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Abstract

Macrophages are almost everywhere in the body, where they serve pivotal functions in maintaining 

tissue homeostasis, remodeling, and immunoregulation. Macrophages are traditionally thought to 

differentiate from bone marrow-derived hematopoietic stem cells (HSCs). Emerging studies 

suggest that some tissue macrophages at steady state originate from embryonic precursors in the 

yolk sac or fetal liver and are maintained in situ by self-renewal, but bone marrow-derived 

monocytes can give rise to tissue macrophages in pathogenic settings, such as inflammatory 

injuries and cancer. Macrophages are popularly classified as Th1 cytokine (e.g. IFNγ)-activated 

M1 macrophages (the classical activation) or Th2 cytokine (e.g. IL-4)-activated M2 macrophages 

(the alternative activation). However, given the myriad arrays of stimuli macrophages may 

encounter from local environment, macrophages exhibit notorious heterogeneity in their 

phenotypes and functions. Determining the underlying metabolic pathways engaged during 

macrophage activation is critical for understanding macrophage phenotypic and functional 

adaptivity under different disease settings. Fatty acid binding proteins (FABPs) represent a family 

of evolutionarily conserved proteins facilitating lipid transport, metabolism and responses inside 

cells. More specifically, adipose-FABP (A-FABP) and epidermal-FABP (E-FABP) are highly 

expressed in macrophages and play a central role in integrating metabolic and inflammatory 

pathways. In this review we highlight how A-FABP and E-FABP are respectively upregulated in 

different subsets of activated macrophages and provide a unique perspective in defining 

macrophage phenotypic and functional heterogeneity through FABP-regulated lipid metabolic and 

inflammatory pathways.
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1. Introduction

Fatty acid binding proteins (FABPs) comprise a family of 14–15 kDa cytoplasmic lipid 

chaperones that coordinate lipid distribution and responses inside cells [1–3]. Composed of 

10 anti-parallel β stands and capped by a helix-turn-helix motif, FABP members are highly 

homologous with a similar tertiary structure. FABPs are capable of binding a variety of fatty 

acids (FAs) and other hydrophobic ligands in the cavity of their β barrel structure with 

different specificity and affinity. FABP members display tightly-regulated patterns of tissue 

distribution, such as liver FABP (L-FABP, also known FABP1), intestinal FABP (I-FABP, 

FABP2) and heart FABP (H-FABP, FABP3), which are mainly expressed in liver, intestine 

and heart, respectively [4]. However, accumulating studies demonstrated that some FABP 

members exhibit expression beyond the tissues where they were originally cloned (Table 1). 

For example, adipose FABP (A-FABP or FABP4) is expressed in endothelial cells and 

macrophages besides adipocytes [5, 6]. Epidermal FABP (E-FABP or FABP5) exhibits a 

more ubiquitous expression profile, including skin, adipose tissue and multiple immune 

populations [7–9], suggesting a critical role of E-FABP in maintaining basic cellular energy 

metabolism and functions. In our studies focusing on immune cell lipid metabolism and 

function, we found that A-FABP and E-FABP display unique expression patterns in tissue 

macrophages which regulate their metabolic and inflammatory signaling pathways [4, 9–11]. 

Given the phenotypic diversity and functional versatility of macrophages, this review 

provides a unique perspective by focusing on defining macrophage functions through FABP-

mediated lipid responses in different disease settings.

2. Macrophage phenotypic and functional heterogeneity

2.1 Origin of macrophages

Macrophages are present in all tissues in the body, in which they play a central role in 

maintaining tissue homeostasis, repair, and immunomodulation. Colony-stimulating factor 1 

(CSF1, also known as macrophage CSF, M-CSF) is essential to the development and 

survival of monocytes/macrophages. Genetic depletion of the functional receptor for CSF1 

(CSF1R or CD115) is lethal in mice [12, 13], suggesting that the congenital presence of the 

macrophage lineage is essential for murine survival.

