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Abstract

Ultrasound shear wave elastography (SWE) techniques have been very useful for the analysis of 

tissue rheological properties, but there are still obstacles for robust evaluation of viscoelastic tissue 

properties. In this proof-of-concept study, we investigate whether convolutional neural networks 

(CNN) are capable of retrieving the elasticity and viscosity parameters from simulated shear wave 

motion images. Staggered-grid finite difference simulations based on a Kelvin-Voigt rheological 

model were used to generate data for this study. The wave motion datasets were created using 

Kelvin-Voigt shear elasticity values ranging from 1-25 kPa, shear viscosities ranging from 0-10 

Pa·s, and two different push profiles using f-numbers of 1 and 2. The CNN architectures, 

optimized using mean squared error loss, were then trained to retrieve a specific viscoelastic 

parameter. Both elasticity and viscosity values were successfully retrieved, with regression R2 

values above 0.99 when correlating the estimated mechanical properties versus the true 

mechanical properties. The CNN performance was also compared to estimation of shear elasticity 

and viscosity from fitting dispersion curves estimated from two-dimensional Fourier transform 

analysis. The results demonstrated that the CNN models were robust to noise, vertical position and 

partially to f-number. The architecture was proven to be robust to multiple push profiles if trained 

properly. The CNN results showed higher accuracy over the full viscoelastic parameter range 

compared to the Fourier-based analysis. The overall results showed the CNNs’ potential to be an 

alternative to complex mathematical analyses such as Fourier analysis and dispersion curve 

estimation used currently for shear wave viscoelastic parameter estimation.
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I. Introduction

Ultrasound imaging is one of the main imaging modalities used in healthcare. It is widely 

used for multiple applications due to its low cost, relative portability and safety [1]. One of 

the applications that has developed popularity over the last several years is ultrasound shear 

wave elastography (SWE). SWE typically uses focused ultrasound beams to produce 

acoustic radiation force (ARF) that pushes within the tissue [2], [3]. When the ARF ceases, 

the locally perturbed tissue returns to its equilibrium position, but also generates waves 

traveling perpendicular to the push direction. These shear waves propagate through the 

tissue, and the motion is measured using high frame rate ultrasound techniques [4], [5]. The 

wave motion can be analyzed to extract information about the wave velocity and attenuation. 

These parameters can also be used to characterize rheological properties of the tissue such as 

elasticity and viscosity.

The estimation of rheological parameters is dependent on mathematical models, such as the 

Kelvin-Voigt and Maxwell models [6], [7]. To date, methods have been developed to directly 

measure the wave velocity and attenuation of shear waves as they vary with frequency 

[7]-[15]. However, the shear wave attenuation can be difficult to directly measure [11]. With 

the wave velocity dispersion information alone, it is possible to estimate viscoelastic 

properties for different rheological models [6]-[9], [16], [17]. Most of these methods involve 

Fourier analysis to extract dispersion curves that are used for fitting to the rheological 

models. Each of the approaches that have been studied have different levels of bias and 

variability. Additionally, different aspects of the SWE acquisition such as the ARF 

distribution and beam shape and measurement noise can affect the wave motion and 

confound these methods [18]-[20]. Taken together, there is still a need for robust methods 

for viscoelastic parameter evaluation from measured shear wave motion.

Machine learning (ML) is the computer science field dedicated to creating algorithms 

capable of modeling complex datasets, and performs tasks such as prediction, regression or 

clustering. These methods commonly have high computational costs. In recent years, there 

has been substantial progress on both algorithms and computational power to perform data 

training and predictions in feasible time with available computational resources. ML can 

identify patterns within datasets that otherwise would be very difficult to fit by standard 

statistical models or by evaluating each feature on its own. The use of ML might enable 

SWE to reach higher applicability, by naturally modeling the intrinsic complexity of 

viscoelastic tissues [21]-[24].

Artificial Neural Networks (ANN), or simply Neural Networks (NN), were inspired by the 

central nervous system structure and its physiology. They are composed by nodes, or 

neurons, interconnected into multiple layers, from input to output. Each node has adjusted 

weights and activation functions that simulate the synaptic reinforcement plasticity. The 

adjustment of the weights is implemented by solving the convex problem that minimizes the 

loss of the networks, which evaluates the prediction assigned by the network against the 

ground truth output [25], in a process called supervised learning.
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The convex problem is solved using numerical approaches, such as gradient descent, which 

are iterative, and therefore, can take time and large amounts of data. The process of weight 

adjustment is called optimization and it is an area of research of its own. Some of the most 

common optimizers used for neural networks are Stochastic Gradient Descent [26] and 

Adam [27].

