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Abstract

Purpose: Multimodal deformable image registration is essential for many image-guided 

therapies. Recently, deep learning approaches have gained substantial popularity and success in 

deformable image registration. Most deep learning approaches use the so-called mono-stream 

“high-to-low, low-to-high” network structure, and can achieve satisfactory overall registration 

results. However, accurate alignments for some severely deformed local regions, which are crucial 

for pinpointing surgical targets, are often overlooked, especially for multimodal inputs with vast 

intensity differences. Consequently, these approaches are not sensitive to some hard-to-align 

regions, e.g., intra-patient registration of deformed liver lobes.

Methods: We propose a novel unsupervised registration network, namely Full-Resolution 

Residual Registration Network (F3RNet), for multimodal registration of severely deformed 

organs. The proposed method combines two parallel processing streams in a residual learning 

fashion. One stream takes advantage of the full-resolution information that facilitates accurate 
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voxel-level registration. The other stream learns the deep multi-scale residual representations to 

obtain robust recognition. We also factorize the 3D convolution to reduce the training parameters 

and enhance network efficiency.

Results: We validate the proposed method on 50 sets of clinically acquired intra-patient 

abdominal CT-MRI data. Experiments on both CT-to-MRI and MRI-to-CT registration 

demonstrate promising results compared to state-of-the-art approaches.

Conclusion: By combining the high-resolution information and multi-scale representations in a 

highly interactive residual learning fashion, the proposed F3RNet can achieve accurate overall and 

local registration. The run time for registering a pair of CT-MRI images is less than 3 seconds 

using a GPU. In future works, we will investigate how to cost-effectively process high-resolution 

information and fuse multi-scale representations.
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1 Introduction

In image-guided therapies (IGT), e.g., pre-operative planning, intervention and diagnosis, 

multimodal deformable image registration is the key to integrate complementary information 

contained in different image modalities. For instance, Computed Tomography (CT) is 

important for dose planning as it can provide the tissue density information, while the 

corresponding Magnetic Resonance Imaging (MRI) with high soft-tissue contrast can be 

used for delineating the tumors and organs at risk. Therefore, developing fast and accurate 

multimodal image registration methods is beneficial for the performance of IGT.

Recently, due to the substantial improvement in computational efficiency over the traditional 

iterative registration, learning-based image registration approaches are becoming more 

prominent in time-intensive applications [8]. Most learning-based registration approaches 

use fully supervised [5,19,3] or semi-supervised learning strategy [14,6], and heavily rely on 

ground-truth voxel correspondences and/or organ segmentation labels. Although these 

approaches struggle with imperfect ground-truth labels, they have made a significant impact 

on the field of deformable image registration. With the development of Spatial Transformer 

Network (STN) [15], registration approaches that are based on unsupervised learning have 

also been introduced. For example, VoxelMorph [2] is a monumental unsupervised 

registration framework that focuses on registering brain images of the same modality 

(unimodal registration). By modifying VoxelMorph, researchers have further proposed more 

unsupervised unimodal registration approaches [13,25,17,21,7].

The multimodal image registration, e.g., CT-to-MRI registration, is much more challenging 

than unimodal image registration because it is difficult for the network to learn a shared 

appearance representation due to the significant difference in their intensity distributions. 

Most existing learning-based registration approaches use the so-called mono-stream “high-

to-low, low-to-high” network structure with augmented modules, e.g., skip-connection [2,9], 

multi-resolution fusion [13] and intermediate supervision [18]. This structure can 
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significantly increase the size of the receptive field which is highly desirable for recognizing 

object information in images, but needs to recover the high-resolution information from the 

low-resolution representations. With increased receptive field sizes, these approaches 

prioritize overall registration accuracy, which is governed by the majority of easy-to-align 

regions, and overlook some severely deformed local regions. For example, livers with 

tumors usually have large local deformation due to progressed disease, and the deformations 

of the surrounding kidney and spleen are less significant. In a CT-to-MRI abdominal image 

registration, the aforementioned approaches are likely to estimate a deformation field that 

accurately registers kidney and spleen, yet perform poorly at local liver lobes alignment.