Macrophages are generally believed to come from bone marrow-derived monocytes, which 

sequentially differentiate through the hematopoietic stem cells (HSCs)/macrophage and 

dendritic cell precursor (MDP)/common monocyte progenitor (cMoP) axis. The 

mononuclear phagocyte system (MPS) proposes that homeostasis of tissue macrophages rely 

on constant recruitment of circulating monocytes [14]. However, emerging genetic fate 

mapping studies reveal that steady state tissue macrophages (e.g. brain microglia, liver 

Kupffer cells) are mainly derived from embryonic precursors in the yolk sac or fetal liver 

and maintained in situ by self-renewal [15]. Of note, circulating monocytes are able to give 

rise to tissue macrophages in certain pathogenic settings, such as inflammatory injuries and 

cancer [16, 17]. Thus, depending on the local microenvironment [18], both embryonic- and 

bone marrow-derived macrophages may dynamically and coordinately control tissue 

homeostasis, infection and inflammation.
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2.2 Macrophage phenotypic heterogeneity

Originally developed from bone marrow MDPs and cMoPs, blood monocytes are 

phenotypically heterogeneous, which are usually defined by specific surface proteins. In 

mice, monocytes (CD115+) are usually divided into two main subsets based on the 

expression of Ly6C: Ly6C+ and Ly6C− monocytes [19]. Ly6C belongs to the family of Ly6 

proteins which are widely used as lineage-specific markers in leukocyte subset identification 

[20]. As a GPI (glycosylphosphatidylinositol)-anchor membrane protein, Ly6C has been 

shown to mediate the migration of different leukocyte subsets [21, 22], suggesting that Ly6C 

expression is critical to monocyte migration. In line with this perspective, Ly6C is highly 

expressed on bone marrow monocytes, which can easily migrate to the peripheral blood and 

to sites of infection and inflammation to engage inflammatory responses. By contrast, Ly6C
− monocytes normally patrol the endothelial surface of blood vessels and are recruited to 

inflamed sites at a late phase for tissue repair [23]. Ly6C+ and Ly6C− macrophages also 

exist in lymphoid (e.g. draining lymph nodes and spleen) and nonlymphoid tissues (e.g. 
skin, intestine). During tissue injuries, blood Ly6C+ monocytes can rapidly migrate to the 

injury sites and differentiate into tissue inflammatory macrophages, TNFα/iNOS produced 

dendritic cells (TipDCs) or tumor associated myeloid-derived suppress cells (MDSCs), 

whereas Ly6C− monocytes can give rise to alveolar macrophages [24]. In humans, based on 

surface expression of CD14 and CD16 glycoproteins, human blood monocytes can be 

divided into CD14highCD16negative and CD14lowCD16positive subsets. Analysis of gene 

expression arrays suggests that human CD14high and CD14low monocytes functionally 

resemble murine Ly6C+ and Ly6C− monocytes, respectively [25]. It is of great interest to 

understand which factors contribute to the phenotypic heterogeneity of monocytes/

macrophages in mice and humans.

2.3 Macrophage functional versatility

Besides phenotypic differences, macrophages exhibit functional versatility in vivo. Under 

homeostatic conditions, macrophages maintain normal physiologic functioning of organisms 

by shaping their architecture (e.g. brain, bone and mammary glands) and regulating diverse 

activities (e.g. metabolism, damage control and tissue repair). However, under pathological 

conditions, continuous insults from infection or chronic inflammation can subvert the 

trophic and regulatory roles of macrophages, thereby contributing to the progression of 

many diseases (e.g. cardiovascular disease and tumor) [26]. Given the myriad of possible 

environmental stimuli, macrophages are believed to exist in a vast array of functional states 

or “a functional spectrum” [27, 28]. To understand their functional complexity, macrophages 

are simply classified as M1/M2 dichotomy based on the widely accepted concept of 

Th1/Th2 polarization. During adaptive immune responses, Th1 lymphocytes mainly produce 

IFNγ while Th2 cells mainly produce IL-4, IL-13, etc. Accordingly, macrophages activated 

by Th1 or Th2 cytokines are called M1 or M2 macrophages, respectively [29, 30]. The 

classification of M1/M2 has been widely accepted and data generated based on this 

classification have provided insights into understanding macrophage functionality in 

different disease settings. Generally, the classical activation of M1 macrophages is 

characterized by pro-inflammatory and anti-tumor activities whereas the alternative 

activation of M2 macrophages increases angiogenesis and exhibits tumor-promoting 

functions [31, 32]. However, given the spectrum of functional states of macrophages in vivo 
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[33], these two extreme classifications are apparently oversimplified, especially in the tumor 

microenvironment. Recent studies demonstrate that pro-tumor macrophages in either the 

peritoneum or in tumor stroma do not follow the M1/M2 classification [6, 34]. Thus, the 

concept of functional adaptivity has been proposed that macrophages can change their 

functional phenotype in response to an array of microenvironmental stimuli [35, 36]. 