Convolutional Neural Networks (CNN), as other NN architectures, were also inspired by 

neurophysiology. The architecture replicates the layer-based structure from the human visual 

system, where the convolutional layers work as the receptive fields present in the brain, 

while the max-pooling layers act as the lateral geniculate nucleus by reducing the level of 

information and extracting the relevant features for the task in hand [28]. The input is 

convolved with the feature weights to produce a feature map which is processed by a non-

linear activation function (rectified linear units, traditionally). The pooling layers then 

reduce the spatial resolution of the feature maps to achieve spatial invariance to input 

distortions and translations. Max-pooling layers aggregate and propagate the maximum 

value in a receptive field to the next layers. After stacking multiple convolutional and 

pooling layers, a fully connected layer is implemented to interpret the feature representations 

extracted by previous layers, much like the human visual cortex. The fully connected layer is 

a traditional NN, with different output layer activation functions and loss functions, 

depending on the task [28]. The CNN basic schema is exemplified in Fig. 1. CNNs have 

been extensively used for image recognition tasks with high performance and 

generalizability [22], [28].

In this proof-of-concept study, we propose to analyze, in a controlled setting, the capabilities 

of ML to model wave propagation and retrieve elasticity and viscosity values from wave 

motion images simulated using the staggered-grid finite-difference (SGFD) approach to 

implement a Kelvin-Voigt (KV) material model [29]-[31]. Due to the two-dimensional (2D) 

image characteristics of the task, the CNN architecture was deemed the best for the 

objectives of this proof-of-concept. We also compared the ML performance to the two-

dimensional Fourier transform (2D FT) analysis approach for evaluating dispersion curves 

and fitting to the KV theoretical dispersion curve [6], [7], [16].

The modeling of viscoelastic wave propagation is useful for understanding wave phenomena 

in complex media. Finite-difference modeling approaches have great importance for 

geophysical exploration, reservoir engineering, and military applications because they 

provide complete wavefield responses at reasonable computational cost [30], [32]. The 

SGFD method was used to simulate wave propagation in viscoelastic homogeneous media. 

SGFD adopts a finite difference operator with fixed-order accuracy to calculate spatial 

derivatives for a homogeneous or heterogeneous medium. The method’s accuracy, efficiency 

and stability are improved by the use of staggered grid for spatial discretization [30], [31].

II. Methods

For this study, the simulations were created using SGFD simulations implemented in 

MATLAB (Mathworks, Natick, MA, USA) and computed on GTX 1080 and RTX 2080Ti 

GPU cards (Nvidia, Santa Clara, CA, USA). Each simulation took approximately 1-8 hours 
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of computing time depending on the GPU card used. The SGFD simulations implement a 

KV material in the Navier-Stokes equations to calculation the motion caused by acoustic 

radiation force from ultrasound push beams. The shear elasticity and viscosity ranges for the 

KV model were chosen so they would cover a wide range of values for normal and 

pathological soft tissues [33]. The shear elasticity, μ1, ranged from 1-25 kPa with increments 

of 1 kPa, and shear viscosity, μ2, ranged from 0-10 Pa·s with increments of 0.5 Pa·s. The 25 

values of shear elasticity and 21 values of shear viscosity yield 525 unique combinations of 

viscoelastic parameters. The medium is assumed to be homogeneous, isotropic, linear, and 

incompressible [29].

We used two different ARF excitation focus profiles with f-numbers (F/N = focal length/

width of aperture) 1 and 2 (Fig. 2) with a focal distance of zf = 2.5 cm, adding up to 1050 

simulations. These values of F/N are used frequently in practice and provided cases of a very 

focused beam (F/N = 1) and a less focused beam (F/N = 2). The ARF was simulated using 

FOCUS using the model of an L7-4 linear array transducer (Philips Healthcare, Andover, 

MA) [33], [34]. The element pitch was set to 0.0308 cm, the element kerf was 0.0025 cm, 

the element height was 0.7 cm, the elevation focus was 2.5 cm, and the frequency was 4 

MHz. The medium was modeled using a density of 1000 kg/m3, speed of sound of 1540 m/s, 

and ultrasound attenuation of 0.5 dB/cm/MHz. A focal depth of 2.5 cm was used and for 

F/N = 1 and 2, such that 82 and 40 elements were used, respectively. The pressure was 

simulated, and the intensity was calculated as it is proportional to the ARF in absorbing soft 

tissues. For the models, the force was applied for 200 μs. For each combination of μ1, μ2, 

and F/N, a dataset was produced.

