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Abstract

Purpose of review—Splicing mutations are among the most recurrent genetic perturbations in 

hematological malignancies, highlighting an important impact of splicing regulation in 

hematopoietic development. However, compared to our understanding of splicing factor mutations 

in hematological malignancies, studies of splicing components and alternative splicing in normal 

hematopoiesis have been less well investigated. Here, we outline the most recent findings on 

splicing regulation in normal hematopoiesis and discuss the important questions in the field.

Recent findings—Recent studies have highlighted critical role of splicing regulation in 

hematopoiesis, including characterization of splicing components in normal hematopoiesis, 

investigation of transcriptional alterations on splicing, and identification of stage-specific 

alternative splicing events during hematopoietic development.

Summary—These interesting findings provide insights on hematopoietic regulation at a co-

transcriptional level. More high-throughput RNA sequencing and functional genomic screens are 

needed to advance our knowledge of critical alternative splicing patterns in shaping hematopoiesis.
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INTRODUCTION

Hematopoiesis is the process of blood cell production by a rare population of hematopoietic 

stem cells (HSCs). Self-renewal and differentiation of HSCs are orchestrated by a series of 

transcriptional and gene regulatory events[1,2]. Our understanding of molecular regulation 

of normal hematopoiesis to date mostly stems from the study of transcription factors, post-

translational modifications, and cell extrinsic factors which ultimately modify gene 

expression.
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RNA splicing, the process by which non-coding sequences are removed from premature 

RNA to form mature messenger RNA, is a key regulator of gene expression and mediator of 

gene expression. This complex and dynamic process is executed by spliceosome 

machineries, large ribonucleoprotein complexes consisting of small nuclear RNAs (snRNAs) 

and splicing factor proteins. There are two types of spliceosome machineries in most 

eukaryotic cells: the major and minor spliceosomes. The majority of introns (>99.5%), 

which typically have GT-AC at their termini and variable sequences at their 5’ ends, are 

recognized and removed by the major spliceosome (Figure 1)[3]. The remaining class of 

introns (known as “U12-dependent introns”), present in <0.5% of human genes, are defined 

by highly conserved 5’ and 3’ oligonucleotides which define their termini (Figure 1)[3–7]. 

This rare class of minor introns are recognized and excised by the minor spliceosome (also 

known as the “U12 spliceosome”)[6,8]. The two spliceosome machineries are distinct in 

their snRNA composition and a portion of their associated splicing factor proteins (reviewed 

recently[9,10]).

Splicing factor mutations are common to all forms of myeloid malignancies including acute 

myeloid leukemia (AML) and myeloid proliferative neoplasms (MPN)[11–18]. In particular, 

more than 50% of patients with myelodysplastic syndromes (MDS), clonal blood disorders 

that are characterized by impaired hematopoiesis, carry a mutation affecting an RNA 

splicing factor gene[11–13,18]. The molecular effects of mutations in RNA splicing factors 

have been described in previous reviews[19–21]. In this review, we focus on recent insights 

on the regulation of splicing during normal hematopoietic development, including the 

biological role of splicing factors and other RNA regulators in normal hematopoiesis, and 

stage-specific alternative splicing patterns during hematopoietic development.

Splicing factors altered in hematopoiesis

RNA splicing factor mutations in leukemia are concentrated in four genes (SF3B1, SRSF2, 

U2AF1, and ZRSR2)[11–13,18,22]. The discoveries that mutations affecting splicing factors 

are amongst the most recurrent genetic alterations in hematological malignancies underscore 

the importance of fine-tuned splicing regulation of hematopoiesis. Extensive efforts have 

been devoted to determining the biological and molecular impacts of splicing factor 

mutations in hematological malignancies. Here, we summarize recent research on the role of 

splicing factors in normal hematopoiesis (Table 1).