Emerging evidence suggests that macrophage metabolism determines their functional 

outcome [37, 38]. Dissecting the underlying metabolic pathways engaged during 

macrophage activation is critical to understanding their phenotypic and functional adaptivity 

in the progression of different diseases.

2.4 Macrophage metabolic pathways

As sentinels of the immune system, macrophages sense and respond to early signs of 

infection and inflammation [39]. In response to microbial invaders, monocytes/macrophages 

activated by IFNγ and LPS exhibit an increase of aerobic glycolysis and a decrease in fatty 

acid oxidation (FAO). Accordingly, this classical activation of M1 macrophages is 

considered as pro-inflammatory macrophages with high phagocytic potential in clearance of 

bacteria and tumor cells [26]. By contrast, macrophages can be alternatively activated by 

other environmental stimuli, such as parasitic infections. It is well known that alternative 

activation of M2 macrophages by IL-4 or IL-13 relies on FAO to fuel macrophage functions 

in anti-parasitic infection as well as in angiogenesis, tissue remodeling, and tumor 

progression [30]. Despite these two well-characterized metabolic pathways, macrophages 

can be metabolically activated by many other local tissue inputs. For example, obesity is 

associated with elevated levels of low density of lipoprotein (LDL) [40], which can be taken 

up by macrophages and induce alternative activation of macrophages through lysosomal acid 

lipase-mediated lipolysis pathway [41]. Given the alarming rate of obesity, it is intriguing to 

understand how lipid metabolism regulates macrophage functions in obesity and obesity-

associated maladies.

3. FABP expression profile in macrophages

FABP family members facilitate lipid trafficking, metabolism and responses inside cells, 

circumventing low lipid solubility. Macrophages have been shown to mainly express A-

FABP and E-FABP, which provides a unique perspective to dissect how A-FABP and E-

FABP regulate FA metabolism and inflammatory pathways, thus shaping macrophage 

functional output.

Developed from HSCs and precursors, murine bone marrow monocytes (CD115+Ly6C+) 

express neither A-FABP nor E-FABP. Resting human monocytes also do not express 

detectable FABPs. Interestingly, in vitro activation of human monocytes with PMA (phorbol 

13-myristate 12-acetate) upregulates the expression of both A-FABP and E-FABP [42]. 

These data demonstrate that FABPs are not essential to monocyte development in the bone 

marrow, but can be upregulated in monocytes activated by external stimuli, suggesting an 

important role of FABPs in activated monocytes/macrophages. Considering the 

heterogeneous subsets of monocytes/macrophages in vivo, we postulated that FABP 

expression in these cells is not uniform. Indeed, when we analyzed FABP expression in 
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monocytes/macrophages separated from different tissues, we found that FABP exhibited 

unique expression profiles in different macrophage subsets. For example, splenic 

macrophages (CD11b+F4/80+) can be divided into four subsets based on the surface 

expression of Ly6C and MHCII. While E-FABP is highly expressed in the MHCII+ Q2 and 

Q3 subsets, A-FABP is only expressed in the MHCII− Q4 subsets [6, 9, 11]. Neither FABPs 

is expressed in the Q1 subset (Figure 1). The unique expression pattern of A-FABP and E-

FABP in distinct macrophage subsets has been confirmed in other peripheral lymphoid 

tissues. For example, bone marrow monocytes are all located in Q1 subset, thus no/low 

FABP expression. Peripheral blood monocytes are mainly located in the Q1 and Q4 subsets, 

and A-FABP is only upregulated in the Q4 monocyte subset. Macrophages in draining 

lymph nodes are located in the Q2 and Q3 subsets, thus expressing E-FABP, but not A-

FABP. Of note, E-FABP+ macrophage subsets also highly express MHCII, a professional 

antigen-presenting molecule, whereas A-FABP+ Q4 subset do not express MHCII 

molecules. Instead, A-FABP+ macrophages highly express CD36, a membrane scavenger 

receptor for lipid uptake and bacterial phagocytosis [43–45]. These distinct characteristics 

suggest that E-FABP+ macrophages are involved in accessory functions through antigen 

presentation and bridging innate and adaptive immunity. By contrast, A-FABP+MHCII
−CD36+ macrophages appear to be engaged in direct pathogen clearance, lipid processing 

and other patrolling function along the lumen of blood vessels[46–48].