Besides, most of the image registration networks utilize 3D Convolutional Neural Networks 

(3D CNN) to exploit the semantic information in each CT/MRI slice and the spatial 

relationships across consecutive slices. It is understood that the training of 3D CNN is 

computationally expensive, and may lead to insufficient training due to the small number of 

clinical datasets.

To address the above problems, we propose a novel unsupervised Full-Resolution Residual 
Registration Network (F3RNet), which is shown in 1(a). Distinct from the conventional 

mono-stream network structure, F3RNet consists of two parallel streams, namely “Full-

resolution stream” and “Multi-scale residual stream”. Inspired by the success of using a 

high-resolution stream in human pose estimation and image inpainting tasks [22,10,26], 

“Full-resolution stream” takes advantage of the detailed image information and facilitates 

accurate voxel-level registration. While the “Multi-scale residual stream” learns the deep 

multi-scale residual representations to robustly recognize corresponding organs in both 

images and guarantee a high overall registration accuracy. Using the Multi-scale Residual 

Block (MRB) modules, the network can progressively fuse information from the two parallel 

streams in a residual learning fashion [11] to further boost the performance. In addition, we 

factorize the 3D convolution into two correlated 2D and 1D convolutions, thus effectively 

avoid over-parameterization [23].

To the best of our knowledge, we are the first to incorporate full-resolution representations 

with multi-scale high-level representations in a residual learning fashion to boost multimodal 

image registration performance. The main contributions of our work can be summarized as 

follows:

– Our approach can unite the strong capability of capturing deep multi-scale 

representations with precise full-resolution spatial localization of the anatomical 

structures by interactively combining two parallel streams via the proposed MRB 

module and the residual learning mechanism. By taking into account such full-

resolution information, the registration network is more sensitive to the hard-to-align 

regions, and can provide better alignments for severely deformed local regions.

– The factorization of 3D convolution can markedly reduce the training parameters 

and enhance the network efficiency.

– We validate the proposed F3RNet on a clinically acquired CT-MRI dataset 

consisting of 50 pairs of CT and MRI. The experimental results on CT-to-MRI and 
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MRI-to-CT registration show that our method achieves superior performance over 

existing state-of-the-art traditional and learning-based methods.

The outline of the paper is as follows: Section 2 describes the details of our F3RNet, Section 

3 presents the experimental details and registration results on CT-MRI abdominal data and 

Section 4 will draw conclusions of the paper.

2 Methods

Representing the moving image as Im and the fixed image as If, medical image registration 

aims to estimate an optimal deformation field ϕ with three channels (x, y, z displacements) 

that can align Im to If. In this section, we present our Full-resolution Residual Registration 

Network (shown in Figure 1) firstly. Then, we describe the detailed structure of the designed 

Residual Block (RB) and Multi-scale Residual Block (MRB) respectively. The factorization 

of 3D convolution is presented in Section 2.4, and the loss function of our network is 

described in Section 2.5.

2.1 Overview of the Network

Distinct from the regular high-to-low, low-to-high one-pass network architecture, Full-

Resolution Residual Registration Network (F3RNet) unifies two parallel streams:

– Full-resolution Stream. Maintaining high-resolution features has demonstrated its 

superior performance for dense prediction [22,20,26,10]. The black line in Figure 

1(a) indicates the data flow of the full-resolution stream. This stream first 

concatenates Im and If, followed by a 3D convolution and a series of Residual Blocks 

(RB, described in Section 2.2). Then, the low-level features on this stream are 

successively computed by adding the residual from the other parallel stream. After 

that, the full-resolution stream reduces the number of channels via consecutive RBs 

and 3D convolutions step-by-step, and estimates the 3-channel deformation field ϕ. 