Evaluation of the role of splicing factors in hematopoiesis in vivo—There are 

limited studies on the role of splicing components in normal hematopoiesis. SF3B1 is a 

member of the U2 small nuclear ribonucleoprotein complex and the most frequently mutated 

splicing component in MDS[11,12,23,24]. SF3B1 mutations in MDS are strongly associated 

with refractory anemia with ring sideroblasts (RARS)[11,12,25]. Consistent with SF3B1’s 

role in the core spliceosome, Sf3b1 plays an essential role during embryonic development 

and germline Sf3b1 knockout mice are embryonic lethal [26]. Moreover, studies of Sf3b1+/− 

mice showed that heterozygous deficiency of Sf3b1 decreases competitive advantage of 

HSCs in vivo suggesting that Sf3b1 function in a haploinsufficient manner in the 

hematopoietic system [27,28]. Further depletion of Sf3b1 by shRNA in Sf3b1+/− HSCs 

resulted in a greater defect in HSC repopulating capacity [27], revealing a critical role of 
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Sf3b1 in HSC function. However, Sf3b1 haploinsufficiency does not result in formation of 

ring sideroblasts [27,28], which is consistent with the concept that MDS-associated 

mutations in SF3B1 confer a change of RNA splicing activity (and not simply loss of 

function).

U2AF1 is a member of the U2af heterodimer involved in the recognition of the 3’ splice site 

during pre-mRNA splicing[29–31]. Mutations in U2AF1 (mainly at the S34 and Q157 

residues) are recurrent in MDS[11,13]. In a conditional U2af1 knockout mouse model, 

U2af1 deletion (via the Mx1-cre system) leads to early death with impaired hematopoietic 

stem cell (HSC) repopulation capacity and defective hematopoiesis[32*]. Hematopoietic 

stem and progenitor cell (HSPC) gene signatures were profoundly downregulated, and cell 

death and DNA damage were increased upon U2af1 deficiency[32*]. Clearly, U2af1 is 

essential in the maintenance of HSPC function. Loss of U2af1 in hematopoietic cells mostly 

caused exon skipping events[32*], consistent with a requirement of U2af1 in normal splicing 

catalysis. Clearly different from the molecular phenotype of U2af1 S34F mutant mouse 

models, sequence-specific changes at 3’ splice site were not observed in U2af1 null 

hematopoietic cells[32*,33].

SRSF2 is a member of the serine/arginine-rich (SR) protein family that facilitates exon 

recognition by binding to exonic splicing enhances (ESE) sequences within pre-mRNAs 

through its RNA recognition motif (RRM) domain[34–37]. SRSF2 recognizes consensus 

CCNG and GGNG motif sequence in mRNA, thereby promoting exon inclusion[38,39]. 

Loss of SRSF2 decreases cassette exons inclusion bearing either ESE. Previous work from 

our group showed that homozygous deletion of Srsf2 (through the Mx1-cre system) causes 

leukopenia, anemia, and bone marrow aplasia in the mice, and leads to severe compromise 

in HSC self-renewal in competitive transplantation[39]. We therefore demonstrated an 

indispensable role of Srsf2 in hematopoiesis. Noteworthy, unlike mouse model with 

conditional expression of heterozygous Srsf2P95H mutant (a hotspot SRSF2 mutant in 

human MDS), deletion of Srsf2 does not induce myeloid dysplastic phenotypes. These 

results indicate that the SRSF2 mutant exerts a change-of-function effect in the pathogenesis 

of MDS.

As noted above, “minor” or “U12-type” introns are present in only 700–800 genes in 

humans[5]. However, in contrast to the majority of introns, sequences at the 5’ and 3’ ends 

of minor introns are highly evolutionarily conserved[4,6], suggesting important functional 

regulatory properties. However, the biological role of the minor spliceosome function is 

largely unexplored. ZRSR2 is a minor spliceosome component (encodes by X-linked Zrsr2 
gene), and mutations in ZRSR2 are commonly mutated in myeloid malignancies. Our group 

recently reported that aberrant splicing of U12-type introns driven by ZRSR2 loss 

contributes to profound expression changes of genes with important biological functions 

(Figure 2), such as the tumor suppressor gene LZTR1[40**]. Using a murine model for 

conditional deletion of Zrsr2 in hematopoietic cells, we discovered that loss of ZRSR2 

increases the number as well as self-renewal capacity of HSCs in vivo[40**]. Further 

functional screens mimic RNA splicing events inducing nonsense mediated mRNA decay 

identified that mis-splicing of the RAS ubiquitination regulator Lztr1[41–43] contributes to 

clonal advantage in Zrsr2-deficient hematopoietic cells[40**]. This study demonstrates 
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intriguing and unique role of minor splicing factor and U12-type introns in regulating HSC 

function.