4. Regulation of macrophage functions by FABPs in different diseases

As discussed above, heterogeneous murine blood monocytes contain Ly6C+ and Ly6C− two 

main subsets. Numerous studies have reported that Ly6C+ monocytes express chemokine 

receptors (e.g. CCR2) and are rapidly recruited to sites of injury, where they are activated to 

become either inflammatory macrophages/DCs (MHCII+) or other subsets (MHCII−) 

depending on local environmental cues [49–51]. By contrast, Ly6C− monocytes patrol the 

endothelium of blood vessel to scavenge pathogens, oxidized lipids or other debris. Ly6C− 

monocytes (MHCII−) can also be recruited to injury sites at a late phase to mediate tissue 

remodeling and immunomodulatory functions [52–54]. Due to the distinct FABP expression 

profile in activated macrophages, we hypothesized that E-FABP expression in MHCII+ 

macrophages and A-FABP expression in MHCII− CD36+ macrophages contribute to the 

functional versatility of macrophages in different diseases.

4.1 Tumors

As the most abundant myeloid cells in the tumor stroma, tumor associated macrophages 

(TAMs) are known to exhibit phenotypic and functional heterogeneity [32, 55, 56]. 

Although it has been proposed that IFNγ-activated M1 macrophages exert antitumor 

activities by producing abundant pro-inflammatory cytokines whereas IL-4-activated M2 

macrophages enhance angiogenesis and exhibit pro-tumor functions [29], it is difficult to 

identify which macrophage subsets exert anti-tumor or pro-tumor functions due to the lack 

of specific phenotypic and functional markers. Studies have shown that in the tumor stroma, 

TAM progenitors are originally come from Ly6C+ monocytes, which gradually differentiate 

into either anti-tumor M1 or pro-tumor M2 TAMs depending on their locations in the tumor 

stroma [57, 58]. In line with these studies, we found that TAMs (CD11b+F4/80+) in 
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syngeneic mammary tumor models exhibited a dynamic alteration in their phenotype and 

function (Figure 2). Right after tumor implantation (0–3 days), TAMs were mainly Ly6C
+MHCII− monocytes (Q1 subset), whereas 1–2 weeks later, the major TAM population 

exhibited M1-like phenotype (Ly6C+MHCII+CD11c+) (Q2 subset). Three weeks later, the 

predominant TAM subset exhibited the M2-like phenotype (Ly6C−MHCII−) (Q4 subset)[6, 

9]. Importantly, anti-tumor M1-like TAMs highly express E-FABP while pro-tumor M2-like 

TAMs highly express A-FABP. Using genetic knockout mouse models, we demonstrated 

that E-FABP expression in M1-like TAMs promotes their anti-tumor function by enhancing 

type I IFNβ responses through enhancing lipid droplet/viperin signaling [9]. Moreover, A-

FABP expression in M2-like TAMs is critical to their pro-tumor function by promoting IL-6/

STAT3 signaling through regulation of the NFκB/miR-29 pathway [6]. Of note, anti-tumor 

E-FABP+ macrophages differentiate early in tumor development [9]. If tumor cells are not 

eliminated at this stage, A-FABP+ TAMs gradually become dominant in the tumor stroma to 

promote tumor growth and progression [6] (Figure 2). Thus, E-FABP and A-FABP can be 

considered functional markers for anti-tumor and pro-tumor TAMs, respectively.

4.2 Inflammatory diseases

Buildup of lipid-laden macrophages (foam cells) is the most characteristic feature of 

atherosclerosis [59]. As such, atherosclerosis represents a good model to determine the 

contribution of macrophages to the pathogenesis of inflammatory diseases. A-FABP 

expression in macrophages was first reported to contribute to foam cell accumulation and 

atherosclerotic lesions using the ApoE−/− A-FABP−/− mouse model in a normal chow diet 

[42]. The critical atherogenic role of A-FABP expression in macrophages was further 

demonstrated in ApoE−/− mice fed a high fat Western diet that developed advanced 

atherosclerosis [60, 61]. E-FABP expression in macrophages also promotes atherosclerotic 

lesions by enhancing CCR2-mediated recruitment [62]. The conclusion that A-FABP and E-