Spatial Transformation Network (STN) [15] is applied to warp the moving image Im 

with ϕ, so that the similarity between the warped image Iw and fixed image If can be 

evaluated. This stream does not employ any downsampling operation, resulting in 

good boundary localization but poor performance in deep semantic recognition. As 

such, the hard-to-align regions are propagated throughout the stream. Specifically, the 

convolutions in the full-resolution stream are all with 16 channels in our experiments 

except for the final 3-channel convolution used to generate the deformation field.

– Multi-scale Residual Stream. The data flow of Multi-scale Residual Stream is 

depicted as the orange line in Figure 1(a). In contrast to the full-resolution stream, 

this stream is good at capturing high-level features that can improve the organ 

recognition performance. Specifically, successive pooling and convolution operations 

are leveraged to increase the receptive fields and enhance the robustness against small 

noises in the images. We also inherit the skip-connection design in regular high-to-
low, low-to-high architecture that the feature spaces with same resolution are skip-

connected by addition operation. Besides, with the help of our proposed Multi-scale 

Residual Blocks (MRB) that can simultaneously operate on both streams, the high-

level features can directly interact with low-level features. The interior architecture of 
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MRB is shown in Figure 1(c) with elaboration in Section 2.3. In our experiments, 

each convolution within the multi-scale residual stream is with 32 channels, and we 

set N to 4, which is the same as VoxelMorph [2], denoting that the lowest resolution 

is 1/16 of the original image.

The information of the two distinct streams are automatically fused via residual learning 

[11]. By repeatedly fusing the features between two streams via computing successive multi-

scale residuals, the full-resolution representations become rich for the dense deformation 

field prediction. At the same time, richer low-level full-resolution information can in turn 

enhance the high-level multi-scale information.

2.2 Residual Block (RB)

ResNets, proposed in [11], has demonstrated that residual learning can improve the training 

characteristics over traditional one-pass feed-forward learning. The interior architecture of 

the Residual Block (RB) is depicted in Figure 1(b). The output zn of the RB can be 

formulated as:

zn = zn − 1 + ℛ zn − 1 , (1)

where ℛ represents the residual branch consisting of two 3D convolutions with a kernel size 

of 3 × 3 × 3 followed by LeakyReLU activations. Instead of computing zn directly as in the 

traditional feed-forward network, the convolutional branch only needs to compute the 

residual ℛ in this architecture.

2.3 Multi-scale Residual Block (MRB)

The Multi-scale Residual Block (MRB) follows the basic idea of Residual Block (RB) but 

elegantly achieves interaction between the full-resolution stream and multi-scale residual 

stream. An MRB consists of a series of pooling, 3D convolution and upsampling layers, as 

shown in Figure 1(c). Each MRB has two inputs, ln−1 as full-resolution low-level features 

and hn−1 as multi-resolution high-level features, and two corresponding outputs ln and hn. 

Intuitively, denoting the entire MRB operation as ℳ, the output ln can be computed as:

ln = ln − 1 + ℳ ln − 1, ℎn − 1 . (2)

Specifically, first, the resolution of ln−1 is reduced to that of hn−1 by a pooling operation, 

followed by a feature map concatenation. Then, the concatenated feature map undergoes a 

3D convolution with a kernel size of 3×3×3, followed by a Residual Block (RB) with the 

same number of channels, and the output hn is connected to the next process of the multi-

scale residual stream. Meanwhile, the output of the 3×3×3 convolutional module adjusts the 

number of channels and the resolution to be consistent with ln−1 through a 1×1×1 

convolutional bottleneck layer and an upsampling layer at the other end. By such a process, 

we can readily use addition operations to integrate the residuals learned in the MRB in the 

full-resolution stream, thus forming a dual-stream highly interactive residual module.
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2.4 Factorized 3D Convolution (F3D)

Most medical images, as shown in Figure 2(a), consist of 3D image stacks with the size of 

W ×H ×D, where W, H, D represents the width, height, and the number of sequential slices. 

Inspired by the Inception [24] where large 2D convolution is factorized into two smaller 

ones, we factorize 3D convolution block for learning the volumetric representation. 