BCAS2 (breast carcinoma amplified sequence) is a splicing related Prp19 Complex 

component which may be involved in spliceosome assembly[44]. Previous work has 

revealed important roles of BCAS2 in splicing regulation during developmental 

processes[45,46]. Recently, Yu, et al reported a novel role of BCAS2 in developmental 

hematopoiesis. The authors observed severe defects in HSPCs and definitive hematopoiesis 

in bcas2−/− zebrafish model, suggesting that bcas2 is required for HSPC development[47]. 

Mechanistically, bcas2 deletion induces exon 6 exclusion in Mdm4 and increases Mdm4 
short isoform mRNA levels, which results in the production of truncated Mdm4 protein[47]. 

As a consequence, the alternative splicing of Mdm4 in bcas2−/− zebrafish embryos activate 

p53 pathway and trigger p53-mediated apoptosis in HSPCs, leading to impaired HSPC 

maintenance[47].

Other RNA regulators involved in regulation of hematopoiesis

Protein arginine methyltransferase 5 (PRMT5) regulates hematopoietic differentiation and 

plays important role in the context of AML[48–50]. Interestingly, PRMT5 mediates 

symmetric demethylation of arginines (SDMA) on Sm (D1, B/B, D3) proteins, a 

modification required for spliceosome assembly[51]. PRMT5 inhibitors which preferentially 

kill splicing factor mutant cells over their wild-type counterparts are currently in clinal trials 

for spliceosomal mutant myeloid neoplasms[52,53]. However, a recent study highlighted the 

importance of maintaining PRMT5 protein levels in the preservation of homeostatic 

hematopoiesis. PRMT5 deficiency causes decreased quiescence and subsequent exhaustion 

of the HSC compartment, leading to a detrimental impact on HSC function[54*]. The severe 

effect of PRMT5 reduction to HSCs was due to disruption of the splicing landscape, mostly 

affecting genes involved in the DNA damage repair pathway. The altered splicing events 

mostly consisted of intron retention and exon skipping. Importantly, majority of these 

splicing perturbations generate premature termination codons (PTCs), and are therefore 

predicted to lead to downregulation of gene expression[54*].

The gene encoding the DEAD-box Helicase 41 (DDX41) was recently been found mutated 

in hematological malignancies[55,56]. Ddx41 interacts with spliceosome components and is 

implicated in regulating pre-mRNA splicing[55]. A recent study established a critical role of 

DDX41 in regulating hematopoietic homeostasis. Zebrafish expressing a loss-of-function 

Ddx41 mutant uncovered that decreased Ddx41 resulted in increased rate of endothelial-to-

hematopoietic transition (EHT) and HSPC expansion due to R-loop accumulation induced 

cGAS-STING inflammation pathway[57**]. At the same time, loss of Ddx41 suppressed the 

expansion and differentiation of erythroid progenitors, revealing an important role of Ddx41 

in regulating erythroid differentiation[58]. In Ddx41 mutant HSPC and erythrocytes, pre-

mRNA splicing pathway was one of the top downregulated gene sets when compared to 

their WT counterparts[57**,58]. The detailed mechanism of DDX41 in regulating RNA 

splicing is not yet clear.
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Stage-specific splicing switch in hematopoietic development

Different stages of hematopoietic development are associated with distinct changes in 

cellular morphology as well as the transcriptome and proteome. High-throughput RNA 

sequencing (RNA-seq) has massively improved our understanding of alternative splicing 

throughout normal hematopoiesis for the past decade. As detailed reviewed by Inoue, et al.

