARS-CoV 

• Inhibition of 3-CLPro Nguyen et al., 
2012 

Papyriflavonol 
A and quercetin 

IC 50 = 3.7 and 

8.6 µM 

Purified 

protease 
SARS-CoV 

• Inhibition of PLPro [124] 

Resveratrol 62.5–250 µM Vero E6 cells MERS-CoV 

• ↓ Cell death; Inhibition 

of S protein 

• ↓ Apoptosis and N 

protein expression 

[91] 

Luteolin 10.6 µM Vero E6 cells SARS-CoV 

• Prevention of cell death 

mediated by virus 
infection 

[182] 

Myricetin and 

scutellarein 

1–10 µM Colorimetry- 

based ATP 

hydrolysis assa 

SARS-CoV 

• Inhibition of helicase 
protein by affecting the 

ATPase activity 

[183] 

Forsythoside A 160–640 µM Chicken 

embryo kidney 
cells 

IBV 

• Direct virucidal effect 

and inhibition of the 

virus infectivity 

[90] 

3CLPro, chymotrypsin-like cysteine protease; CoVs, coronavirus; EC 50 , Half maximal effective concentration; EGCG, epigallocatechin gal- 

late; FRET, fluorescence ressonance energy transfer; IBV, avian infectious bronchitis; IC 50 , half maximal inhibitory concentration; MERS- 
CoV, Middle East respiratory syndrome coronavirus; PLPro = papain-like cysteine protease; SARS-CoV, SARS-CoV, severe acute respiratory 
syndrome coronavirus. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

rect virucidal effect was observed when the PC was administered 
(GCG) showed high inhibitory activity against SARS-CoV-2 N pro-

tein in a concentration-dependent manner and affected virus repli-

cation. These PC at a concentration of 0.05 µg/mL showed more

than 40% inhibitory activity on a quantum dots-conjugated RNA

oligonucleotide-designed chip [136] . 

4.1.2. Curcumin 

Curcumin has been suggested as a potential treatment option

for patients with COVID-19 [187] because it inhibits ACE2 and sup-

presses the entry of SARS-CoV-2 into the cells [158] . In another

molecular docking study, curcumin exhibited an inhibitory effect

on SARS-CoV-2 S protein and its cellular receptor ACE2, with a

higher affinity than drugs such as nafamostat and hydroxychloro-

quine [105] . At an EC 50 of higher than 10 µM, curcumin inhibited

virus replication by reducing the number of S proteins present in

the culture of Vero E6 cells infected with SARS-CoV [169] . 

4.1.3. Resveratrol 

The protective effect of resveratrol against multiple viruses has

been recently reviewed [1] . Resveratrol stably binds to the viral

protein/ACE2 receptor complex of SARS-CoV-2, indicating it to be

a promising agent against COVID-19 by disrupting the virus S pro-

tein [162] . In addition, the stilbene diminished the expression of N

protein in SARS-CoV-2 and reduced the apoptosis of Vero E6 cells.

Moreover, resveratrol alleviated the Vero E6 cell death induced by

MERS-CoV, most likely due to an antiviral effect because the MERS-

CoV RNA and virus titer levels were lower in resveratrol-treated

cells (150–250 µM) [91] . 

4.1.4. Quercetin and related PC 

A recent review presented evidence for the use of quercetin

along with vitamin C in the therapeutics and prophylaxis of
COVID-19 (Colunga [15] ). Quercetin was identified by the su-

percomputer SUMMIT drug-docking screen and Gene Set Enrich-

ment Analyses of expression profiling experiments as a good

therapeutic candidate against SARS-CoV-2 infection [55] . Accord-

ing to this system, quercetin inhibited the expression of sev-

eral potential COV infection-promoting genes [55] . In addition,

docking studies demonstrated that myricetin and the myricetin-

containing phytomedicine Equivir bind to ACE2 receptor and pre-

vented SARS-CoV-2-induced COVID-19 [119] . Quercetin inhibited

3CLPro from MERS-CoV (IC 50 = 34.8 µM), whereas no inhibitory

activity was detected against MERS-CoV PLPro [124] . Other PC re-

lated to quercetin, such as myricetin and scutellarin, exhibited in-

hibitory action against SARS-CoV helicase [183] . 

Luteolin, a PC structurally related to quercetin, effectively in-

hibited the entry of wild-type SARS-CoV into Vero E6 cells [182] .

In a recent study, the Chinese medicine Lianhuaqingwen, contain-

ing quercetin, luteolin, and kaempferol, inhibited the replication of

SARS-CoV-2 with an IC 50 value of 411.2 µg.mL –1 in Vero E6 cells

[138] . 

4.1.5. PC from miscellaneous sources 

Sambucus nigra extract is a source of several anthocyanins

(cyanidin 3-sambubioside accounting for almost half of them)

and quercetin 3-rutinoside [161] . S. nigra extract (0.004 g/mL) re-

duced the titers of infectious bronchitis virus (IBV). This virus is

a pathogenic chicken coronavirus, and the impairment of the vi-

ral membrane is the most likely mechanism reported by work-

ers, compromising the envelope structure and vesicle formation

[23] . Forsythia suspensa Vahl. is widely used in traditional Chinese

medicine and is rich in Forsythoside A. This PC inhibited CEK in-

fection by IBV in a dose-dependent manner (0.16–0.64 mM). A di-
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before IBV but not when cells were previously infected [90] . Pa-

pyriflavonol A, present in Broussonetia papyrifera, is the most po-

tent inhibitor of PLPro, with an IC 50 value of 3.7 µM [124] . Other

PC from the same plant (broussochalcone B, broussochalcone A,

4-hydroxyisolonchocarpin, papyriflavonol A, 3 ′ -(3-methylbut-2-

enyl)-3 ′ ,4,7-trihydroxyflavane, kazinol A, kazinol B, broussoflavan

A, kazinol F, and kazinol J) were more potent against PLPro than

against 3CLPro. A molecular docking study revealed that hes-

peridin, tangeretin, and naringenin from Citrus sp. presented high

affinity for the receptor-binding domain from S protein and the

protease domain from ACE2 of the host cell [158] . 