An important factor of finite-difference methods is the model’s boundary conditions. The 

boundary conditions have to absorb and attenuate the waves without creating artifacts such 

as reflections. It is also important that boundary conditions do not overly increase 

computational costs. Perfectly matched layers (PML) are considered the optimal absorbing 

boundary condition for finite-difference methods, and therefore, were implemented in this 

study [35].

Another important aspect of SGFD simulations is the Courant-Friederichs-Lewy criterion 

(CFL), as it describes the conditional stability that allows convergent behavior of the 

solution. The space-time discretization is dictated by the smallest shear elasticity (μ1) and 

the highest shear viscosity (μ2) to be simulated, and so, the CFL criterion determines the 

time increment and thus the number of time steps to achieve a certain simulation length for a 

given shear wave velocity.

C = Δt V p
2 + V s

2

Δx ≪ 1 , (1)

where the dimensionless number C is called the Courant number, Vp and Vs are the 

compressional and shear wave velocities, Δt is the time step, and Δx the spatial step in the x 

dimension. In this study’s simulations, the Δx and Δz (spatial step in the z dimension) were 

set to 0.1 mm, in a field of 44 mm width and 32 mm height. To optimize the simulation run 

time, two different values of C were used in the simulations depending on the media 
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properties: 0.2 if μ1 > 5 kPa and 0.05 if μ1 ≤ 5 kPa and μ2 ≥ 4 Pa·s. The simulation Δt was 

then calculated based on Eq. (1), for a total period of 25 ms. To meet the conditions 

described above, the temporal resolution was very high (5-7 MHz). After completion, the 

simulated data was resampled in time to 16 kHz, to ensure that all models would have the 

same time discretization. This sampling frequency could be reached with interpolated data 

that would be upsampled for precise time-of-flight estimates for evaluation of shear 

elasticity estimations [17].

The three-dimensional simulations (z, x, t) were then cropped and sampled in the z-direction 

in order to create the 2D x-axis vs. time wave motion dataset for training. The excitation 

generates two identical wave fronts propagating perpendicular to the push, therefore, the 

simulation region-of-interest (ROI) used to create the dataset was composed solely by the 

right hand-side wave front (Fig. 3a). The ROI has a width of 2 cm with its origin at 0.2 cm 

laterally from the push center, to eliminate the high amplitude motion of the push from the 

dataset images. The time range adopted was 20 ms. The data that was used for the CNN 

input was the motion from particular depths in the z-direction. To augment the dataset the 

right hand-side lateral propagation was used from five different vertical positions relative to 

the push focus (Fig. 3a), at −0.90, −0.45, 0.00 (center), 0.45 and 0.90 cm (Fig. 3). Another 

technique implemented to augment the number of samples, was adding different levels of 

Gaussian noise to the lateral propagation images to generate motion with signal-to-noise 

ratios (SNRs) consistent to literature, at 20, 10 and 5 dB (Figs. 3b and 3c) [29], [36], [37]. 

The segmentation and augmentation of the dataset was also implemented in MATLAB. With 

the five depth positions and three noise levels and 1050 unique combinations of the 

viscoelastic parameters, the total number of images used for the study was 15,750.

The CNN architecture was implemented in Python (Python Software Foundation, 

Wilmington, DE, USA), using Keras [38] with Tensorflow (Google Brain, Mountain View, 

CA, USA) backend, and trained on a Z820 workstation (Hewlett-Packard, Palo Alto, CA, 

USA) equipped with a GTX 1080 GPU (Nvidia, Santa Clara, CA, USA). The data in each 

image was normalized by subtracting the minimum amplitude from the whole ROI and 

dividing all motion amplitude values by the maximum amplitude after subtraction, creating 

images where all the values had an amplitude between 0 and 1. The labels were also 

normalized with a normalizing factor of the maximum label value (μ1 = 25 kPa for elasticity 

and μ2 = 10 Pa·s for viscosity) plus a 20% margin, to leave a margin for model 

overestimation in the top of the range. The same margin was not used at the bottom of the 

range (μ1 = 1 kPa for elasticity and μ2 = 0 Pa·s for viscosity), because negative values are not 

physically possible.

The training, validation and test sets were defined using a group shuffle split of 60/20/20, 

which means that images derived from the same simulation (μ1, μ2, F/N combination) could 

not be present in more than one set simultaneously. This ensures that simulation subjects 

presented to the CNN in the validation and test datasets were never seen during training in 

any of their augmented versions. Due to the regression characteristics of the task, sigmoid 

and mean squared error (MSE) were implemented as output layer activation function and 

loss function, respectively.