FABP contribute to atherosclerosis is mainly based on two observations: (1) macrophages 

express both E-FABP and A-FABP, and 2) A-FABP and E-FABP have a similar tertiary 

structure and ligand binding affinity [63]. Thus, it is assumed that A-FABP and E-FABP 

might have similar or redundant roles in macrophage-mediated atherogenesis. However, the 

observations that A-FABP deficiency is not compensated by E-FABP overexpression, nor 

does E-FABP deficiency result in A-FABP overexpression, do not support their functional 

redundancy in macrophages. Given that A-FABP and E-FABP have distinct expression 

profiles in different subsets of bone marrow-derived monocytes/macrophages, we proposed 

that A-FABP+ Ly6C− CD36+ patrolling monocytes mainly contribute to oxidized lipid 

uptake and foam cell formation. Hyperlipidemia (e.g. oxLDL) in either ApoE−/− or LDLR
−/− mice induces A-FABP-dependent lipotoxicity and macrophage death along the vascular 

endothelium, initiating local inflammation, and then recruits inflammatory E-FABP+ Ly6C+ 

CCR2+ monocytes, exacerbating atherosclerotic lesions already present (Figure 3). Thus, A-

FABP and E-FABP each contribute to atherogenesis through the regulation of different 

subsets of macrophages.

4.3 Obesity and other diseases

In the past three decades, the prevalence of obesity has increased at an alarming rate [64–

66]. Obesity is associated with chronic inflammation and many of mankind’s most common 
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diseases, including type II diabetes, cardiovascular disease, and at least 13 types of cancer 

[67, 68]. The underlying molecular mechanisms linking obesity and obesity-associated 

diseases are under active investigation. We used high fat diet (HFD)-induce murine obese 

models to demonstrate that obesity increases the risk of mammary tumor incidence and 

growth through at least two mechanisms: 1) Consumption of a HFD rich in saturated fat 

enhances differentiation of the A-FABP+ Q4 subset in obese mice, thus increasing obesity-

associated tumor risk [69]; 2) An HFD rich in saturated fat increases circulating levels of A-

FABP, which directly target mammary tumor cells by enhancing tumor stemness for tumor 

progression [70]. Unlike A-FABP, circulating levels of E-FABP are similar in obese mice 

compared to lean mice, suggesting that A-FABP is an important link increasing the risk of 

obesity-associated cancer [71].

In several murine models we observed that HFDs, particular high saturated fat diets, induce 

chronic skin inflammation, which is associated with increased accumulation of MHCII+ 

CD11c+ macrophages in the lesion skin. E-FABP is highly expressed in these macrophages 

and promotes inflammatory IL-1β signaling, which leads to adaptive T cell responses. 

Importantly, E-FABP deficiency reduces IL-1β responses and completely prevents the HFD-

induced skin lesion. Thus, E-FABP expression in MHCII+CD11c+ macrophages is critical in 

mediating IL-1β-induced inflammatory diseases in obesity. In addition, FABPs play a 

central role in other disease models. For instance, LPS injection induces infiltration of E-

FABP+ macrophages in the liver, which contributes to LPS-induced liver inflammation and 

injury [72]. IL-4 stimulation promotes macrophage polarization by upregulation of A-FABP 

through the IL-4/STAT6/PPARγ signaling axis [73–75]. A-FABP overexpression in liver 

Kupffer cells positively correlates with the poor outcomes of decompensated cirrhosis [76]. 

Recently studies demonstrate that A-FABP expression in alveolar macrophages is required 

for neutrophil recruitment and infection clearance [77, 78]. It is of great interest to determine 

whether severe symptoms often observed in obese COVID-19 patients are associated with 

dysregulation of A-FABP expression and neutrophil hyperinflammation. infection may 

patients. These mounting lines of evidence further suggest that E-FABP and A-FABP 

promote inflammatory diseases through regulating different macrophages in vivo.

5. Regulation of lipid-metabolic pathways by FABPs in macrophages

To further understand how A-FABP and E-FABP respectively regulate macrophage 

functions, we noticed that while both FABPs bind various dietary FAs with similar affinity 

[63, 79], they are unique in channeling different FAs to specific cellular organelles and in 

regulating their metabolic pathways in macrophages.