4.2. Antioxidant properties 

The antioxidant capacity of PC has been widely investigated in

the past years. It often forms the basis for several of their pro-

tective effects on living cells. The mechanisms underlying PC an-

tioxidant capacity involve metal ion-chelating ability, scavenging of

ROS, and protecting antioxidant defenses [103] . 

4.2.1. Direct antioxidant properties 

The direct scavenging ability of PC is exerted either by partic-

ipating in reactions involving the donation of one electron ( i.e. ,

as an H) or by reducing hydroperoxide to alcohol. This prevents

the formation of the hydroxyl or alkoxyl radical [45] . The antiox-

idant activity of PC is directly related to their chemical structures

[5] . The presence of -CH2COOH and -CH = CHCOOH groups on the

benzene ring in phenolic acids enhances their antioxidant activ-

ities as compared with the -COOH group (Supplementary mate-

rial, Fig. S1). In addition, methoxyl (-OCH 3 ) and phenolic hydroxyl

(-OH) groups promote the antioxidant activities of this class of

PC [25] . For flavonoids, the most important structural character-

istic contributing to a high scavenging capacity is the B ring hy-

droxyl structure [139] (Supplementary material, Fig. S1). The hy-

droxyl groups on this ring donate hydrogen and electrons to sta-

bilize ROS, including hydroxyl and peroxyl radicals, generating a

radical form of the antioxidant with greater chemical stability than

the initial radical. The formation of these relatively long-lived rad-

icals can modify radical-mediated oxidations [127] implicated in

several diseases, including SARS-CoV-2 infection. In addition, the

metal-chelating ability could contribute to the antioxidant proper-

ties of PC. Flavonoids present strong nucleophilic centers with a

high affinity for metal ions; they are primary catalysts responsible

for ROS production by cells [48] . 

4.2.1.1. Cell-based studies. The excessive levels of ROS along with

a decrease in antioxidant defense generated by SARS-CoV-2 infec-

tion induce deleterious effects on the functions of pulmonary cells

(lung epithelial and endothelium cells) and red blood cells (RBCs)

(affecting cell membrane and the functionality of heme group),

causing hypoxic respiratory failure observed in most severe cases

of COVID-19 ( [83] ; [115] ). Therefore, free radical scavengers, such

as PC, could be beneficial co-adjuvant therapeutics for most vul-

nerable patients. 

Table S1 (Supplementary material) presents some PC with an-

tioxidant properties observed in several cell lines, including lung

epithelial and endothelium cells, and RBCs. In particular, the stil-

bene resveratrol plays a potential therapeutic role in lung epithelial

cells by attenuating oxidative stress generated after infection with

Pseudomonas aeruginosa [19] and Streptococcus pneumoniae [188] .

The antioxidant effect of resveratrol has also been demonstrated in

i) lung vascular endothelial cells, where 0.1 to 10 µM of the com-

pound attenuated HMGB1-induced mitochondrial oxidative dam-

age and protected the lung endothelial barrier [35] and in ii) RBCs,
where 100 µM of the compound prevented cell oxidation gener-

ated by H 2 O 2 [135] . The antioxidant potential of resveratrol against

H 2 O 2 -induced oxidative stress in RBCs is potentiated by the inter-

action of other PC present in red wine extract [154] . 

As shown in Table S1 (Supplementary material), PC from olive

oil, green tea, and citrus fruits showed a protective antioxidant

effect in lung epithelial cells and RBCs. Among certain olive oil

PC, 3,4-dihydroxyphenylethanol-elenolic acid and hydroxytyrosol

exerted the highest protective activity at 3 µM in AAPH-induced

oxidative stress in RBCs [123] . Oleuropein (462.5 µM) reduced

the oxidative stress status of lung epithelial cells A549, whereas

this effect was more pronounced when the compound was en-

capsulated in nanostructured lipid carriers [63] . Among green

tea PC, EGCG (30 µM) most effectively suppressed the AAPH-

induced hemolysis in RBCs [85] and the flavonoid fraction of

orange and bergamot juices (that contained vicenin-2, neohes-

peridin, narirutin, hesperidin, naringenin, tangeritin, and nobiletin)

reduced ROS generation in lung epithelial cells [43] . 

4.2.1.2. Human studies. The antioxidant activity of PC has been

mainly investigated either in vitro or in vivo using animal mod-

els [41,103] , whereas studies on humans, i.e. , clinical trials are still

limited. Table S2 (Supplementary material) summarizes studies on

the antioxidant effects of some of the selected PC in humans. The

possibility of a direct in vivo antioxidant action has always been

questioned because it requires the presence of PC at the exact lo-

cation of the formation of ROS. This presence can be limited by the

low bioavailability of PC, which is largely attributed to their poor

absorption in the intestine, rapid metabolization, and quick elimi-

nation [24] . The metabolism and bioavailability of PC [30 , 103] are

crucial aspects that should be considered for a more comprehen-

sive appraisal of the health-promoting effect of these compounds

as further discussed in Section 6 . Nevertheless, certain studies have

been conducted using antioxidant-rich foods and beverages that

showed that PC from teas (black and green), wine, grapes, olive oil,

berries, and fruits and vegetables improved the antioxidant status

(plasma antioxidant activity) in healthy subjects (Supplementary

material, Table S2). 

4.2.2. Genetic modulation of enzymatic antioxidant defenses 

Recently, it has been reported that the mechanisms of action of

PC include processes more than direct scavenging of ROS. For ex-

ample, these compounds i) activate transcription factors involved

in the Nrf2-ARE pathway and induce antioxidant enzymes, ii) ex-

hibit xenohormetic effect, and iii) improve cell homeostasis due to

their binding activity to peptides and proteins [155] . 