Vasconcelos et al. Page 5

Comput Biol Med. Author manuscript; available in PMC 2022 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



The elasticity and viscosity determine different characteristics of the wave propagation. The 

elasticity is related to the time-of-flight (e.g., slope of the wave motion distribution in the x-t 

plane, Fig. 3b), whereas the viscosity affects the widening of the wave at a particular 

location.

Therefore, for each dataset, a pair of CNN models were implemented, one for elasticity 

regression, and one for viscosity regression. To facilitate the compilation of results, a coding 

system was applied to name the models and results in terms of what the training/validation 

and test f-numbers were used (Table I). The letter designates what label was used, elasticity 

(E) or viscosity (V); the first number specifies the F/N used for training and validation, 

whereas the second number designates the F/N used for testing.

The CNN models trained, validated and tested on data from both f-numbers were denoted by 

the X1+2 designation. The CNN models were optimized for multiple combinations of 1, 2 

and 3 convolutional layers; 2, 3 and 4 dense layers; 16 and 32 nodes per layer (convolutional 

and dense); 0.001, 0.0005 and 0.0001 learning rates; totaling 54 models. Tensorboard 

(Google Brain, Mountain View, CA, USA) was used to monitor and evaluate the models 

during the hyperparameter grid search. By evaluating the validation loss and mean absolute 

error (MAE) during 200 epochs, it is possible to determine when the learning reached an 

asymptote or demonstrated overfitting. MAE is defined by the equation:

MAE = 1
N ∑i = 1

N ∣ xi − xi ∣ (2)

where N is the number of test subjects, xi is the estimated value of the subject and xi is the 

true value of the parameter. Each 200-epoch training session took approximately 1 hour of 

GPU computing time on the GTX 1080 GPU card. For each grid search, the top 20% CNN 

models with the lowest validation MAE were selected and re-trained for a subsequent round 

of evaluation until one hyperparameter set remained (Fig. 4). This approach was used to 

mitigate hyperparameter overfitting, because each iteration of cross evaluation is performed 

on different random group splits. The final model was then trained, also for 200 epochs, 

using the optimal hyperparameters. Checkpoint recall was used to store the best model 

generated and prevent overfitting. The models were then evaluated against the test set.

The datasets were also evaluated using 2D FT analysis and the estimated dispersion curves 

were fit to the theoretical Kelvin-Voigt model to obtain the viscoelastic parameters. This 

analytical approach was implemented in MATLAB. The 2D fast Fourier transform was 

performed with a zero padding factor of 4096 for optimum frequency and wavenumber 

resolution of the frequency domain representation (k-space). The dispersion curves were 

than estimated from the k-space using the relationship cp(ωp) = ωp/kmax, where cp is the 

phase velocity at ωp frequency from 100-600 Hz, and kmax is the wavenumber of maximum 

k-space energy at ωp. Additionally, cp values below 0 m/s and above 10 m/s were discarded 

from further analysis. The dispersion curves were then fit to the theoretical Kelvin-Voigt 

model (Eq. 3), with the density ρ = 1000 kg/m3, to obtain μ1 and μ2 values. The estimated 

values were then compared to the CNN results.

Vasconcelos et al. Page 6

Comput Biol Med. Author manuscript; available in PMC 2022 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



cp(ωp) =
2(μ1

2 + ωp2μ2
2)

ρ μ1 + μ1
2 + ωp2μ2

2 (3)

III. Results

The testing results were evaluated using the MAE between the true value of the viscoelastic 

property and the CNN prediction output. A linear regression was performed to compare the 

results from the 2D FT analysis as well as the CNN prediction to the identity line, and the 

slope, intercept and R2 of the regression line were also calculated and reported. The optimal 

hyperparameters were also noted and reported in Tables II and III for the elasticity and 

viscosity CNN models, respectively. All elasticity models trained and tested on the same f-

numbers showed very good fitting with MAE below 0.079 kPa with slopes and intercept of 

approximately one and zero, respectively. The viscosity models trained and tested on the 

same f-numbers also showed very good agreement with MAE below 0.091 Pa·s with slopes 

and intercept of approximately one and zero, respectively. Alternatively, CNN models tested 

on f-numbers different from the training/validation F/N had diminished performance with 

MAE of at least 1.542 Pa·s (V12) and as high as 2.834 kPa for E12.

The errors for each CNN model were also aggregated and plotted versus the true value (Fig. 