5.1 A-FABP regulates FA-mediated pathways in macrophages

Protein-ligand analysis demonstrated that A-FABP selectively transports specific FAs into 

the nucleus for transcriptional activation of nuclear receptor PPARγ [80]. Although A-FABP 

is able to bind multiple FAs with similar affinity, including palmitic acid, stearic acid, oleic 

acid, linoleic acid, arachidonic acid, etc., A-FABP only delivers certain ligands (e.g. linoleic 

acid, troglitazone) to the nucleus. Structural analysis indicated that linoleic acid binding to 

A-FABP alters its tertiary structure to form a nuclear localization signal (NLS) whereas 
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binding of non-activating ligands (e.g. saturated FAs) masks the NLS, thus preventing their 

nuclear transport by A-FABP. Of note, ligand activation of PPARγ controls expression of 

multiple PPARγ-target genes, among which CD36 is well known to mediate oxLDL uptake 

and promote the formation of macrophage-derived foam cells [81] (Figure 4). A-FABP is 

also a direct PPARγ transcriptional activation gene, and oxLDL-induced PPARγ activation 

in turn promoted A-FABP expression and monocyte/macrophage differentiation [82, 83]. 

Thus, once egressed from bone marrow, Ly6C+ monocytes can differentiate into Ly6C− 

patrolling monocytes through activation of the PPARγ/CD36/A-FABP pathway in response 

to external stimuli in the blood (e.g. oxLDL).

Besides channeling linoleic acids into the nucleus for PPARγ activation, A-FABP mediates 

other unsaturated FA (e.g. omega-3 FAs)-induced mitochondrial oxygen consumption and 

production of reactive oxygen species (ROS) in macrophages [69]. Macrophages deficient in 

A-FABP exhibit increased intracellular levels of unsaturated FAs and upregulation of UCP2 

[84], further supporting a critical role of A-FABP in mediating unsaturated FA oxidation in 

macrophages. A-FABP also plays a critical role in coordinating saturated FA-mediated 

responses in macrophages, including palmitic acid-induced endoplasmic reticulum (ER) 

stress [85]. Our recent studies demonstrate that A-FABP is pivotal in mediating saturated 

FA-induced ceramide production and macrophage cell death [11, 86]. Thus, depending on 

the FA ligands, A-FABP transports them to different cellular compartments to coordinate 

unique metabolic pathways in macrophages (Figure 4).

5.2 E-FABP-mediated FA pathways in macrophages

Although E-FABP has a high degree of homology with A-FABP, it exhibits a distinct 

expression profile in bone-marrow derived monocytes/macrophages, implying unique 

features in mediating lipid metabolic pathways. A-FABP is highly expressed in Ly6C
−MHCII−CD36+ monocytes/macrophages, whereas E-FABP is highly expressed in Ly6C
+MHCII+CD36− macrophages. E-FABP+ macrophages are lower in PPARγ, but higher in 

PPARβ/δ expression, suggesting a specific E-FABP/PPARβ/δ interaction. Mounting 

evidence indicates that E-FABP channels ligands from the cytoplasm to the nucleus for 

transcriptional activation of PPARβ/δ, and PPARβ/δ activation can directly induce E-FABP 

expression, thus forming a positive feedback loop [87–89]. Structural analysis indicated that 

E-FABP can bind a wide array of FAs and other hydrophobic ligands (e.g. trans-retinoic 

acid, N-acylethanolamine), but only certain ligands alter E-FABP conformation and tertiary 

NLS formation, leading to ligand-driven nuclear translocation [90]. It is clear now that E-

FABP can transport unsaturated FAs, especially these with a U-shape conformation (e.g. 
linoleic acid, arachidonic acid) to the nucleus for PPARβ/δ transactivation. Besides nuclear 

transportation, E-FABP expression in TAMs facilitates unsaturated FA-induced lipid droplet 

(LD) formation in macrophages [9]. As LDs are essential in mediating IFNβ signaling [91, 

92], we demonstrated that E-FABP expression in TAMs plays a critical role to promote anti-

tumor type I IFNβ responses in mammary tumor models. Thus, E-FABP can also channel 

unsaturated FAs for LD formation, which provides a platform for unsaturated FA-mediated 

IFNβ responses in macrophages (Figure 5).
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As E-FABP does not appear to channel saturated FAs (e.g. palmitic acid) to the nucleus for 

PPARβ/δ activation or formation of LDs in the cytosol, it is intriguing to know whether and 

how E-FABP regulates saturated FA-mediated responses inside macrophages. In an obese 

mouse model induced by a diet high in lard, we observed that the HFD-induced skin lesions 

were associated with CD11c+ macrophage accumulation. Further analysis of the skin 

indicated that IL-1β signaling was significantly upregulated in CD11c+ macrophages. 