Although recent studies have reported the potential use of

certain PC in the treatment of COVID-19, they were mostly fo-

cused on the antiviral activity mechanisms [101] . Next, the ef-

fects of PC on the endogenous antioxidant system by modulating

the Nrf2 pathway [77] and its implication for COVID-19 therapy

have been scarcely addressed. PB125, a phytochemical dietary sup-

plement containing a mixture of extracts with carnosol (6%) and

carnosic acid (15%) from Rosmarinus officinalis , withaferin A (2%)

from Withania somnifera , and luteolin (98%) from Sophora japon-

ica at a ratio of 15:5:2 (m/m/m) and extracted at 50 mg of the

mixed powder per mL in ethanol, was a potent Nrf2 activator at

concentrations ranging from 4 to 22 µg/mL in the HepG2 cell line

[65] . Furthermore, PB125 downregulated the mRNA expression of

ACE2 and TMPRSS2 at a concentration of 16 µg/mL in human liver-

derived HepG2 cells [107] . In addition, PB125 markedly downreg-

ulated 36 genes encoding cytokines in endotoxin-stimulated pri-

mary human pulmonary artery endothelial cells. Considering that

several of these cytokines were identified in the “cytokine storm”

observed in fatal cases of COVID-19, the study group suggested that
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Nrf2 activation significantly decreased the intensity of the storm in

patients affected by COVID-19 [107] . 

PC modulate the endogenous antioxidant system during cer-

tain viral infections [80] . Oral supplementation with quercetin (1

mg/day for 5 consecutive days) parallel to influenza virus instilla-

tion increased the activities of catalase (CAT) and superoxide dis-

mutase (SOD) and the concentration of GSH. Therefore, quercetin

could protect the lungs from ROS produced during influenza virus

infection by restoring endogenous antioxidants. Quercetin (20 µg/L)

simultaneously induced the translocation of Nrf2 from the cytosol

to the nucleus and the expression of heme oxygenase (HO-1) and

NAD(P)H quinone dehydrogenase 1 (NQO1) (other enzymes reg-

ulated by the Nrf2 pathway) in alveolar macrophages, suggesting

that the supplementation with quercetin was beneficial in treating

respiratory viral infections [179] . Accordingly, increased antioxi-

dant defenses by activating Nrf2 by flavonoids have been discussed

[143] and likely contribute to their anti-inflammatory property.

Furthermore, several other studies indicated that flavonoids modu-

late the inflammatory response by activating pathways that induce

the transcription of antioxidant and detoxification defense systems

[131] . This interplay between antioxidant and anti-inflammatory

effects of PC reinforce their putative beneficial role against man-

ifestations of SARS-CoV-2 infection. 

4.3. Immunomodulatory and anti-inflammatory effects 

The immunomodulatory ability of PC is evidenced by their abil-

ity to modulate the NF-k β pathway by suppressing the activation

of IKK or by preventing the binding of NF- κB to DNA. In addi-

tion, PC modulate the expression of pro-inflammatory genes and

cytokine production, besides influencing several populations of im-

mune cells [165 , 174] . 

Natural killer (NK), T, and B cells are particularly important for

combating COVID-19 infection because they are crucial players in

the immune response against bacteria and viruses. Lymphopenia

( i.e. , low count of T, B, and NK cells) is among the signs of COVID-

19 infection. Thus, therapeutic or dietary agents that increase im-

mune cell count are relevant [95] . 

The administration of Cassia auriculata -derived PC (25–100

mg/kg b.w.) increased the T and B cell counts, as well as the pro-

liferation and sensitivity of T cells in aged rats [71] . Resveratrol

(2.5 µg/mL) not only increased the percentage of CD4 + and CD8 +

T cells but also stimulated CD8 + T lymphocyte and NK cell activ-

ity [42] . Honokiol, a PC extracted from the bark of the magnolia

tree, at 120 mg/kg b.w., increased the frequency of dendritic cells

and the count and activation of CD4 + T cells in an in vivo sep-

sis model [74] . In vitro and in vivo studies indicated that EGCG in-

hibited the migration of monocytes and increased regulatory T-cell

populations [110 , 166] . 

Multiple PC, such as narirutin [58] , butein [69] , trans-

cinnamaldehyde and 2-methoxycinnamaldehyde [134] , hydroxyty-

rosol [9] , kamebacetal A [64] , kamebakaurin [64] , excisanin A [64] ,

kamebanin [64] , piceatannol [12] , naringin [2] (Ahmad et al., 2014),

sinapic acid [186] , and malvidin [31] have been described to in-

hibit the activation of the NF-k β pathway. In addition to isolated

PC, plant extracts containing multiple PC, namely phenolic acids,

flavonoids, and even PC precursors such as quinic and shikimic

acids, inhibit the NF-k β pathway in vitro at concentrations rang-

ing from 10 to 300 µg/mL [126 , 189] . 

Cytokine storm, mass secretion of pro-inflammatory cytokines,

is one of the worst signs of the COVID-19 pathology, often lead-

ing to major complications [27 , 96 , 111] . Accordingly, studies have

shown that PC can inhibit the secretion of pro-inflammatory

cytokines in several conditions. For instance, kaempferol (28.62

µg/mL) significantly reduced the concentration of IFN- γ in human
whole blood cultures, whereas oleuropein (54.05 µg/mL) reduced

the concentration of IL-1 β [113] . Resveratrol reduced the levels of

TNF- α and IL-6 in vivo (100 mg/kg b.w./day) [146] and in HTLV-

1-infected CD4 + T lymphocytes (20–40 µg/mL) [49] . Moreover, the

secretion of TNF- α and IL-6 was reduced in human primary mono-

cytes by oligonol (25 µg/mL), a lychee fruit-derived mixture of low-

molecular-weight PC [88] . At concentrations ranging from 10.8 to

61 µg/mL, quercetin, fisetin, apigenin, resveratrol, and rutin inhib-

ited the production of IL-6, whereas curcumin and partially fisetin

(7.4 and 11.4 µg/mL, respectively) suppressed the production of

TNF- α in macrophages infected with dengue virus (DENV-2) [70] .

In addition, fisetin, apigenin, and resveratrol downregulated the

production of IL-10, whereas rutin and fisetin inhibited the pro-

duction of IFN- γ [70] . Altogether, these data showed that the im-

munomodulatory and anti-inflammatory properties of dietary PC

support a possible role for PC-based adjuvant nutritional strate-

gies to combat the inflammatory storm characteristic of COVID-19,

apart from mitigating the complications associated with this in-

flammation. 