Specifically, suppose that we have a 3D convolution with kernel size of 3 × 3 × 3 (Fig. 2(b)), 

it can be factorized into a 3×3×1 convolution and a 1×1×3 convolution in a cascaded fashion 

(Fig. 2(c)) to continuously capture dense 2D features in W × H slices with 1D attention 

weights that build sparse sequential relationships across adjacent slices. As such, the number 

of trainable parameters is reduced from O(33 = 27) to O(3×3+3 = 12), where we can reduce 

the parameters by half and improve the learning efficiency.

However, it is noteworthy that the factorization is not totally equivalent to regular 3D 

convolution, and a further ablation study over factorized 3D convolution is presented in 

Section 3.2.1.

2.5 Loss Function

The loss function of our network consists of two components as shown in Eq.(3). The 

similarity loss ℒsim  penalizes the dissimilarity between the fixed image If and the warped 

image Iw(Im ◦ ϕ). The deformation regularization ℒreg  adopts an L2-norm of the gradients 

of the final deformation field ϕ with a trade-off weight λ. We write the total loss as:

ℒ Im, If, ϕ = ℒsim If, Im ◦ ϕ + λℒreg (ϕ) . (3)

Specifically, Modality Independent Neighborhood Descriptor (MIND) [12] is used to 

measure the similarity of multimodal images. MIND is a modality-invariant structural 

representation, and we can minimize the difference in the MIND features between the 

warped image Iw(Im ◦ ϕ) and the fixed image If to effectively train multimodal registration 

network. We define:

ℒsim If, Im ◦ ϕ = 1
N R ∑

x
MIND Im ◦ ϕ − MIND If 1, (4)

where N denotes the number of voxels in input images Iw(Im ◦ ϕ) and If, R is a non-local 

region around voxel x.

3 Experiments

3.1 Dataset and Implementation

In this work, although we specifically focus on the application of abdominal CT-MRI 

subject-to-subject registration, the full-resolution residual learning strategy can be easily 

extended to other registration tasks.

Under the IRB approved study, we obtained an intra-patient CT-MRI dataset containing 

paired CT and MR images from 50 patients. The liver, kidney and spleen in both CT and 
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MRI were manually segmented for quantitative evaluation. Standard preprocessing steps, 

including affine spatial normalization, resampling and intensity normalization, were 

performed. The images were cropped into 144 × 144 × 128 subvolume with 1mm isotropic 

voxels and randomly divided into two groups for training (40 cases) and testing (10 cases).

The proposed method is implemented using Keras [4] with the Tensorflow backend. We 

train the network on a NVIDIA Titan X (Pascal) GPU using Adam optimizer [16] with a 

learning rate of 1e-5. The batch size is set to 1.

3.2 Experimental Results

3.2.1 Ablation Study of F3D Convolution—As mentioned in Section 2.4, although 

convolution factorization can dramatically reduce the training parameters, it may not be 

totally equivalent to the regular 3D convolution in practice. Therefore, we investigate the 

different combinations of F3D convolution in our F3RNet. In our experiments, except for the 

final 3-channel 3D convolution used to generate the deformation field, other 3×3×3 

convolutions can be replaced. The variants of F3RNet are presented in Table 1. “More 

MRBs” indicates that two extra MRBs are added at the lowest resolution path.

Figure 3 presents the average Dice scores of ROIs on the hold-out test set for varying values 

of the smoothing trade-off weight λ. The best Dice scores occur when λ = 1.5 for F3RNet-

w/o F3D, F3RNet-w/ F3D, F3RNet-Dec, F3RNet-FR and F3RNet-MRB, and λ = 2 for 

F3RNet-Enc and F3RNet-MS. In particular, F3RNet-w/o F3D and F3RNet-MRB achieve 

better Dice scores than all other variants. Moreover, after achieving the best Dice scores at λ 
= 1.5, the results vary slowly over larger λ for F3RNet-w/o F3D and F3RNet-MRB, 

showing that the two models are more robust to the choice of λ.