[20], the stage-specific switches in mRNA splicing have been studied using bulk RNA-seq 

of hematopoiesis. These include studies of normal human HSCs and downstream 

progenitors[59], murine granulopoiesis[60], murine and human erythropoiesis[61,62], and 

murine megakaryocyte differentiation[61]. These studies have illustrated that each stage of 

hematopoiesis is defined by lineage-specific alternative splicing, resulting in isoform 

specificity and stability control of the encoded proteins in each cell identity. However, few 

stage-specific splicing events have been functionally defined in normal hematopoiesis. Here, 

we summarize recent studies on the regulation and functional roles of stage-specific splicing 

switch in hematopoiesis.

Stage-specific, annotated alternative RNA isoforms—More than 90% of human 

genes undergo alternative splicing to generate multiple mRNA isoforms to subsequently give 

rise to distinct protein isoforms and functional diversity[63]. A study mapping stage-specific 

splicing isoform in human HSC development from fetal liver to cord blood and to bone 

marrow revealed isoform diversity along development[64]. This identified key HSC 

regulators displaying splicing alterations without affecting differential gene expression 

level[64]. For example, exon skipping of gene encoding high-mobility group AT hook 2 

(HMGA2) was induced by splicing kinase CLK3[64], which phosphorylates serine/arginine-

rich domains on splicing factors[65]. Functional experiments further validated that 

modulation of splicing of HMGA2 transcripts affects human HSCs function[64]. This 

comprehensive study characterized isoform diversity along human HSC development and 

highlighted the contribution of alternative splicing to developmental identity.

Another recent study revealed differential function of splicing variants in erythroid 

differentiation. The gene encoding BMP2K (bone morphogenetic protein 2 (BMP-2)-

inducible kinase) is abundant in erythroid lineage cells[66,67]. Interestingly, this work 

identified that the longer isoform of BMP2K promotes, while the shorter isoform represses, 

erythropoiesis[67]. The antagonistic functions of each BMP2K isoform resulted from their 

distinct roles in autophagic degradation[67]. Importantly, this study proposed a model where 

not only splicing variant expression level, but also splicing variant ratio, are critical during 

erythroid differentiation.

Stage-specific intron retention—Physiologic regulation of intron retention has been 

posited to be an important mediator of normal hematopoietic lineage differentiation 

processes. For example, increasing abundance of intron-retained transcripts have been 

identified in maturation of normal erythroid development [61,62], where the intron retained 

transcripts are mainly sequestered in the nucleus [62]. Interestingly during granulopoiesis, 

intron-retained transcripts were reported in one study to be exported to the cytoplasm and 

undergo nonsense-mediated decay (NMD)[60]. While both fates of retained introns lead to 

decreased level of encoded protein, the mechanistic basis for distinct localization fates of 
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retained introns in different hematopoiesis is not clear. Moreover, how intron retention 

patterns are changed during hematopoietic differentiation was not clarified by these studies. 

A recent study by Ullrich & Guigó performed a comprehensive characterization of intron 

retention events during hematopoietic differentiation[68*]. In line with previous reports[60], 

global intron retention levels were found to be highest in neutrophils and 

monocytes[60,68*]. Interestingly, intron retention events increase during the differentiation 

process from B-cell precursors towards mature cells in lymphoid organs but decrease in the 

late B cell affinity maturation stage[68*]. Importantly, based on RNA sequencing and 

eCLIP-sequencing analysis, the authors proposed that inefficient splicing due to lower 

expression levels of several non-core splicing factors may explain the increased global intron 

retention level during B cell differentiation[68*]. This finding implicates that lineage-

specific regulation of splicing factors may also affect lineage commitment. More efforts are 

needed to characterize stage-specific regulation of splicing machineries in normal 

hematopoiesis. Apart from downregulation of encoded proteins by intron retention, a 

number of intron-retained mRNAs may proceed to translation of novel proteins. Ribosome 

profiling and functional genomics may help to define the potential role of novel intron-

retained transcripts in hematopoietic development.

