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Abstract

Genome editing, a revolutionary technology in molecular biology and represented by the CRISPR/Cas9 system, has become
widely used in plants for characterizing gene function and crop improvement. Tomato, serving as an excellent model plant
for fruit biology research and making a substantial nutritional contribution to the human diet, is one of the most important
applied plants for genome editing. Using CRISPR/Cas9-mediated targeted mutagenesis, the re-evaluation of tomato genes
essential for fruit ripening highlights that several aspects of fruit ripening should be reconsidered. Genome editing has
also been applied in tomato breeding for improving fruit yield and quality, increasing stress resistance, accelerating the
domestication of wild tomato, and recently customizing tomato cultivars for urban agriculture. In addition, genome editing
is continuously innovating, and several new genome editing systems such as the recent prime editing, a breakthrough in
precise genome editing, have recently been applied in plants. In this review, these advances in application of genome editing
in tomato and recent development of genome editing technology are summarized, and their leaving important enlightenment
to plant research and precision plant breeding is also discussed.
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Introduction

Food security is a continuous and important global issue,
and increasing levels of food production are necessary
due to population growth (Pradhan et al. 2015), climate
change (Yu and Li 2021), and emergent global events, such
as the COVID-19 pandemic (Devereux et al. 2020). With
the improvement of human living standards, the increas-
ing demand of high-quality foods with good appearance
and abundant nutritional value is also put forward. Thus,
technological innovation is required to meet these increas-
ing demands of crop improvement, because conventional
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breeding is a rather time-consuming practice and is usually
accompanied by loss of fitness and genetic diversity (Wang
et al. 2019c¢).

Genome editing is a revolutionary technology in molec-
ular biology and facilitates efficient, precise, and targeted
modifications at genomic loci (Zhang et al. 2018). Genome
editing may be the greatest innovation in plant breeding,
because it allows precision plant breeding and can rapidly
produce novel and transgene-free plants that are similar
or identical to plants generated by conventional breeding
techniques (Araki and Ishii 2015; Zhang et al. 2018). There
are three major types of genome editing systems, including
zinc-finger nucleases (ZFNs), transcription activator-like
effector nucleases (TALENS), and clustered regularly inter-
spaced short palindromic repeats/CRISPR-associated protein
(CRISPR/Cas) systems (Zhang et al. 2018). Genome editing
has been applied in different plants and is revolutionizing
basic research and precision breeding in plants (Tiwari et al.
2020; Zhang et al. 2018).

As one of the most cultivated and consumed vegetable
crops worldwide, tomato (Solanum lycopersicum) is rich
in lycopene, vitamins, and minerals, making a substan-
tial nutritional contribution to the human diet (Zhu et al.
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2018). Tomato is also an excellent model plant for fruit
biology research, and most of the knowledge about fruit
development and ripening on fleshy fruit is from tomato
(Pesaresi et al. 2014; Seymour et al. 2013). Genome edit-
ing has been applied in tomato since 2014 (Brooks et al.
2014; Lor et al. 2014) and has greatly facilitated the char-
acterization of gene function and precision breeding in
tomato. Noticeably, the re-evaluation of tomato genes
essential for fruit ripening by using genome editing-
mediated targeted mutagenesis (Gao et al. 2020; Ito et al.
2017; Wang et al. 2019b) highlights that several aspects
of tomato fruit ripening should be reconsidered. Knockout
mutations in several master regulators in tomato ripening
generated by CRISPR/Cas9 showed weaker ripening inhi-
bition phenotypes compared to their spontaneous mutants
or RNAI plants, indicating that the regulatory network
involved in fruit ripening is more complex than previ-
ously thought (Wang et al. 2020a). In addition, genome
editing has been applied in tomato improvement, mainly
including the improvement of fruit yield and quality, the
increase of stress resistance, the domestication of wild
tomato, and the customization of tomato cultivars for
urban agriculture (Kwon et al. 2020; Wang et al. 2019c;
Xu et al. 2019).

As a rapidly developing technology applied in basic
research, plant and animal breeding, and even clinical
research, genome editing is also continuously undergoing
innovation (Anzalone et al. 2020), and some new genome
editing systems have recently been applied in plants. In
this review, these advances in application of genome edit-
ing in tomato and recent development of genome editing
technology are summarized, and their leaving important
enlightenment to plant research and precision plant breed-
ing is also discussed.