Figure 4 shows visual results of warped images for the ablation analysis. We can firstly see 

that the original F3RNet (F3RNet-w/o F3D) can effectively register the multimodal images. 

If we replace all 3D convolutions with F3D (F3RNet-w/ F3D) or only replace the 

convolution in encoder and decoder (F3RNet-Enc and F3RNet-Dec), our methods can still 

effectively register the CT image but have slight performance degradation. Interestingly, if 

we replace the regular convolution on the entire multi-scale residual stream or full-resolution 

stream alone, this will cause the information of the two streams to not effectively interact 

and introduce noise, resulting in unstable performance and significant registration 

degradation. Therefore, if we use F3D to reduce the model parameters, the 3D convolution 

on both streams must be replaced at the same time. Further, we can use the reduced 

parameters to add more MRBs (F3RNet-MRB). From the visual results, it can be seen that 

the registration performance is either maintained or slightly improved.

Table 2 also provides the quantitative results in terms of the Average Surface Distance 

(ASD) and Dice score for all baseline methods and the variants of our F3RNet with different 

combinations of F3D. As for the results for ablation analysis, we can see that F3RNet-w/o 

F3D and F3RNet-MRB achieve the best performance. Specifically, with only 39.7% 

parameters of F3RNet-w/o F3D, F3RNet-MRB achieves better ASD results in the liver and 

kidney registration than F3RNet-w/o F3D, while it also achieves better Dice score in liver 

and spleen registration. Meanwhile, consistent with the visual assessment, we can also see 
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that F3RNet-FR and F3RNet-MS both yield significant performance degradation over ASD 

and Dice score as they cause the features of the two streams to be disjointed.

3.2.2 Comparison with Baseline Methods on CT-to-MRI registration—To 

evaluate our proposed method, four open-source state-of-the-art baseline approaches are also 

compared, including one traditional method SyN [1] with Mutual Information (MI) metric 

[27], and three unsupervised learning-based methods, marked as VoxelMorph-1 (VM-1) [2], 

VoxelMorph-2 (VM-2) [2], and FAIM [17]. The three methods are initially proposed for 

unimodal registration, and we extend them to multimodal registration by using MIND-based 

similarity metric.

Figure 4 also illustrates the warped CT images produced by other baseline methods. As we 

have mentioned above, liver registration is much more challenging in the abdominal image 

registration task. From the results, we can see that the traditional method SyN fails to align 

the liver with large local deformation. As for other deep learning methods, VM-1, VM-2, 

and FAIM achieve better results than SyN but still have considerable disagreements. Except 

for F3RNet-FR and F3RNet-MS, our methods have the most visually appealing boundary 

alignment, which demonstrates that our F3RNet can better register the hard-to-align regions.

The quantitative results for the baseline methods are also presented in Table 2. Consistent 

with the visual results, the evaluations over ASD and Dice scores of our proposed methods 

are better than the traditional method and other state-of-the-art unsupervised registration 

methods, except for F3RNet-FR and F3RNet-MS. Furthermore, the traditional method takes 

more than one minute to register an image pair, while all deep learning methods can 

complete a registration task in 3 seconds with a GPU, which makes it appealing for image-

guided therapies with intense time demand.

3.2.3 Experiments on MRI-to-CT registration—Among all the proposed networks 

for CT-to-MRI registration, F3RNet-w/o F3D and F3RNet-MRB provide superior results. To 

further validate the effectiveness of the two proposed methods, we also perform the MRI-to-

CT registration in turn. The division of the dataset and the other training settings of the 

networks, e.g., regularization trade-off weights, etc, are consistent with the CT-to-MRI 

registration task.

The visualization of the registration results in Figure 5 shows that our methods, F3RNet-w/o 

F3D and F3RNet-MRB, achieve more accurate organ alignment than other traditional and 

deep learning approaches, especially for the liver.

