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Abstract

Prosocial behaviors are essential for group cooperation, which enrich life experience and enhance 

survival. These complex behaviors are governed by intricate interactions between numerous neural 

circuits functioning in concert. Impairments in prosocial interactions result from disruptions of this 

coordinated brain activity and are a prominent feature of several pathological conditions including 

autism spectrum disorder, depression and addiction. Here we highlight recent studies that use 

advanced techniques to anatomically map, monitor and manipulate neural circuits that influence 

prosocial behavior. These recent findings provide important clues to unravel the complexities of 

the neural mechanisms that mediate prosocial interactions and offer insights into new strategies for 

the treatment of aberrant social behavior.

Introduction

Prosocial behavior, often termed sociability, is a complex amalgamation of a variety of 

distinct types of social interactions. Positive prosocial interactions occur in many species 

ranging from insects to mammals and are critically important for development, survival, and 

reproduction. Thus, the neural mechanisms mediating prosocial, non-aggressive interactions 

have likely been evolutionarily conserved and involve circuits that play a role in a range of 

motivated behaviors that are critical for survival.

Pioneering studies in prairie voles demonstrated that the actions of the neuropeptide 

oxytocin (OXT) in the nucleus accumbens (NAc) were critical for pair bonding, providing 

one of the first hints of the neural circuit mechanisms regulating one particular form of 

sociability [1,2]. In the ensuing years, it became clear that other neuromodulators, including 

dopamine (DA) and serotonin (5-HT), are also important for adaptive social behaviors [3,4]. 

This body of work generated the hypothesis that these molecules regulate prosocial 

interactions by modulating neuronal activity in key nodes of the mesolimbic reward 
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circuitry, perhaps by tuning intrinsic neuronal properties and filtering fast synaptic 

transmission [5,6]. However, progress in delineating more precisely the neural circuits 

governing prosocial behaviors did not occur until the arrival of now standard tools, which 

enable genetic access to discrete neuronal populations to monitor and precisely manipulate 

their activity patterns [7,8]. Here, we confine our discussion to recent findings on the brain 

regions, circuits and neuromodulators in mice implicated in non-aggressive, non-sexual 

prosocial interactions, which encompass social reward, social motivation, and social 

memory. In addition, we discuss the neural mechanisms underlying sociability impairments 

in rodent models of neuropsychiatric conditions.

Prosocial behaviors and social reward

The foundational investigations on the role of OXT in prairie vole pair bonding begged the 

question of its mechanism of action in the NAc. In mice, social reward was found to depend 

on OXT-induced release of 5-HT from dorsal raphe (DR) inputs in the NAc [9*]. The 

increase in NAc 5-HT induces long-term depression (LTD) of excitatory synaptic 

transmission in the NAc via activation of presynaptic 5-HT1b receptors, which are required 

for the development of a social conditioned place preference [9*]. While 5-HT had 

previously been implicated in regulating social behaviors [3,4,10,11], these findings [9*] 

generated the prediction that 5-HT release, specifically in the NAc would play a critical role 

in sociability. Recent experiments using a “circuits-first” approach have confirmed this 

prediction [12**]. Selective optogenetic activation of DR 5-HT inputs to the NAc enhanced 

prosocial behaviors while inhibiting these inputs decreased sociability. Furthermore, the 

prosocial action of activating DR 5-HT neurons was prevented by infusion of a 5-HT1b 

receptor antagonist into the NAc [12**].

Recent findings on the mechanisms of action of the recreational drug (±)3,4-

methylenedioxymethamphetamine (MDMA), which is known to have powerful prosocial 

effects in human subjects [13], provide further support for the critical role of 5-HT release in 

the NAc in sociability [14**]. Specifically, in rodents, direct NAc infusion of MDMA, 

which causes large increases in 5-HT levels due to its potent interaction with the 5-HT 

transporter (SERT) [15], promoted sociability in the three chamber task, while NAc infusion 

of a 5-HT1b receptor antagonist prevented the prosocial effect of parenteral MDMA 

administration. Furthermore, MDMA application generated LTD in the NAc due to 

activation of 5-HT1b receptors [14**; but see 16]. MDMA may also prolong a 

developmental critical period for social reward learning due to OXT release [16]. A 

challenging question that warrants further investigation is how 5-HT induced depression of 

excitatory transmission at some unknown population of NAc inputs leads to the 

enhancement of social reward and sociability.