Genome editing systems applied in tomato

Most genome editing systems, mainly including the three
major types of genome editing systems (ZFN, TALEN,
and CRISPR/Cas systems) and cytidine base editor
(CBE), which belongs to be one type of DNA base edi-
tors, have been applied in tomato for basic research or
precision breeding (Brooks et al. 2014; Hilioti et al. 2016;
Lor et al. 2014; Shimatani et al. 2017). However, both
ZFN and TALEN, which rely on protein—-DNA binding to
achieve sequence specificity and are generated by fusing
the DNA cleavage domain of the endonuclease FokI with
zinc fingers or transcriptional activator-like effectors to
achieve site-specific cleavage (Xu et al. 2019), are rarely
used in tomato compared to the widely used CRISPR/
Cas systems.
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Widely used and continuously optimized CRISPR/
Cas systems

CRISPR/Cas systems are the third-generation genome
editing systems, which appeared in 2012 and quickly
became a superstar in genome editing tools because of
their great simplicity and usability compared to with ZFN
and TALEN (Zhang et al. 2018). CRISPR/Cas was origi-
nally identified as an effective acquired immune system in
bacteria against virus infection and relies on RNA-DNA
binding to achieve sequence specificity in genome editing
(Zhang et al. 2018). CRISPR/Cas systems can be divided
into five major types based on the different combinations
of RNA and Cas protein, and the most studied CRISPR/
Cas9 belongs to type II (Makarova et al. 2015). The
CRISPR/Cas9 system is mainly composed of Cas9 pro-
tein and synthetic single-guide RNA (sgRNA) formed by
the fusion of CRISPR-RNA (crRNA) and transactivation
RNA (tracrRNA), and the Cas9 protein guided by sgRNA
can introduce site-specific DNA double-strand breaks
(DSBs), thus triggering DNA repair mechanisms (Wang
et al. 2019¢c; Xu et al. 2019) (Fig. la). CRISPR/Cas9 has
been applied in tomato since 2014 (Brooks et al. 2014) and
has become the main genome editing tool used in tomato,
from characterizing gene function to precision plant breed-
ing (Wang et al. 2019c; Xu et al. 2019). In addition to
CRISPR/Cas9, CRISPR/Cpf1(Cas12a), which belongs to
type V, is a novel member of CRISPR/Cas genome edit-
ing systems (Makarova et al. 2015). The CRISPR/Cpf1
system has been gradually applied in several plant spe-
cies, including rice, soybean, tobacco, maize, cotton, and,
recently, tomato (Lee et al. 2019; Li et al. 2019; Tang et al.
2017,2019; Vu et al. 2020; Wang et al. 2018) . Noticeably,
the combination of CRISPR/Cpf1 and geminiviral multi-
replicons significantly increased (approximately threefold)
the homology-directed repair (HDR)-based genome edit-
ing efficiency in tomato compared to a Cas9-based single-
replicon system (Vu et al. 2020), which demonstrates good
prospects of CRISPR/Cpf1 in tomato genome editing.
Although CRISPR/Cas9 has been widely used in vari-
ous organisms, numerous technological improvements
(Table 1), which can improve the editing efficiency, reduce
potential off-target effects, accelerate the generation of
genome-edited and transgene-free plants, and confer muta-
tions in specific cell types, tissues, or organs, have been
realized to optimize the CRISPR/Cas9-mediated genome
editing in plants, including tomato. Using multiplex sgR-
NAs instead of single sgRNA can increase the chance of
obtaining large deletions in tomato mutants generated
by CRISPR/Cas9 (Santillan Martinez et al. 2020). Add-
ing an expression cassette for overexpressing an antho-
cyanin intensifying gene PAPI/MYB?75 into the CRISPR/
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Fig. 1 Working models of conventional CRISPR/Cas9 (a) and recent
prime editing (b). TracrRNA, transactivation RNA; crRNA, CRISPR-
RNA; sgRNA, small-guide RNA; PAM, protospacer adjacent motif;
NHEJ, non-homologous end joining; HDR, homology-directed
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Cas9 construct accelerates the isolation of transgene-free
tomato plants, which can be easily screened by the plant
color with naked eyes (Hu et al. 2019). A spatiotemporally
regulated CRISPR/Cas9 toolkit in which Cas9 expression
is driven by a fruit-specific promoter (phosphoenolpyru-
vate carboxylase 2 gene promoter) was recently reported
to confer fruit-specific gene editing in tomato (Feder et al.
2020), which will significantly accelerate fruit biology
research. The potential application of important techno-
logical improvements reported in other plants (Table 1),
such as the recent establishment of nanoparticle-mediated
plant genome editing via a simple foliar spray of nanopar-
ticles coated with CRISPR/Cas9 constructs (Doyle et al.
2019) and the de novo induction of gene-edited meristems
for avoiding time-consuming tissue culture (Maher et al.
2020), for characterizing gene function and crop improve-
ment remains to be investigated in tomato.
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repair; pegRNA, prime editing guide RNA; RT, reverse transcription;
PBS, primer-binding site; nCas9 (H840A), catalytically impaired
Cas9 (H840A) nickase (nCas9); M-MLV-RT, Moloney murine leuke-
mia virus reverse transcriptase