5). The data were reported with boxplots where the red line represents the median, and the 

edges of the box represent the interquartile range (IQR, 25th and 75th quantiles). The 

whiskers represent 1.5*IQR above or below the 75th or 25th quantile, respectively. Values 

denoted by markers outside of whiskers are denoted as outliers. For cases E11, E22, and 

E1+2, the level of bias was minimal over the range of true shear elasticity. For E12, μ1 was 

overestimated when the true μ1 < 15 kPa, and underestimated for larger values of μ1. For 

E21, a consistent underestimation of μ1 was observed. In the cases of V11, V22, and V1+2, 

the bias was relatively low, where the MAE was less than 0.069 Pa·s. For V12, μ2 was 

consistently underestimated and for V21 μ2 was consistently overestimated.

When compared to the 2D FT analysis, the CNN results were found to be significantly more 

reliable. The Fourier analysis showed reduced performance at higher viscosity and lower 

elasticity combinations, driving elasticity underestimation and viscosity overestimation. In 

these types of materials, the ARF excitation was not able to generate energy at higher 

frequencies (300-600 Hz), and therefore it limited the quality of Kelvin-Voigt fitting. 

Although the linear regression technique was able to retrieve acceptable values for slope and 

intercept for the elasticity estimations, the errors still drove MAE values above 2.2 kPa, and 

R2 below 0.78. The viscosity estimations were more inferior to the performance achieved 

with the CNNs, with slopes above 1.5, MAE above 2.9 Pa·s and R2 below 0.7.

The errors were also plotted versus vertical position in Fig. 6. Similar trends were observed 

for these additional parameters as compared to those discussed above. The prediction of μ1 

was largely insensitive to the vertical position of the wave motion used, though the results 

for model E1+2 exhibited more outliers. For E12, the bias is positive (average of 0.14 kPa), 

and 1.5*IQR of over 0.63 kPa showing a very large variability, but insensitive versus vertical 
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position. For E21, there was a larger negative bias for data from the pre-focal locations 

(−0.27 kPa at −0.90 cm and −0.1 kPa at the focus), while larger numbers of outliers for post-

focal datasets. For V11, V12, and V1+2, the bias was small, but the number of outliers 

slightly increased for the V1+2 case. The errors in μ2 for V12 were largely insensitive to the 

position, though for V21 the error increased both in bias and variability as the data farther 

from the focus was used, with 0.1 ± 0.18 kPa at the focus, 0.15 ± 0.22 Pa·s at −0.90 cm and 

0.28 ± 21 Pa·s at 0.90 cm. When compared to the 2D FT analysis, the CNN is more reliable 

with respect to the depth position, when trained with the proper f-number. The same 

sensitivity to off-focus position was also observed using the 2D FT analysis for F/N = 1 (Fig. 

6 – E1-2D FT and V1-2D FT).

The errors for the models as a function of noise level are shown in Fig. 7. The model results 

for the elasticity prediction were not largely affected by the level of noise. The cases of 

E1+2 and E21 did demonstrate a larger number of outliers. The models trained/validated and 

tested with different f-numbers showed bias invariance to the noise levels, nevertheless, E11 

showed an increase of 21% and 82% in 1.5*IQR from 20 dB to 10 dB and 10 dB to 5 dB, 

respectively, while V11 showed an increase of 60% and 38% in 1.5*IQR from 20 dB to 10 

dB and 10 dB to 5 dB, respectively. The results for model V1+2 showed more outliers than 

V11 and V22 models. The 2D FT analysis showed a larger number of outliers, when 

compared with the CNN. While the number of outliers were relatively constant, the 2D FT 

results were similar across different levels of noise.

For models trained, validated and tested with both f-numbers, the errors were also compiled 

by f-number (Fig. 8). No relevant difference was found between the errors for both elasticity 

and viscosity. Because all the data is aggregated, there are a high number of outliers present, 

but the error has a similar overall range for all models and F/N values (Tables II and III). The 

outliers cover a similar range for both F/N values for V1+2. Models trained and tested on the 

same f-numbers generally showed very low absolute errors with no relevant bias and 

standard deviation of less than 0.5 kPa or 0.5 Pa·s throughout the true value range.

Models E21 and V12 showed a pattern of higher bias and IQR with the increase of true 

value, whereas E12 and V21 showed more complex patterns of error across the true value 

range. In some cases, even with the overestimation margin applied to the label 

normalization, the higher value estimations were saturated and drove the bias negatively, e.g. 

E11 and V11. It is also notable that model V1+2 presented a higher level of outliers and 

positive bias at 0 Pa·s.