The quantitative evaluation of MRI-to-CT registration is summarized in Table 3. Our 

proposed methods achieve better results in terms of ASD and Dice scores than that of the 

traditional method and other state-of-the-art unsupervised learning registration methods. In 

particular, F3RNet-MRB achieves the best performance among all the methods.

3.3 Insight into the Parallel Streams

Figure 6 gives an insight into how the network better tackles the registration for hard-to-

align regions by visualizing the intermediate feature maps on the two parallel streams. We 
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can see that the representations in Full-resolution Stream (Figure 6 (a)) become rich for 

accurate dense deformation field estimate by repeatedly fusing the features from Multi-scale 

Residual Stream. At the same time, as the receptive field increases in the Multi-scale 

Residual Stream, the multi-scale branch is more capable of recognition but the localization 

of features is significantly deteriorated (Figure 6 (b)). Previous mono-stream structures are 

difficult to decode accurate voxel-wise information from low-resolution features for final 

dense prediction. With the interactive MRB modules, the information obtained by the Multi-

scale Residual Stream includes not only the information of the previous process of this 

stream, but also the full-resolution information, yielding better low-resolution information 

decoding. Further, the residual stream focuses on computing the residual, which makes the 

network more sensitive to hard-to-align regions with large deformations, i.e., the liver in this 

case (shown in the last row of Figure 6 (b) with red arrows). We believe that this highly 

interactive design through residual learning is the key to boosting registration performance.

4 Conclusions

In this work, we propose a novel unsupervised registration network, namely Full-Resolution 

Residual Registration Network (F3RNet), which takes advantage of full-resolution 

information, multi-scale fusion, deep residual learning framework and 3D convolution 

factorization, to improve multimodal registration. The experimental results indicate that our 

network can better register the hard-to-align region, yielding superior accuracy of 

registration. In our experiments, we found the current input size to be a good compromise 

between image resolution and GPU memory limitation. Future works will focus on the 

lighter and more adaptive ways to leverage high-resolution information and multi-scale 

fusion.
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Fig. 1. 
Illustration of Full-Resolution Residual Stream Network (F3RNet). (a) shows the overview 

of our F3RNet; (b) shows the residual block (RB); (c) shows the multi-resolution residual 

block (MRB). The network learns parameters for a dense deformation field ϕ that aligns the 

moving image Im to the fixed image If. N denotes the minimum volume is (1/2N) the size of 

the input images.
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Fig. 2. 
Illustration of a) 3D medical image scans, b) regular 3D convolution with kernel size of 3 × 

3 × 3, c) F3D convolution block.
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Fig. 3. 
Results of varying the trade-off weight λ on average Dice score of ROIs.
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Fig. 4. 
Visual results of an example for CT-to-MRI registration. Outside the grey box shows an 

example fixed MR image and a zoom-in region with the segmentation masks of the liver 

(green), kidney (red), and spleen (blue). The corresponding warped CT images and zoom-in 

regions for baselines and ablation study are presented in the grey box. A good registration 

will cause structures in warped images to close to the corresponding fixed segmentation 

masks. The red arrows indicate the registration of interest at the boundary of the organ.
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Fig. 5. 
Visual results of an example for MRI-to-CT registration. Outside the grey box shows an 

example fixed CT image and a zoom-in region with the segmentation masks of the liver 

(green), kidney (red), and spleen (blue). The corresponding warped MR images and zoom-in 

regions for all methods are presented in the grey box. The red arrows indicate the 

registration of interest at the boundary of the organ.
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Fig. 6. 
Example of transition of the intermediate feature maps in (a) Full-resolution Stream and (b) 

Multi-scale Residual Stream. Each feature map has 16 channels (horizontal axis) and their 

transition in both streams are presented (vertical axis). Some hard-to-align regions are more 

accurately detected in residual stream (red arrows at the last row of (b)).
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Table 1

Different combinations of F3D convolution (✓) in proposed F3RNet.