5. Human studies on PC use in COVID-19 

Although scarce, certain ongoing studies are investigating the

therapeutic potential of PC for COVID-19 patients. In a random-

ized, double-blind, placebo-controlled study, COVID-19 patients re-

ceiving a daily dose of 160 mg of a nano-micellar form of cur-

cumin for 14 days reported decreased IL-6 and IL-1 β expression

and secretion in serum when compared with the placebo group

[159] . Currently, three clinical studies are registered at ClinicalTri-

als.gov using PC to target the inflammation caused by COVID-19.

One of these trials will evaluate the use of a dietary supplement

containing a molecular complex of quebracho, chestnut tannin ex-

tract, and vitamin B12 [128] . The second study aims to assess the

use of Caesalpinia spinosa extract rich in PC, with a high antioxi-

dant and anti-inflammatory activity, in decreasing the production

of pro-inflammatory cytokines ( e.g. , IL-6) [99] . The third clinical

trial aims to evaluate the safety and effectiveness of colchicine and

herbal phenolic monoterpene fractions when added to the stan-

dard treatment in patients with COVID-19 [109] . No results about

these trials have been published yet. 

6. Bioavailability of dietary PC 

The bioavailability of dietary PC should be considered for a

more comprehensive appraisal of the health-promoting effect of PC

[30 , 103] . Despite being the most abundant bioactive phytochem-

ical in the human diet, the bioavailability of dietary PC is usu-

ally extremely low, ranging from 1 to 10% of the initial amount.

The bioavailability of PC depends on several factors, such as food

processing (cooking), food-related factors (food matrix) and inter-

actions with other compounds (fat and alcohol), and host-related

factors, including intestinal factors [30] . 

Dietary PC are absorbed in the small intestine ( Fig. 1 ), resulting

in plasma concentrations rarely exceeding 1–10 µM [155] . Among

all PC classes, flavones, such as quercetin and rutin, present a

low absorption rate (0.3–1.5%), whereas flavonols (catechins), fla-

vanones (naringenin), genistein, and anthocyanins show a high

bioavailability (3–30%) [155] . High molecular weight tannins are

poorly absorbed due to their relatively large molecular size. Sugar-

bound PC exhibit limited bioavailability in their native form. Some

of them are hydrolyzed in the intestine, contributing to the high

variability of PC bioavailability [72] . 

In addition to their low absorption, dietary PC are extensively

metabolized by intestinal and hepatic cells. Therefore, they are

present in human plasma and tissues not only in their native form
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Figure 1. The fate of dietary PC during human digestion. Note that the low bioavailability of parent PC along with the interplay between dietary PC and gut microbiota plays 

a key role in human health. The gut–lung axis, which links the changes in the gastrointestinal tract to the changes in the respiratory system, would probably play a key role 

in the dietary approaches for attenuating COVID-19-associated ARDS. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

but also as phenolic metabolites. These metabolites have become

the subject of several research studies showing the beneficial ef-

fects (powerful antioxidant agents) of their different forms (glu-

curonidated, sulfated or methylated) [144] . 

After oral administration, resveratrol is absorbed by passive dif-

fusion or by forming complexes with membrane transporters fol-

lowed by release into the bloodstream. In the bloodstream, they

are mainly present as a glucuronide, sulfate, or in the free form

[50] . The concentration of resveratrol in human plasma depends

on the dose ingested; it is higher when administered in the morn-

ing [4] . In addition, its administration with ribose or piperine im-

proves its bioavailability, whereas no changes were reported when

it is ingested with or without alcohol or in combination with other

PC such as quercetin [132] . In contrast, its consumption with a

high-fat meal compromises its bioavailability [132] . The human gut

microbiota plays an important role in the interindividual variation

concerning resveratrol bioavailability, and strains such as Slackia

equolifaciens sp. and Adlercreutzia equolifaciens sp. have been iden-

tified as producers of dihydroresveratrol [14] . 

The bioavailability of curcumin is substantially low—about 50

ng/mL is found in human plasma after oral administration (10–

12 g of curcumin) [6] . The major reasons contributing to the low

plasma and tissue levels of curcumin appear to be its low solubil-

ity in water, poor absorption, rapid metabolism, and rapid systemic

elimination [6] . To improve its bioavailability, different approaches

have been used such as the use of an adjuvant, e.g. , piperine that

interferes with glucuronidation, use of liposomal curcumin, use of

curcumin nanoparticles, use of curcumin phospholipid complexes,

and use of structural analogs of curcumin [6] . 

The bioavailability of quercetin is highly dependent on the type

of food matrix. In particular, quercetin aglycone derived from onion

skin extract powder is significantly more bioavailable than that

obtained from apple skin extract [87] or even quercetin dihy-

drate powder-filled hard capsules [16] . The oral bioavailability of
quercetin is well understood. Despite the administration of a high

oral dose of quercetin, the maximum concentration of the free

aglycone in plasma is only in the low nM range owing to its bio-

transformation during digestion, absorption, and metabolism [3] .

Therefore, it is suggested that quercetin can be administered di-

rectly by alternative routes, such as a nasal or throat spray, to treat

COVID-19 patients in clinical trials [171] . 

It is estimated that only approximately 1.68% of ingested tea

catechins are present in human plasma (0.16%), urine (1.1%), and

feces (0.42%) 6 h after the ingestion of tea [167] . In particular,

Yang et al. reported that the maximum plasma concentrations for

EGCG, EGC, and EC were 0.57, 1.60, and 0.6 µM, respectively, after

the consumption of 3 g of decaffeinated green tea [177] . To im-

prove the bioavailability of tea catechins, several approaches have

been explored. For instance, the encapsulation of tea catechins

in protein-based, carbohydrate-based, and lipid-based nanoparti-

cles improved their stability, sustainable release, and cell mem-

brane permeation, resulting in increased bioavailability [17] . In ad-

dition, molecular modification of compounds, such as synthesiz-

ing peracetylated EGCG, increased the bioavailability of this com-

pound because it protected hydroxyl groups on EGCG from oxida-

tive degradation until it is deacetylated into its parent EGCG by

esterases in cells, decreasing biotransformation and efflux of EGCG

[84] . The co-administration of catechins with other bioactive com-

pounds produced a synergistic effect, resulting in improved ab-

sorption and inhibition of efflux transporters [17] . 