Unlike DA release in the NAc, 5-HT release is not inherently rewarding [7,12**,17, but see 

18], suggesting that 5-HT modulation of NAc activity must differ from the modulation 

caused by DA. Nevertheless, presumably because of its powerful role in influencing a range 

of appetitive behaviors, DA is also a critical regulator of social behavior [19]. Indeed, ventral 

tegmental area (VTA)-to-NAc DA neurons exhibit increased activity during social 

interactions and optogenetic activation of this circuit enhances sociability, due to activation 
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of D1 receptors in the NAc [20]. Consistent with a role for NAc DA release in social reward, 

OXT also acts in the VTA to promote social reward via enhancement of DA cell firing [21–

23]. Thus, OXT plays a critical role in promoting social reward by influencing two key 

nodes of mesolimbic reward circuitry, the NAc and VTA.

The consequences of activating excitatory inputs to the NAc fit well with the putative role of 

depressing NAc excitatory synaptic transmission in promoting sociability. Activation of a 

subset of NAc projecting neurons in the prelimbic cortex (PL) decreased the preference for a 

social target, while their activity increased during social investigation, but only in specific 

locations [24**]. Activation of basolateral amygdala (BLA) inputs in the NAc also 

decreased sociability and increased social avoidance, but did not reduce palatable food 

seeking [25]. Collectively, these studies provide compelling evidence for a critical role of the 

NAc in social reward and prosocial behaviors. A major challenge will be to elucidate how 

the different sets of excitatory and modulatory NAc inputs modify NAc activity in a 

coordinated fashion to robustly and perhaps specifically influence the rewarding aspects of 

social interactions.

Social Memory

Social motivation is influenced by social cognition and social memory, the ability to 

recognize and remember conspecifics, respectively. Older studies revealed that OXT acting 

in the medial amygdala and septum is necessary for the social preference of a novel, rather 

than a familiar, conspecific [2,26,27]. More recently, via the use of transgenic mouse lines, 

specific sub-regions of the hippocampus have been implicated in the storing and processing 

of memories associated with social interactions. Selective inactivation of the dorsal CA2 

(dCA2) region using the Amigo2-Cre driver line reduced social memory, but surprisingly 

did not influence sociability per se nor other hippocampal-dependent forms of memory 

[28*]. Similarly, excitotoxic lesion of the CA2 abolished social memory, but not olfactory 

memory [29]. Furthermore, single-unit recordings revealed that unlike CA1 neurons, CA2 

neuron firing patterns remapped during social encounters and exhibited reduced response to 

spatial stimuli compared to CA1 neuron firing [30].

A heterosynaptic form of input-timing-dependent inhibitory LTD (iLTD) in CA2 

parvalbumin-positive (PV+) interneurons provides one plausible physiological substrate for 

social learning and memory [31] in that blockade of this iLTD in PV+ interneurons impairs 

social memory [31,32]. Consistent with this proposal, 22q11.2 deletion mice exhibit social 

memory deficits associated with reduction of CA2 PV+ interneuron plasticity [29]. 