CONCLUSION

Recent findings have expanded our knowledge of normal hematopoiesis regulated at the pre-

mRNA splicing level. However, there is a lack of investigation on transcriptional regulation 

of RNA splicing machinery during hematopoietic development and alternative splicing 

pattern during hematopoietic aging and lymphoid-to-myeloid bias. Additionally, it will be 

interesting to explore the potential crosstalk between splicing and extrinsic regulators on 

hematopoiesis, such as cytotoxic stresses, pro-inflammation induced cytokine storm, and 

metabolic changes. Further, high-throughput RNA sequencing and functional screen 

applications are in critical need to comprehensively address the above important questions in 

the field.
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Key points:

• Splicing factors function in the major (or U2) spliceosome are essential for 

hematopoietic stem cell (HSC) function and hematopoietic differentiation.

• In contrast to major spliceosome components, which are essential for HSC 

survival, loss of certain minor spliceosome factors results in both increased 

numbers of HSCs in mice as well as increased HSC self-renewal.

• Fine-tuning regulation of alternative splicing is critical for hematopoietic 

development.
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Figure 1. Sequence features defining major and minor introns.
The majority of introns (>99.5%) have GT-AC dinucleotides at their termini and are not well 

conserved across species (upper panel). These introns are recognized and excised by the 

major spliceosome. The remaining class of introns (known as “U12-type minor introns”), 

present in <0.5% of human genes, have highly conserved 5’ and 3’ sequences at their 

termini (lower panel). This rare class of minor introns are recognized and excised by the 

minor spliceosome.

Chen and Abdel-Wahab Page 11

Curr Opin Hematol. Author manuscript; available in PMC 2022 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. Molecular and biological consequence of ZRSR2 loss in hematopoietic cells.
Loss of ZRSR2 induces aberrant splicing on U12 type minor introns and promotes 

hematopoietic clonal expansion.
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Table 1-

Summary of splicing regulators and their roles in normal hematopoiesis from recent publications.

Splicing regulators Description Animal model and hematopoietic phenotypes

SF3B1
SF3B1 is a component of the U2 snRNP that 
recognizes branch point, and promotes the binding of 
U2 snRNA to the branchpoint [11,12,23,24].

Germline Sf3b1+/− murine model;
Sf3b1 haploinsufficiency decreases HSC repopulating 
potential but does not increase ring sideroblast 
formation [27,28].

U2AF1
U2AF1 is a member of the U2AF heterodimer 
involved in the recognition of AG-dinucleotide at the 
3’ splice site during pre-mRNA splicing [29–31].

U2af1fl/fl;Mx1-Cre murine model;
Loss of U2af1 causes detrimental effects on HSC 
function and normal hematopoiesis [32*].

SRSF2

SRSF2 is a member of the serine/arginine-rich (SR) 
protein family involved in exon inclusion by binding 
to specific exonic splicing enhances (ESE) sequences 
[34–39].

Srsf2fl/fl;Mx1-Cre murine model;
Srsf2 deletion leads to leukopenia, anemia, and bone 
marrow aplasia and compromised HSC self-renewal 
[39].

ZRSR2
ZRSR2 is a component of the minor spliceosome and 
primarily responsible for the U12 type minor intron 
excision [6,8].

Zrsr2fl/fl;Mx1-Cre murine model;
Loss of Zrsr2 increases HSC number and self-renewal 
capability [40**].

Breast carcinoma 
amplified sequence 

（BCAS2）

BCAS2 is a component of Prp19 complex involved in 
spliceosome assembly [44].

bcas2−/− zebrafish model;
Bcas2 deletion causes severe defects in HSC function 
and definitive hematopoiesis [47].

Protein arginine 
methyltransferase 5 

(PRMT5)

PRMT5 mediates symmetric demethylation of 
arginines (SDMA) on Sm (D1, B/B, D3) proteins, a 
modification required for spliceosome assembly [51].

Prmt5fl/fl;Mx1-Cre murine model;
Loss of Prmt5 decreases HSC quiescence leading to 
HSC exhaustion [54*].

DEAD-box Helicase 41 
(DDX41)

DDX41 is an RNA helicase that interacts with 
spliceosome components and is implicated in 
regulating pre-mRNA splicing [55].

ddx41sa14887 zebrafish model;
Loss-of-function Ddx41 results in increased rate of 
endothelial-to-hematopoietic transition (ETH) and 
HSPC expansion and suppresses the expansion and 
differentiation of erythroid progenitors [57**,58].
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