Most antiviral and direct antioxidant effects of dietary PC in

vitro have been observed at concentrations ranging from 0.1 and

640 µM ( Table 1 and Supplementary material, Table S1). As dis-

cussed above, systemic levels of PC are usually within nM or

low µM range due to their low bioavailability and extensive

biotransformation during digestion and after intestinal absorption

[41] . Thus, concentration issues could limit the in vivo relevance

of direct systemic antiviral and antioxidant effects of PC. Never-
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Figure 2. The interplay between dietary PC and gut microbiota, and its putative role in protection against SARS-CoV-2 infection. ACE2: angiotensin-converting enzyme 2 

receptor. PC: phenolic compounds. F/B ratio: Firmicutes/Bacteroides ratio. PCA: protocatechuic acid. Dashed lines and squares indicate indirect evidence and putative effects, 

respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

theless, PC compounds reach concentrations within the mM and

high µM range inside the gastrointestinal tract [41] , where they are

likely to exert antiviral and antioxidant effects. 

7. Interplay between PC and gut microbiota: implications for 

the protection against COVID-19 

About 90% of dietary PC is not absorbed in the small intestine

and therefore reaches the colon [72] , where it is extensively me-

tabolized by the gut microbiota into small molecular weight com-

pounds that usually have a higher absorption rate than their par-

ent compounds ( Fig. 1 ). Many of these PC metabolites have bioac-

tive effects and are majorly responsible for the systemic biological

effects of dietary PC [28] . Therefore, they meet the requirements

for being considered postbiotics, i.e. , microbial-derived metabolites

that have beneficial effects on the host [28] . In addition, the in-

terplay between PC and gut microbiota modulates the microbiome

composition and function [28 , 72] ( Fig. 1 ). This section will address

how this interplay could modify the bioactive properties of PC that

are relevant to their potential benefits against SARS-CoV-2 infec-

tion. 

Colonic microbiota deconjugates glycoside, glucuronide, and or-

ganic acid moieties releasing phenolic-derived aglycones that are

subsequently cleaved by the fission of heterocyclic and aromatic

rings, and undergo dihydroxylation, decarboxylation, demethyla-

tion, reduction, and isomerization of alkene moieties [28] . Cer-

tain catabolic pathways have been elucidated ( Fig. 2 ) reveal-

ing that protocatechuic and other hydroxybenzoic acids are the

major metabolites of anthocyanins and other flavonoids [28] ,

whereas urolithins are major metabolites of ellagic acid-related

PC [72 , 129] . Proanthocyanidins are converted into catechins that

are subsequently catabolized into hydroxyphenyl- γ -valerolactones

and thereafter sequentially converted into the following pheno-

lic acids: hydroxyphenylvaleric, hydroxyphenylpropionic, hydrox-

yphenylacetic, hydroxybenzoic, and hippuric acids [10] . 
Several systemic health benefits of dietary PC are dependent

on phenolic metabolites generated by the gut microbiota. Certain

effects demonstrated for these phenolic metabolites, such as the

antioxidative, anti-inflammatory, and immunomodulatory proper-

ties, are relevant in the context of protection against COVID-19

( Fig. 2 ). Isoflavones, such as genistein and daidzein, are metab-

olized into equol that has antioxidant, anti-inflammatory, cardio-

protective, neuroprotective, and estrogenic activity. In fact, equol

seems to be responsible for the effects of its parent isoflavone

compounds [28 , 106] . In addition, urolithins exhibit higher antioxi-

dant, anti-inflammatory, and anti-proliferative activities than their

parent compounds ellagitannins and ellagic acid [144] , whereas 3-

(3-hydroxyphenyl)propanoic acid is implicated in the protective ef-

fect of grape seed polyphenol extract against neurodegenerative

diseases [164] . In contrast, the antioxidant and antiproliferative

abilities of flavonoid metabolites, namely phenylpropionic, pheny-

lacetic, and hydroxybenzoic acid derivatives was lower compared

to their parent compounds [37 , 51] . 

The potential role of microbial-derived PC metabolites against

SARS-CoV-2 infection comes from the studies on protocatechuic

acid. After human intake of cranberry juice, plasma levels of pro-

tocatechuic acid increased and were more strongly correlated with

the plasma antioxidant capacity than its parent PC [108] . In ad-

dition, the modulation of macrophage function by protocatechuic

acid is majorly responsible for the antiatherogenic effects of dietary

cyanidin-3-glucoside in a mice model of atherosclerosis [163] .

Moreover, protocatechuic acid has been demonstrated to attenu-

ate inflammatory response and increase viral clearance and sur-

vival rate of mice challenged with the influenza virus H9N2 [122] . 

The other face of the interplay between PC and gut micro-

biota is the reshaping of the former by dietary phenolics in

a prebiotic-like effect [28] . Such effect has been implicated in

several phenolic-induced benefits, including improved intestinal

homeostasis [104] and immune response, among other relevant

biological effects [72] ( Fig. 2 ). These prebiotic-like effects could

be particularly relevant to SARS-CoV-2 therapy because gastroin-
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testinal problems have been reported in approximately 50% of pa-

tients in a multicenter study in Hubei, diarrhea being reported

in 17% of patients [57] . The supplemental nutrition with solu-

ble dietary fibers, which are classical prebiotics, and even with

probiotics, have been recommended for nutrition therapy during

the recovery of critically ill COVID-19 patients [102,118] . More-

over, COVID-19 patients exhibited intestinal dysbiosis characterized

by a decrease in the diversity and abundance of gut microbiota

[57 , 190] , which could represent a potential target for the use of

PC ( Fig. 2 ). Supporting this hypothesis, resveratrol [29] and cer-

tain resveratrol oligomers [184] have been demonstrated to alle-

viate diarrhea induced by rotavirus in animal models. The inhi-

bition of epithelial Ca 2 + -activated Cl – channels contributes to the

anti-secretory and anti-motility protective effects of these PC [184]

( Fig. 2 ). 