Modulation of CA2 pyramidal neuron firing by OXT and/or vasopressin may also be 

important for social memory. The CA2 region expresses a very high density of OXT 

receptors (OXTRs) [33–35] and vasopressin 1b receptors (Avpr1bRs) [36] compared to 

other hippocampal sub-regions. OXTR activation increases CA2 pyramidal neuron burst 

firing [33], while conditional deletion of OXTRs from the CA2 and CA3 sub-regions 

prevents social memory [34,35]. Furthermore, activating vasopressin inputs in the CA2 

enhances social memory due to actions at Avpr1bRs [36].
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Recent studies have also revealed the importance of the ventral CA1 (vCA1) in social 

memory [37**–40]. Leveraging the specificity of transgenic lines for vCA1 and dorsal CA1 

(dCA1), selective inhibition of the two populations of pyramidal neurons demonstrated that 

only vCA1 neurons participate in encoding social memory [37**]. Projections from vCA1 to 

both the NAc and medial prefrontal cortex (mPFC) appear to be specifically important in 

regulating social memory as are inputs from dCA2 to vCA1 [37**–39]. Collectively, these 

studies suggest a circuit substrate that is critical for social memory, involving OXT and AVP 

modulatory inputs to dCA2, which relays social information to vCA1 that in turn influences 

extrahippocampal regions including the NAc and mPFC.

Pathological social motivation

Impairments in adaptive prosocial behaviors (e.g. social amotivation or avoidance) are 

common debilitating features of many neuropsychiatric conditions, including autism 

spectrum disorder (ASD), depression, and addiction [4]. Here, we briefly review recent 

findings on some of the neural mechanisms that contribute to sociability impairments in 

rodent models of these disorders.

Autism Spectrum Disorders

Rodent models of ASDs based on causal genetic variants have been invaluable tools for 

advancing the understanding of ASD pathophysiology. One common cause of ASD is a copy 

number variation on chromosome 16p11.2. Selective deletion of the syntenic region of 

chromosome 16p11.2 from DR 5-HT neurons caused significant deficits in prosocial 

behaviors, which were associated with reductions in the activity of these neurons during 

social interactions, as well as decreases in their intrinsic excitability [12**]. Optogenetic 

activation of DR 5-HT inputs in the NAc restored sociability in these mutant mice to normal 

levels and this rescue was dependent upon 5-HT1b receptors [12**]. Impaired social 

interactions were also observed in mice expressing a gain-of-function SERT variant that 

decreased 5-HT levels [41]. Collectively, these findings provide further support for the 

hypothesis that 5-HT release in the NAc is critical for sociability.

Alterations in the balance of excitatory and inhibitory synaptic transmission, so called E/I 

balance, in specific brain regions are found in several genetic ASD models. In the 

CNTNAP2 deletion mouse, correction of E/I imbalance by optogenetic activation of 

inhibitory PV neurons in mPFC rescued social deficits [42*]. Similarly, in a 16p11.2 

duplication mouse model, restoring mPFC inhibitory synapse function reversed social and 

cognitive impairments [43*]. Surprisingly, E/I imbalance in the anterior cingulate cortex, but 

not the adjacent mPFC, contributes to social deficits in Shank3 deletion mice [44*]. These 

mice also exhibit aberrant BLA-to-NAc activity, modulation of which via endocannabinoids 

[25] restored adaptive social interaction, as did activation of DR 5-HT neurons [45].

Direct modulation of GABA receptors may serve as an alternative strategy to remedy 

deficits in E/I balance as evidenced by the finding that systemic administration of the 

GABAB receptor agonist, R-Baclofen, reversed social deficits in two different variants of the 

16p11.2 deletion model [46]. However, altered E/I balance in the somatosensory cortex was 

observed in four different genetic ASD mouse models without any corresponding changes in 
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overall circuit excitability, suggesting that altered E/I balance may be a homeostatic 

compensation rather than a mechanism for impaired sociability [47**].

Major Depressive Disorder

Sociability deficits are a key symptom of major depressive disorder and have been attributed 

to abnormalities in the mesolimbic DA system [48]. The specific form of stress used to 

generate depression symptoms appears to influence the pathophysiological mechanisms that 

mediate the sociability deficits. Chronic mild stress may influence subpopulations of VTA 

DA neurons differentially with a reduction in DA release in target regions presumably 

contributing to the behavioral deficits [48]. In contrast, the sociability deficits observed in 

susceptible mice following chronic social defeat stress (CSDS) appear to require the release 

of brain-derived neurotrophic factor (BDNF) from VTA DA terminals in the NAc [48]. Early 

life stress, on the other hand, induces social impairments, at least in part by altering the 

transcriptional profile of VTA DA neurons [49*] and reducing DA receptor 3 signaling in 

the lateral septum [50,51].