Network FR stream
MS stream

More MRBs
Encoder Decoder

F3RNet-w/o F3D

F3RNet-w/ F3D ✓ ✓ ✓

F3RNet-Enc ✓

F3RNet-Dec ✓

F3RNet-FR ✓

F3ENet-MS ✓ ✓

F3RNet-MRB ✓ ✓ ✓ ✓
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Table 2

The quantitative evaluation (mean±std.) for CT-to-MRI registration of all baseline methods and F3RNet with 

different combinations of F3D. Best results are shown in bold.

Methods
ASD(mm) Dice(%)

Params(M) Times(s) 
GPU/CPULiver Spleen Kidney Liver Spleen Kidney

Moving 4.95±0.82 1.97±0.52 2.01±0.36 77.18 ± 4.13 78.24 ± 3.21 80.14 ± 3.17 - -

SyN 4.81±0.79 1.54±0.63 1.92±0.41 79.18 ± 4.37 80.21 ± 3.41 82.91 ± 3.08 - -/97

VM-1 3.98±0.74 1.42±0.54 1.75±0.52 82.39 ± 4.11 82.83 ± 2.68 82.34 ± 2.97 0.260 1.32/21

VM-2 3.92±0.53 1.47±0.37 1.72±0.49 84.17 ± 3.57 82.76 ± 2.98 83.51 ± 3.36 0.300 1.33/23

FAIM 3.88±0.73 1.51±0.63 1.66±0.41 84.51 ± 3.76 81.99 ± 2.84 83.12 ± 3.24 0.217 1.29/20

F3RNet-w/o F3D 2.19 ±0.37 1.28±0.39 1.37±0.38 86.65 ± 3.42 85.39 ± 2.75 83.58 ± 3.18 0.746 2.31/26

F3RNet-w/ F3D 2.63 ±0.52 1.36±0.86 1.41±0.72 85.16 ± 4.19 84.39 ± 2.23 82.98 ± 3.43 0.236 1.22/25

F3RNet-Dec 2.77 ±0.69 1.33±0.69 1.43±0.48 85.87 ± 4.23 84.18 ± 2.77 83.06 ± 3.92 0.544 1.93/25

F3RNet-Enc 2.73 ±0.47 1.39±0.52 1.38±0.36 85.32 ± 4.35 84.27 ± 3.35 83.11 ± 3.28 0.488 1.79/23

F3RNet-FR 3.82 ±0.59 1.53±0.39 1.56±0.43 81.43 ± 4.27 82.97 ± 3.18 83.13 ± 3.52 0.697 2.13/25

F3RNet-MS 3.94±0.75 1.51±0.44 1.52±0.67 82.31 ± 3.84 83.06 ± 3.33 82.99 ± 3.28 0.286 1.41/24

F3RNet-MRB 2.17±0.46 1.29±0.48 1.34±0.26 86.79 ± 3.18 85.42 ± 2.98 83.16 ± 3.43 0.296 1.42/25
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Table 3

The quantitative evaluation (mean ± std.) for MRI-to-CT registration. Best results are shown in bold.

Methods
ASD(mm) Dice(%)

Liver Spleen Kidney Liver Spleen Kidney

Moving 4.95±0.82 1.97±0.52 2.01±0.36 77.18± 4.13 78.24±3.21 80.14± 3.17

SyN 4.73±0.68 1.63±0.57 1.99±0.33 78.36± 4.67 78.53±3.39 81.38± 2.98

VM-1 4.02±0.73 1.61±0.64 1.95±0.28 81.34±4.06 80.72±3.02 82.46± 3.07

VM-2 3.59±0.67 1.53±0.52 1.87±0.36 83.28±4.03 82.81± 3.14 83.37± 2.83

FAIM 3.71±0.87 1.51±0.63 1.89±0.31 84.33±3.64 81.06±3.48 83.44± 2.92

F3RNet-w/o F3D 3.12 ±0.59 1.43±0.59 1.68±0.42 85.75± 4.11 83.02± 3.26 84.07± 3.04

F3RNet-MRB 3.04±0.65 1.38±0.51 1.67±0.35 85.93±3.52 83.47± 3.51 84.39±2.77
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