ACE2 receptors, which are known to mediate the entry of

SARS-CoV-2 into animal cells [145] , are highly expressed in the

gastrointestinal epithelial cells (Harmer, Gilbert, Borman & Clark,

2002). The reconstitution of gut microbiota in gnotobiotic rats was

demonstrated to decrease colonic ACE2 expression compared to

that in germ-free rats [178] , providing evidence that colonic ex-

pression of ACE2 is modulated by gut microbiota. Since PC in-

creased the abundance and diversity of gut microbiota in favor of

the growth of probiotic bacteria [149] , reshaping of gut microbiota

by PC could putatively modulate SARS-CoV-2 entry into the host

( Fig. 2 ). 

In addition, COVID-19 severity demonstrated an association

with 23 bacterial taxa from fecal samples, mostly from phy-

lum Firmicutes [190] . Clostridium ramosum and Clostridium hathe-

wayi were positively associated with COVID-19 severity, while

Erysipelotrichaceae bacterium exhibited a strong positive associa-

tion with fecal SARS-CoV-2 load [190] . These Clostridium species

are reportedly associated with human bacteremia [40 , 46] . In addi-

tion, the fecal SARS-CoV-2 load of COVID-19 patients demonstrates

an inverse association with certain Bacteroides species [190] , which

have been reported to reduce the expression of ACE2 in murine

gut [53] . These data suggest that Bacteroides species probably con-

tribute to combating SARS-CoV-2 infection by hampering virus en-

try through ACE2 [190] . According to a recent review, several PC

and PC-rich foods, such as curcumin, resveratrol, polymeric proan-

thocyanidins, de-alcoholized red wine, and green tea, reduce the

fecal Firmicutes/Bacteroides ratio [72] . Considering a cause–effect

relationship between gut bacterial profile and COVID-19 prognos-

tics, PC is expected to reduce virus load and COVID-19 severity

( Fig. 2 ). 

The in vitro studies, animal models, and clinical trials pro-

vide accumulating evidence that PC, particularly hydrolyzable and

condensed tannins, may exert prebiotic-like effects by promoting

the growth of Lactobacilli and Bifidobacteria [28 , 38] , which play a

key role in regulating local and systemic immune responses [147] .

Therefore, PC intake is expected to modulate the ecology of gut

microbiota in COVID-19 patients to enable a balanced immune re-

sponse against SARS-CoV-2. The mechanisms underlying the pre-

biotic effect of PC have not been completely elucidated so far,

although it is suggested to include sugar moieties as an energy

source or selective antimicrobial effects against pathogenic bacte-

ria based on iron-chelating, anti-adhesion, and membrane protein

inactivation that would favor the growth of probiotic bacteria and

reshape gut microbiota [28] . 

The reshaping of gut microbiota increases the production of

short-chain fatty acids (SCFA), such as acetate, propionate, and

butyrate, which have been demonstrated to downregulate pro-

inflammatory cytokines while improving systemic immune re-

sponse after intestinal absorption [78] ( Fig. 2 ). This mechanism
could be particularly relevant for counteracting the SARS-CoV-2-

related inflammatory storm that is usually associated with ARDS

[147] . It is noteworthy that the soluble PC and mostly the matrix-

bound PC from fruits increased fecal SCFA production in vitro

[116 , 129] as well as in vivo [28 , 104] . A fecal transfer experiment

conducted recently in mice demonstrated that changes in gut mi-

crobiota were responsible for the lung pneumococcal infection sec-

ondary to influenza A virus infection [142] . Oral supplementation

with acetate, which is the predominant SCFA produced by gut mi-

crobiota, reduced the impact of this bacterial infection by modulat-

ing the activity of alveolar macrophages [142] . These data indicate

SCFA as relevant therapeutic agents against the complications of vi-

ral respiratory infections and reinforce the involvement of the gut-

lung axis in these pathologies ( Fig. 2 ). The gut-lung axis comprises

a two-way interaction, where the function and immune homeosta-

sis of the lung can be affected by metabolites from gut microbiota

and vice-versa [26] . 

COVID-19-associated dysbiosis [57] has a potential impact on

the profile of microbe-derived PC metabolites, and should, there-

fore, be carefully evaluated when considering PC as adjuncts for

SARS-CoV-2 treatment ( Fig. 2 ). Fecal Clostridium species, which are

positively associated with high-severity COVID-19 cases [190] , have

also been implicated in the gut metabolism of PC [28] . Moreover,

emerging evidence reveals that interindividual differences in the

ecology of gut microbiota result in different profiles of phenolic-

derived postbiotics, which could have a key role in the biologi-

cal effects of PC. Different metabolic profiles, named metabotypes,

were identified for ellagitannins/ellagic acid [28] and isoflavone

daidzein [106] , indicating the relevance of personalized nutrition

and pharmacological therapy. 

Despite the overall decreased abundance of gut microbiota in

SARS-CoV-2 patients, there is also an increased relative abundance

of opportunistic bacteria in feces, such as Rothia and Streptococ-

cus [57] species, which are usually associated with increased sus-

ceptibility to secondary bacterial lung infection in immunocom-

promised patients [100] and patients suffering from other respira-

tory viral infections [148] . Conversely, influenza infection has been

demonstrated to modify the gut microbiome by mobilizing lung-

derived immune cells (T-cells) to the small intestine, where these

cells stimulate the production of IFN- γ [34] . These findings corrob-

orate the involvement of the gut–lung axis in linking the gastroin-

testinal and lung dysfunctions in respiratory infections, including

COVID-19. Moreover, the modulation of colonic ACE2 by gut mi-

crobiota reinforces that the gut–lung axis is probably involved in

COVID-19 infection [178] . Therefore, dietary modulation of the gut

microbiota might be a promising approach for the treatment of

COVID-19 infection, as recently suggested by a study recommend-

ing dietary fiber and probiotics [26] . 