IV. Discussion

The results shown are encouraging and exhibit the potential of the use of convolutional 

neural networks in ultrasound SWE for viscoelastic characterization. The results 

demonstrated that the CNN models were robust to noise, vertical position and partially to 

F/N. When tested on datasets with the same excitation F/N for training and testing, the 

elasticity and viscosity estimations were very good and showed robustness to noise and 

vertical position.
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The CNN models were marginally reliable when presented with test data from a different 

F/N than used for the training, with a trend of overestimation for E12 and V21, and 

underestimation for E21 and V12. Vertical position showed some level of variability in 

models trained with data using F/N = 2 and tested on data with F/N = 1 (X21), possibly due 

to the planar characteristics of higher F/Ns, when compared to a lower F/N, which produced 

more curved wave fronts.

Higher f-numbers have less focused beams that might cause wider lateral shear wave profiles 

that could simulate the widening effect of viscosity in the wave propagation. When trained 

on data using F/N = 1 and tested on data when F/N = 2 (X12), the results showed a 

consistent underestimation profile increasing linearly with the true viscosity (V12, Fig. 5), 

while the opposite effect occurred with V21, showing consistent viscosity overestimation. 

The V21 overestimation is exaggerated with the distance from the focus, as F/N = 1 has a 

more curved intensity profile to produce the wave front while F/N = 2 has a more planar 

wave front (Fig. 2). This behavior is well exemplified in Figs. 6 and 9. This characteristic is 

important because it suggests the possibility of reliable estimation correction for cases of 

F/N for which the model was not trained.

When different F/N values were used, the elasticity estimations showed the opposite 

behavior from the viscosity, overestimation for E12 and underestimation for E21. It is 

possible that the more curved intensity profile in the z-direction used for the ARF push 

beam, and the presence of more pre-focal and post-focal intensity for F/N = 1 also leads to 

errors in elasticity estimation, as it might change the perceived slope of the wave motion 

(Fig. 10).

Similarly to viscosity, the elasticity showed correlation between absolute bias and the 

distance to push focus when trained with F/N = 2 and tested on F/N = 1 (X21). Models 

trained with F/N = 2 are tuned to the planar wave front characteristics, therefore, when 

presented with data from a lower F/N for testing, show higher levels of error off-center (Fig. 

6, V21 and E21).

Noise did not affect the estimations significantly in any of the scenarios tested, which 

suggests the robustness of the technique to SNR changes.

When trained with both f-numbers the CNNs were able to overcome the shortcomings 

discussed above and performed similarly as the pairs trained, validated, and tested with a 

single F/N. The results indicate that the CNNs can discern between wave front profiles with 

high accuracy, as long as they are trained properly.

Overall, this proof-of-concept study showed that the CNN models were able to successfully 

retrieve the viscoelastic properties from the wave motion images. The approach proposed 

required minimal preprocessing, without the employment of filters or transforms. The 

conventional 2D FT analysis approach showed inferior performance on the same datasets, 

with worse MAE and R2 levels found compared to those found with CNN regression, even 

in cases where the CNN was trained and tested with different f-numbers. The 2D FT 

analysis was especially affected by materials where the effects of the viscosity was more 

prominent compared to the elasticity (e.g., high μ2 and low μ1), whereas the CNN did not 
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show the same behavior and was reliable over the full viscoelastic parameter range. As noted 

in the Results, in the cases where the viscosity effects were substantial, energy at higher 

frequencies was diminished and curve fitting was more error prone. These findings with the 

CNN models are particularly encouraging, because changes in viscoelastic properties are 

related to pathological changes to the tissue, e.g. fibrotic tissue is correlated with higher μ1 

[10], [16]. Therefore, patients and practitioners can benefit from ML classification of tissue 

state based on SWE, which is an affordable and non-invasive measurement.

Although encouraging, the methods discussed still need further investigation. The method 

needs to be extended to allow for heterogeneous cases and other noise characteristics. The 

practical use of ML in ultrasound SWE has specific challenges such as the noise due to 

ultrasound detection and physiological motion, the standardization of images, and 

simulation model limitations that will have to be addressed in future work.

In this study, we used simulated motion from the SGFD based on a Kelvin-Voigt rheological 

model. Although it has been shown in literature, in multiple works, that the Kelvin-Voigt 

model does describe shear wave velocity dispersion over the typical elastography analysis 

ranges of frequency, such as 100-600 Hz [39]-[42], the use of the KV model on SGFD 

simulations might impair the use of simulations for ex vivo and in vivo transfer learning as 

not all tissues may be well-described by a KV rheological model. We also chose to use the 

2D x-t wave motion images to directly estimate the values of μ1 and μ2. Other ML 

approaches or NN architectures could be utilized to estimate the dispersion curves for fitting 

to different rheological models.