Changes in inputs to the VTA also regulate CSDS-induced social deficits. Specifically, 

blocking the stress-induced increase in ventral pallidum (VP)-to-VTA inhibitory 

transmission reverses social avoidance, whereas a distinct population of VP inputs to the 

lateral habenula (LHb), a potent regulator of DA neuron activity, mediate passive coping 

[52**]. Interestingly, a di-synaptic inhibitory circuit from the retina to the LHb mediates the 

antidepressant and prosocial effects of light therapy in the CSDS model [53].

As a key node of mesolimbic reward circuitry, modulation of NAc function has long been 

thought to play a critical role in depression [54]. Recent work suggests that CSDS 

differentially alters excitatory inputs onto NAc medium spiny neuron subtypes with 

enhanced synaptic transmission for one thalamic input being critical for social avoidance 

[54]. NAc cholinergic interneuron activity is also impacted by stress and modulation of ion 

channels in this cell population normalized stress-induced decreases in social behavior [55].

Of course, the symptoms of depression including sociability deficits involve circuit 

modifications beyond those occurring in reward circuitry. Interrogation of network activity 

using multi-circuit in vivo recordings coupled with machine learning revealed that chronic 

stress disrupts synchronous activity in the mPFC, amygdala, and VTA mesocorticolimbic 

network. Restoration of mPFC activity normalized network dynamics and sociability in 

susceptible mice [56]. Additionally, pharmacological manipulations of the mPFC, via the 

novel antidepressant ketamine, improves social behavior in part by stimulating descending 

PFC inputs to the dorsal periaqueductal gray [57].

Addiction

Drug addiction and withdrawal are commonly associated with impaired sociability. While 

little is known about the precise neural mechanisms governing these impairments, recent 

work implicates alterations in cytokine signaling in the LHb and changes in opioid receptor 

activity [58,59]. Furthermore, the notion that increasing social support could be a means for 

attenuating addictive behaviors is supported by recent findings where rats reduced drug 

intake when provided with the choice to socialize [60*]. Socializing also reduced drug 
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craving which was mediated by a discrete micro-circuit in the central amygdala [61*]. These 

recent studies suggest that, similar to depression, maladaptive changes in corticostriatal 

circuitry and key modulatory inputs to the NAc contribute to abnormal social motivation in 

addiction.

Conclusions

What is more important in today’s world than developing interventions that will promote 

empathic and compassionate positive, prosocial interactions? As neuroscientists, we can 

hopefully contribute to this effort by delineating the complex neural mechanisms underlying 

social reward and social motivation. Given that sociability deficits are present in a range of 

neuropsychiatric conditions, a more sophisticated and comprehensive understanding of the 

pathophysiological circuit activity that generates these deficits will also aid in the 

development of improved treatments. To date, much of the research focus on these topics has 

appropriately been on specific circuits and cell types known to play a role in many different 

types of motivated behaviors. Future studies will need to assess how social cues engage 

these separate circuits in a manner to modify social interactions and how they work in 

concert to regulate and promote prosocial interactions. Perhaps with sufficient knowledge of 

neural mechanisms, we can help our species promote prosocial behaviors and 

simultaneously reduce the aggressive, self-destructive social behaviors that threaten our very 

survival.
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Highlights

• Neural circuits mediating prosocial behaviors are being defined using modern 

methods

• Modulation of mesolimbic reward circuitry plays a key role in promoting 

sociability

• Social memory involves specific subregions of the hippocampus

• Prosocial behavior is deficient in rodent models of autism, depression, and 

addiction
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