As summarized in Figure 2 , the evidence discussed in this sec-

tion indicates that gut microbiota probably plays a key role in the

putative effects of PC against SARS-CoV-2 infection. Therefore, gut

microbiota may provide metabolic pathways either for the pro-

duction of specific bioactive PC-derived postbiotics or to be tar-

geted to allow the modulation of immune response resulting in

the reduction of viral infection and morbidity. Various PC-derived

postbiotics exhibit high antioxidant and anti-inflammatory prop-

erties, which would be potentially beneficial against SARS-CoV-2

infection. In addition, reshaping of gut microbiota by PC has been

demonstrated to trigger various mechanisms that could contribute

to reducing SARS-CoV-2 infection, such as the downregulation of

gut ACE2 expression, upregulation of SCFA production, and control

of opportunistic bacteria. The reshaping of gut microbiota by PC

could even modulate the respiratory complications of SARS-CoV-2

infection via the gut–lung axis. 
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8. Safety issues 

Besides their natural occurrence in fruits and vegetables, PC are

also present in food additives for coloring and health-improving

purposes. PC are also available as tablets, capsules, or powder di-

etary supplements. The majority of the PC do not have sufficient

toxicological studies conducted on animals to define a specific ac-

ceptable daily dose (ADI) for safe consumptions by humans. How-

ever, PC and PC-rich foods are usually considered to be safe based

on the empirical evidence from their regular consumption as natu-

ral food constituents and numerous animal studies revealing their

beneficial effects on health. Toxicological evaluations available for a

few selected PC are discussed below. In general, quercetin appears

to be well tolerated in humans when consumed orally, with a con-

siderably low incidence of adverse effects observed at doses up to

1500 mg per day [7] . In western diets, the estimated daily intake of

quercetin ranges from 3 to 40 mg (aglycone equivalents), while the

recommended daily doses of quercetin aglycone via dietary supple-

ments are usually around 500 mg. In 2010, a high-purity quercetin

food ingredient was considered GRAS (“Generally Recognized As

Safe”) under the intended conditions of use by the Food and Drug

Administration (FDA). In this appraisal, a high intake within the es-

timated ADI of 19–22 mg/kg b.w. was also considered safe, which

is equivalent to 1330 to 1540 mg quercetin/day for a 70-kg adult

[44] However, a chronic toxicity study revealed that rats receiving

40, 400, or 1900 mg of quercetin per day for two years exhibited

a dose-dependent increase in chronic nephropathy and a slightly

increased incidence of focal hyperplasia of the renal tubule epithe-

lium. Moreover, a higher incidence of kidney adenomas was ob-

served in male rats at the doses of 400 and 1900 mg quercetin/day

[157] . 

Resveratrol, which has a low dietary intake of 6–8 mg/day [20] ,

is present in commercial dietary supplements at 50–500 mg of

trans-resveratrol [140] . In a study, resveratrol and a nutraceuti-

cal formulation containing resveratrol (Longevinex) did not exhibit

any sign of toxicity in Sprague-Dawley rats receiving daily doses

of 50 and 100 mg for 28 days. Another formulation containing a

high-purity trans- resveratrol (resVida) exhibited low oral toxicity,

although high doses (2–3 g/kg b.w./day) appeared to adversely tar-

get the kidneys and the bladder in animals. Frequent gastrointesti-

nal discomfort/diarrhea was observed in humans receiving high

doses (2.5 g or 5 g per day) of resveratrol for 29 days [160] . On

the basis of NOAEL studies, a daily dose of 450 mg of resveratrol

was considered safe for a 60-kg individual, using a 10-fold safety

factor [170] . 

Curcumin is reported to be effective, safe, and tolerable against

various chronic diseases in human trials [81] . Clinical trials involv-

ing healthy human subjects revealed that curcumin induced a 50%

contraction of the gall bladder at the dosage of 40 mg/day [133] .

Despite this, JECFA (The Joint FAO/WHO Expert Committee on Food

Additives) and EFSA (European Food Safety Authority) established

an ADI of up to 3 mg/kg b.w. for curcumin which is equivalent to

210 mg/day for a 70-kg adult [76] . 

EGCG is the major PC in green tea. The toxicological studies

have demonstrated a pattern of hepatotoxicity associated with the

intake amounts of 140 to 10 0 0 mg/day of EGCG [120] . A 13-week

study on rats and dogs reported a NOAEL of 500 mg/kg b.w./day

for EGCG [68] . Considering the purity and safety factor calcula-

tions, this study generated an ADI of 4.6 mg/kg b.w./day for EGCG,

which is equivalent to 322 mg EGCG/day for a 70-kg adult. Other

studies on EGCG toxicity conducted in both animals and humans

were reviewed recently, and an intake of 338 mg EGCG/day was

reported to be safe [62] . Furthermore, European regulatory agen-

cies have proposed daily EGCG limits for supplements, which range

from 300 to 1600 mg/day [180] . 
Although existing studies indicate high doses to be safe for

most dietary PC, relevant concerns are expected when using di-

etary PC as adjuvant therapy for pregnant COVID-19 patients. It is

recommended that the consumption of PC-rich foods and supple-

ments be restricted during the third trimester of pregnancy due to

their association with ductal constriction in fetal heart [59] . This

effect is probably mediated by anti-inflammatory mechanisms and

is shared by non-steroidal anti-inflammatory drugs [59] . There-

fore, the possible occurrence of toxicity during PC nutritional ap-

proaches for COVID-19 therapeutics should be considered prior to

reporting a final statement regarding the clinical use of PC. 

9. Drug interactions 

The complex interactions between food nutrients/nutraceuticals

and therapeutic drugs are not yet elucidated. Nonetheless, PC may

alter the effectiveness of pharmacological therapies by influencing

drug absorption and bioavailability, as PC compete with drug trans-

porters and metabolizing enzymes. Drug transporters are mainly

represented by the ATP-binding cassette (ABC) and the solute car-

rier (SLC) transporters, which play pivotal roles in drug absorption

and disposition, thereby determining drug safety and efficacy (Li

et al., 2016). The drug-metabolizing enzymes include the intestinal

and hepatic cytochrome P (CYP) enzymes, glucuronosyltransferases

(UGTs), and sulfotransferases. PC may alter the pharmacokinetics of

certain drugs by inhibiting transporters or modulating the expres-

sion of transporters and drug-metabolizing enzymes. Flavonoids,

which are substrates for UGTs, when consumed in combination

with certain drugs, might inhibit the glucuronidation of the drugs

as a result of competitive inhibition [82] . 