We did not incorporate the ultrasound detection in these simulated data, which may add 

additional bias, but this proof-of-concept approach shows the promise of using shear wave 

motion and the overall shape of the wave fronts to estimate the viscoelastic properties. We 

did explore adding Gaussian noise to the wave motion data, and the models were largely 

robust to different noise levels. Higher levels of noise could be explored in future work. 

Physiological motion will also introduce noise as well that is not accounted for in this work. 

Each of the images used for these models used a fixed range of lateral space and 

measurement time. For in vivo implementation, this would have to be standardized for a 

given application or transducer. We also limited the range of depths over which we made the 

evaluations. Typically, viscoelastic measurements are made within or near the depth-of-focus 

of the ARF push beams, but an evaluation of parameter estimation versus depth will be 

investigated in our ongoing work.

Ultrasound SWE implementations have a wide variety of characteristics, such as F/N, 

transducer profile, motion detection approaches, all of which with specific use cases, 

strengths and weaknesses, and therefore, need to be evaluated separately. Ideally, for in vivo 
implementation, an acquisition approach with the aforementioned parameters would need to 

be thoroughly modeled and likely used in the training and validation and later testing for a 

robust technique. The entire pipeline including ARF push beam modeling, wave motion 

modeling with different material models, ultrasound detection, and motion estimation and 

filtering would need to be incorporated to all for transfer learning with experimental data 

from phantoms or ex vivo and in vivo soft tissues. This work represents a first step to 
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demonstrate the promise of this type of approach as well as identify some of the next steps 

to be taken in this technology development.

V. Conclusions

In this study, we proposed to evaluate the capabilities of CNNs to model wave propagation 

and retrieve elasticity and viscosity values from wave motion images sourced from 

staggered-grid finite-difference (SGFD) simulations. A total of 1050 SGFD models were 

simulated using a wide range of elasticity and viscosity values for two different values of 

excitation F/N. The dataset was then augmented using five different vertical positions to 

generate the spatiotemporal images and using three different levels of noise. The dataset was 

used to train, validate and test CNN architectures configured for data regression using mean 

squared error as loss function. The viscoelastic parameters were also estimated using the 

conventional 2D Fourier analysis approach with Kelvin-Voigt dispersion curve fitting and 

compared against the CNN results.

The overall results showed the CNNs’ potential to be an alternative to complex mathematical 

analyses such as Fourier analysis and dispersion curve estimation used currently for shear 

wave viscoelastic parameter estimation. The CNN approach does not impose the biases and 

variabilities associated with these methods and requires minimal amount of preprocessing, 

such as filters and transforms. The methods proposed might enable simpler and more 

reliable non-invasive evaluation of tissue injuries that alter rheological parameters such as 

liver and kidney fibrosis. The use of transfer learning is also a possibility to enable ex vivo 
and in vivo viscoelastic estimations [43], and this will be pursued in ongoing work.

More evaluations regarding other f-numbers are necessary, although higher values will yield 

even more planar wave fronts and should provide easier translation to other CNN models. 

The initial robustness to noise was also encouraging as it is a strong characteristic of 

ultrasound applications, but other noise settings need to be evaluated. This work serves as a 

proof-of-concept to demonstrate the use of CNN models for estimation of viscoelastic 

properties directly from shear wave motion. We will continue to develop this technology to 

test on experimental data from phantoms and soft tissues.
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• Ultrasound shear wave elastography can measure mechanical properties of 

tissues

• Staggered-grid finite difference simulations of viscoelastic media were used

• Convolutional Neural Net architectures were optimized using mean squared 

error loss

• The CNN architectures were able to retrieve accurate elasticity and viscosity 

values

• Robust results with different push profiles are obtained if CNNs are trained 

properly
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Figure 1 –. 
General schema of a convolutional neural networks. Convolutional and max pooling layers 

can be stacked for deeper networks. The input image is convolved with a sliding window 

(yellow square), resulting in a set of feature maps that are processed by the max-pooling 

layers. The output of the final max-pooling is then processed by a set of dense layers 

responsible to interpret the feature maps and provide the estimated value of elasticity or 

viscosity as output.
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Figure 2 –. 
Images of excitation profiles for F/N = 1 and 2 based on the normalized beam intensity. 