Interestingly, saturated, but not unsaturated, FAs promote CD11c expression and induce 

IL-1β secretion in an E-FABP-dependent manner, suggesting that E-FABP enhances 

saturated FAs-mediated CD11c+ macrophage differentiation and IL-1β signaling pathways 

[10, 93]. Recent studies demonstrate that saturated FAs are transported to lysosomes to form 

crystals for inflammasome activation and IL-1β release [94], suggesting that E-FABP may 

deliver saturated FAs to lysosomes in macrophages (Figure 5).

Of note, E-FABP expression is more ubiquitous than A-FABP and other FABP members. 

Besides expressed in macrophage subsets, E-FABP is also expressed in other immune cells 

and tissues (e.g. T cells, mammary gland, brain, lung) [95, 96], suggesting that E-FABP 

serves as a ubiquitous lipid carrier. Dysregulation of lipid metabolism links ER stress[97–

99], exhaustion and ferroptosis[100, 101], which have been suggested to regulate immune 

cell activation and survival. Thus, FABP-mediated ER stress and other lipid signaling 

pathways can affect immune cell fate and disease progress. Further study is warranted to 

determine how FABPs regulate lipid metabolism and tissue/cell specific responses in 

obesity, tumor and other inflammatory diseases.

6. Summary

The family of FABP members is widely expressed in different tissue/organs, facilitating 

lipid uptake, transport, and coordinating lipid-mediated responses. Among FABP members, 

A-FABP and E-FABP are highly upregulated in activated macrophages, regulating different 

functions of macrophages in multiple disease settings. A-FABP and E-FABP are thought to 

be equally expressed in macrophages at similar levels [42]. Due to the similarity of their 

amino-acid sequences, protein structure and binding ligands, A-FABP and E-FABP are 

generally believed to function redundantly in macrophages [62]. Studies using A-FABP and 

E-FABP double knockout mice have generated striking phenotypes in preventing insulin 

resistance, chronic inflammation and other metabolic diseases [102–104]. However, 

macrophages exhibit heterogeneous phenotypes and functions in vivo. Depending on their 

origin, tissue distribution and wide arrays of stimuli received from the local environment, 

macrophages exhibit diverse activation status when engaged with different metabolic and 

inflammatory pathways. As such, emerging evidence indicates that A-FABP and E-FABP 

can be upregulated in different subsets of activated macrophages to coordinate lipid-

mediated responses. For bone marrow-derived macrophages, A-FABP is highly expressed in 

Ly6C− MHCII−CD36+ patrolling monocyte/macrophages to facilitate oxidative lipid uptake, 

foam cell formation, angiogenesis, tissue remodeling and pro-tumor functions. By contrast, 

E-FABP is highly expressed in MHCII+CD11c+ macrophages and promotes inflammatory 

responses (e.g. IL-1 signaling), antigen presentation and anti-tumor immunity (e.g. IFNβ 
response). A-FABP and E-FABP are also upregulated with obesity to handle dysregulated 

levels of FAs and channel them to specific cellular organelles inducing different metabolic 
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and inflammatory signaling in macrophages. Thus, A-FABP and E-FABP represent a new 

line of functional markers defining macrophage functions to maintain homeostasis in health 

and engaging pathogenesis under various disease conditions.
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Highlights

1. Macrophages exhibit phenotypic, metabolic and functional heterogeneity.

2. FABPs, in particularly A-FABP and E-FABP, are expressed in different 

subsets of macrophages.

3. A-FABP and E-FABP regulate lipid metabolism by coordinating different FA-

mediated pathways in macrophages.