When formulating a PC-based nutritional strategy for COVID-

19 therapy, the interaction of PC with numerous therapeutic drugs,

such as those used for controlling COVID-19 manifestations (an-

tivirals, antibiotics, and glucocorticoids), must be considered. Green

tea extract (containing 100 µM of EGCG) has been demonstrated to

inhibit the drug transporters OATP1A1 and OATP1A2 in vitro [75] .

Since these transporter proteins are involved in the transport of

fluoroquinolones and antiretrovirals, green tea extract should be

avoided when using these drugs [11] . On the other hand, onion

and garlic extracts that are rich in PC potentiated the efficacy of

streptomycin and chloramphenicol in vitro [97] . In a study, rab-

bits receiving the antibiotic norfloxacin (100 mg/kg b.w. p.o.) af-

ter pretreatment with curcumin (60 mg/kg b.w. per day, 3 days,

p.o.) exhibited increased norfloxacin levels in plasma [125] . On a

practical note, continuing treatment with curcumin resulted in a

24% and 26% decrease in the maintenance dose and loading dose

of norfloxacin, respectively [125] . Therefore, caution is advised dur-

ing long-term administration of curcumin and norfloxacin to avoid

an increase in the adverse effects of norfloxacin. 

In regard to antivirals, garlic flavonoids exerted different

impacts on the hepatic pharmacokinetics of saquinavir and

darunavir [13] . Moreover, chronic use of St. John’s wort, a source

of flavonoids, could significantly decrease the absorption and

bioavailability of indinavir in humans. The phenolic-rich plants,

namely, St. John’s wort and Glycyrrhiza uralensis, were demon-

strated to reduce the bioavailability of drugs midazolam and lido-

caine, respectively, which are used for the orotracheal intubation

of COVID-19 patients (Barnes et al., 2001; Tang et al., 2009). As far

as we know, no studies are currently available on interactions be-

tween glucocorticoids and PC. 

Besides the drugs used for counteracting COVID-19 man-

ifestations, continuous-use medication for patients bearing

comorbidities (chronic diseases such as diabetes, cardiovascu-

lar disease, and respiratory diseases) should also be evaluated for

interactions with PC. Indeed, single or repeated daily doses of
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Figure 3. Representation of PCs’ effects that probably contribute to attenuating COVID-19 manifestations. EGCG, epigallocatechin gallate; PC, phenolic compounds. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

quercetin from 0.6 up to 300 mg quercetin/kg b.w. were reported

to increase the bioavailability of drugs used by cardiovascular dis-

ease patients, such as digoxin, ranolazine, valsartan, verapamil, and

diltiazem. On the other hand, the bioavailability of simvastatin was

decreased upon the oral intake of quercetin [7] . Regarding diabetes

management, quercetin (10 mg/kg) increased the bioavailability

of intravenous and oral-administered pioglitazone by 25%–75% in

female rats [156] . However, current evidence on the interactions of

PC with these drugs is scarce and, therefore, caution in PC intake

is advised for subjects under these therapies. 
10. Conclusions 

As depicted in Figure 3 , numerous PC have been demon-

strated to exert multiple effects that might mitigate COVID-19

manifestations, including antiviral, antioxidant, immunomodula-

tory, and anti-inflammatory effects. Since the bioavailability of

most dietary PC is limited, the gene-mediated antioxidant, anti-

inflammatory, and immunomodulatory effects are most probably

responsible for the systemic effects of PC against SARS-CoV-2 in-

fection. Nonetheless, direct antiviral and antioxidant effects could
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occur in the gastrointestinal tract where PC occur in high con-

centrations. Moreover, the interplay between PC and gut micro-

biota, which includes the production of PC-derived postbiotics and

the reshaping of gut microbiota, leads to the activation of dif-

ferent metabolic and signaling pathways that putatively reinforce

host antioxidant and immune response against SARS-CoV-2 in-

fection. It is noteworthy that several of the effects and mech-

anisms discussed in the present review are also relevant for a

potential protective effect of PC against other viral diseases, in-

cluding those caused by respiratory viruses and CoVs other than

SARS-CoV-2. 

Despite the promising targets identified for using PC to coun-

teract SARS-CoV-2 infection, safety issues concerning PC and their

interaction with other therapeutic drugs must be considered when

strategizing the nutritional approach involving PC. In addition, the

safe and rational use of dietary PC depends on further understand-

ing of how the COVID-19 disease affects gut microbiota and its po-

tential impact on the beneficial effects of PC. Moreover, the unique

microbiome profile of different human phenolic metabotypes may

yield different responses, indicating the necessity of planning per-

sonalized approaches. 

11. Limitations and prospects 

While the present study offers much useful information regard-

ing the putative role of PC in COVID-19 manifestations, an impor-

tant limitation of this study has to be noted, i.e. , the lack of clinical

trials evaluating the use of PC compounds in COVID-19 patients. So

far, only one clinical trial has been concluded, revealing the posi-

tive effects of curcumin (in a nano-micellar form) in reducing the

inflammatory manifestations in COVID-19 patients [159] . Although

other clinical trials are currently being conducted, they concern the

effects of PC-containing plant extracts and not the effects of iso-

lated PC. 

Therefore, further studies investigating the antiviral effects of

PC in animal models or clinical trials are required to further

corroborate the promising in silico and in vitro findings regard-

ing the antiviral effects of certain PC. Moreover, as PC could ex-

hibit a certain level of toxicity and may interact with drugs used

in COVID-19 management, in vivo studies determining the safe

dose levels of PC for therapeutic use should be conducted. Once

this evaluation is completed, the next step should be to per-

form human clinical trials to determine the safety of using PC in

humans. 

Several of the potential protective mechanisms of PC against

COVID-19 infection probably depend on the two-way interaction

between PC and gut microbiota. Therefore, further comprehension

of how COVID-19 affects gut microbiota and the impact of these

changes on PC transformation during digestion would also be use-

ful for designing the rational use of PC as adjuncts for COVID-19

therapy. 

With PC becoming the protagonists in the nutraceutical sce-

nario for COVID-19, without extensive studies on human subjects,

the present review could serve as a basis for designing clinical tri-

als in this regard. 
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