Lower f-numbers generate more concentrated pushes, whereas with higher f-numbers the 

push profile is spread axially (z), creating more planar wave fronts.
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Figure 3 –. 
(a) Example of segmentation performed during the preprocessing stage for F/N = 2, μ1 = 2 

kPa and μ2 = 4 Pa·s. The z-axis origin is the center of excitation (zf = 25 mm from Fig. 1); 

(b) and (c) examples of 20 and 5 dB SNR.
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Figure 4 –. 
Examples of validation loss (a) and MAE (b) for second round of evaluations, where the 

combinations were reduced to 3 convolutional layers; 3 and 4 dense layers; 32 nodes per 

layer (convolutional and dense); 0.001, 0.0005 and 0.0001 learning rates. The lower the 

values of validation loss and MAE indicated a better model. From these plots 3 

convolutional layers, 4 dense layers with 32 nodes and a 0.0005 learning rate were chosen 

for elasticity regression of F/N = 1 (pink arrow). The curves are plotted using Tensorboard 

with a smoothing factor of 0.5 (solid color lines) over the calculated values (shaded color 

lines).
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Figure 5 –. 
Elasticity and viscosity error box plots aggregated by true values, the top ten plots are results 

for the CNNs trained, validated and tested on data from the same and different F/N datasets, 

whereas the bottom four were evaluated using Fourier analysis (FT) for comparison. The 

letter designates what label was used, elasticity (E) or viscosity (V); the first number 

specifies the F/N used for training and validation, whereas the second number designates the 

F/N used for testing.
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Figure 6 –. 
Elasticity and viscosity error box plots aggregated by vertical position, the top ten plots are 

results for the CNNs trained, validated and tested on data from the same and different F/N 

datasets, whereas the bottom four were evaluated using Fourier analysis (FT) for 

comparison. The letter designates what label was used, elasticity (E) or viscosity (V); the 

first number specifies the F/N used for training and validation, whereas the second number 

designates the F/N used for testing.
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Figure 7 –. 
Elasticity and viscosity error box plots aggregated by noise levels, the top ten plots are 

results for the CNNs trained, validated and tested on data from the same and different F/N 

datasets, whereas the bottom four were evaluated using Fourier analysis (FT) for 

comparison. The letter designates what label was used, elasticity (E) or viscosity (V); the 

first number specifies the F/N used for training and validation, whereas the second number 

designates the F/N used for testing.
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Figure 8 –. 
Elasticity and viscosity error box plots aggregated by the F/N of the test subject. The model 

pair was trained, validated and tested on both F/N datasets (E1+2 and V1+2).
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Figure 9 –. 
Example of μ1 = 18 kPa and μ2 = 2 Pa·s, at z = +0.90 cm and 20 dB SNR. It is possible to 

observe that the response using F/N = 1 has a wider wave front, which might simulate the 

viscosity effect which also widens the wavefront.
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Figure 10 –. 
Example of μ1 = 18 kPa and μ2 = 0 Pa·s. The fringing effect present in F/N = 1 case might 

explain the elasticity bias present in cross F/N evaluations.
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TABLE I

Model Codes

Pair code
Training F/N
(number of

images)

Validation F/N
(number of

images)

Test F/N
(number of

images)

E11, V11 1 (4725) 1 (1575) 1 (1575)

E12, V12 1 (4725) 1 (1575) 2 (7875)

E22, V22 2 (4725) 2 (1575) 2 (1575)

E21, V21 2 (4725) 2 (1575) 1 (7875)

E1+2, V1+2 1 & 2 (9450) 1 & 2 (3150) 1 & 2 (3150)
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TABLE II

Elasticity Results

CNN

Result Code
Hyperparameters Results

Convolutional Layers Dense Layers Layer Size Learning Rate MAE, kPa Slope Intercept R2

E11
3 4 32 0.0005

0.051 1.000 −0.001 1.000

E12 2.834 0.666 4.951 0.836

E22
2 2 32 0.0001

0.079 1.001 −0.033 1.000

E21 1.663 0.848 0.547 0.958

E1+2 4 4 32 0.0005 0.065 0.998 0.021 1.000

2D FT

E1 2.380 0.936 0.404 0.762

E2 2.211 0.901 1.252 0.775
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TABLE III

Viscosity Results

CNN

Result Code
Hyperparameters Results

Convolutional Layers Dense Layers Layer Size Learning Rate MAE, Pa·s Slope Intercept R2

V11
4 3 32 0.0001

0.065 0.997 0.007 0.999

V12 1.644 0.678 −0.030 0.856

V22
3 2 32 0.0005

0.052 0.998 0.001 0.999

V21 1.611 1.046 1.296 0.885

V1+2 3 2 32 0.0001 0.069 1.003 −0.015 0.999

2D FT

V1 3.173 1.580 −0.022 0.693

V2 2.925 1.593 −0.240 0.695
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