4. A-FABP and E-FABP may serve as new metabolic/functional markers 

defining macrophage heterogeneity.
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Figure 1. A-FABP and E-FABP expression pattern in splenic macrophages.
Splenic macrophages (CD11b+F4/80+) (A) are divided into four subsets (Q1-Q4) by the 

surface markers Ly6C and MHCII (B). Individual subsets were separated by a flow sorter 

and relative levels of A-FABP and E-FABP in each subset were assessed by real-time PCR 

(C).
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Figure 2. Expression of E-FABP and A-FABP in different subsets of TAMs.
E-FABP expression in TAMs exerts anti-tumor effects by promoting type I IFNβ signaling 

and adaptive immune responses, while TAM expression of A-FABP promotes tumor 

progression by enhancing pro-tumor IL-6/STAT3 signaling.
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Figure 3. A-FABP and E-FABP contribute to atherosclerosis by regulating different subsets of 
monocytes/macrophages.
A-FABP+Ly6C−CD36+ patrolling monocytes uptake oxLDL and initiate atherosclerotic 

lesions while recruited Ly6C+ CCR2+ monocytes express E-FABP, contributing to local 

inflammation in the atherosclerotic plaque.

Jin et al. Page 20

Biochim Biophys Acta Mol Cell Biol Lipids. Author manuscript; available in PMC 2022 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 4. A-FABP coordinates FA responses in macrophages.
In A-FABP+ macrophages, A-FABP can facilitate multiple FA-mediated responses, which 

include FA oxidation and ROS production in mitochondria, ceramide production and ER 

stress, and activation of nuclear transcriptional factors (e.g. PPARγ) activation and 

regulation of gene expression (e.g. CD36).
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Figure 5. E-FABP coordinates FA responses in macrophages.
In E-FABP+ macrophages, E-FABP mediates multiple FA-induced responses, including FA 

oxidation and ROS production, inflammasome activation and IL-1β upregulation, lipid 

droplet formation and IFNβ responses, and nuclear transcriptional factor activation and gene 

regulation.
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Table 1.

The distribution, binding ligands and functions of FABP family members

Gene Protein Alternative names Predominant tissue 
localization Major binding ligands Pathological functions

FABP1 L-FABP Liver FABP, heme-
binding FABP

Liver, duodenum, small 
intestine, colon, rectum, 
kidney, appendix

Broad hydrophobic ligands, 
such as heme, bile acids, 
acyl-CoA, vitamins, 
xenobiotic drugs

Hepatic steatosis, nonalcoholic 
fatty liver disease

FABP2 I-FABP Intestine FABP, gut 
FABP

Duodenum, small 
intestine

Long chain fatty acids 
(LCFA)

Metabolic syndromes, 
colorectal cancer

FABP3 H-FABP Heart FABP, muscle 
FABP Muscles (heart, skeletal) LCFA, eicosanoids, retinoic 

acids
Biomarker for acute 
myocardial infarction

FABP4 A-FABP Adipose FABP, aP2

Adipose tissue 
(adipocytes and 
macrophages), 
endothelium

LCFA, eicosanoids, retinoic 
acids

Metabolic diseases (such as 
type 2 diabetes, 
atherosclerosis, insulin 
resistance), cardiovascular 
disease, asthma, cancer

FABP5 E-FABP

Epidermal FABP, 
mal1, psoriasis-
associated FABP, 
keratinocyte FABP

Skin, adipose tissue, 
lung, immune cells 
(macrophages, T 
cells,etc), esophagus, 
stomach, colon

LCFA, eicosanoids, retinoic 
acids, cannabinoids

Inflammatory skin diseases 
(such as psoriasis, dermatitis), 
atherosclerosis, autoimmune 
diseases, cancer

FABP6 IL-FABP IIeal FABP, 
gastrotropin Small intestine (distal) Bile acids, cholate, LCFA Type 2 diabetes, bile acid-

associated gut diseases

FABP7 B-FABP
Brain FABP, brain lipid 
binding protein 
(BLBP)

Cerebellum, 
hippocampus

Polyunsaturated FAs, 
particulary DHA

Overexpression in Down’s 
syndrome and Schizophrenia

FABP8 M-FABP Myelin FABP Cerebral cortex LCFA, eicosanoids, retinoic 
acids, cholesterol Guillain-Barre syndrome

FABP9 T-FABP
Testis FABP, testis 
lipid binding protein 
(TLBP)

Testis, esophagus LCFA, eicosanoids, retinoic 
acids Sperm head abnormalities
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