Increasingly used cytidine base editor

DNA base editors, including cytidine base editors (CBEs)
and adenine base editors (ABEs), are CRISPR/Cas9-derived
tools and can produce precise single-base substitutions
(C-to-T or A-to-G) in genomic DNA without the intro-
duction of DSBs (Komor et al. 2016; Nishida et al. 2016).
The CBE genome editing system, which specially confers
a C—to-T base conversion in genomic DNA, consists of a
cytidine deaminase fused with a Cas9 nickase (nCas9) and
a uracil glycosylase inhibitor (Eid et al. 2018). CBE was
firstly applied in tomato in 2017 and efficiently edited the
two tomato hormone signaling genes DELLA and ETRI
with a base edition efficiency from 26.2% to 53.8% (Shi-
matani et al. 2017). The acetolactate synthase (ALS) gene
is involved in the biosynthetic pathway for branched-chain
amino acid synthesis (McCourt and Duggleby 2006), and
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Table 1 Summary of the important technological improvements to optimize CRISPR/Cas9-mediated genome editing in plants, including tomato

Technological improvement

Applied in plants

References

Improving editing efficiency
Codon optimization of Cas9 protein by uti-
lizing a plant codon-optimized Cas9 gene

Selection of different promoters to drive
Cas9 protein

Selection of highly efficient sgRNA
Using multiplex sgRNAs instead of single

sgRNA

Selection of strong terminator after Cas9

Optimization of T-DNA architecture
Heat treatment

Suppressing RNA silencing

Using chemically modified DNA as donor
Reducing potential off-target effects

Particle bombardment-mediated transient
expression of CRISPR/Cas9 DNA or RNA

Biolistic delivery of CRISPR/Cas9 RNPs
into plant cells

Nanoparticle-mediated plant genome editing
via a simple foliar spray of nanoparticles
coating with CRISPR/Cas9 constructs

Using Cas9 variants, including xCas9 and
Cas9-NG

Using truncated sgRNA

Arabidopsis, rice and maize
Arabidopsis and maize

Arabidopsis and rice
Tomato, rice, and alfalfa

Arabidopsis
Arabidopsis
Arabidopsis
Arabidopsis
Rice

Wheat

Arabidopsis, tobacco, lettuce, rice, grapevine,
apple, maize, wheat, petunia, Brassica
oleracea and B. rapa

Wheat

Rice

Arabidopsis

Accelerating the generation of genome-edited plants

Integration of a cassette containing the
GRF4-GIF1 chimera into the CRISPR/
Cas9 construct

De novo induction of gene-edited meristems
for avoiding time-consuming tissue culture

Nanoparticle-mediated plant genome editing
via a simple foliar spray of nanoparticles
coating with CRISPR/Cas9 constructs

Adding an FT expression element into the
CRISPR/Cas9 construct

Wheat and citrus

Nicotiana benthamiana

Wheat

Tobacco

Accelerating the generation of transgene-free plants from edited plants

Agrobacterium-mediated transient expres-
sion of CRISPR/Cas9 in plants

Biolistic delivery of CRISPR/Cas9 RNPs
into plant cells

Drug-induced elimination of transgenes
Programmed suicide gene-mediated self-
elimination of transgenes

Visible marker-assisted transgene elimina-
tion

Tobacco

Arabidopsis, tobacco, lettuce, and rice

Rice
Rice

Arabidopsis, rice, tomato, and tobacco

Conferring mutations in specific cell types, tissues, or organs

The CRISPR-based tissue-specific knockout
system (CRISPR-TSKO)

A fiber-specific or fruit-specific promoter to
drive Cas9 expression

Arabidopsis

Tomato and Arabidopsis

Castel et al. (2019), Ma et al. (2015) and Xing
et al. (2014)

Castel et al. (2019), Feng et al. (2018), Svita-
shev et al. (2015) and Xing et al. (2014)

Castel et al. (2019) and Liang et al. (2016)

Santillan Martinez et al. (2020), Wang et al.
(2016) and Wolabu et al. (2020)

Castel et al. (2019)

Castel et al. (2019)

LeBlanc et al. (2018)

Mao et al. (2018) and Wang et al. (2019d)
Lu et al. (2020a, b)

Zhang et al. (2016)

Liang et al. (2017), Liang et al. (2018), Malnoy
et al. (2016), Murovec et al. (2018), Park and
Choe (2019), Subburaj et al. (2016), Svita-
shev et al. (2016) and Woo et al. (2015)

Doyle et al. (2019)
Zhong et al. (2019)

Osakabe et al. (2016)

Debernardi et al. (2020)

Maher et al. (2020)

Doyle et al. (2019)

Liu et al. (2019)

Chen et al. (2018)
Luo et al. (2015) and Woo et al. (2015)

Lu et al. (2017)
He et al. (2018, 2019)

Chang et al. (2016), Gao et al. (2016), He et al.
(2017, 2019, 2020), Liu et al. (2019) and Yu
and Zhao (2019)

Decaestecker et al. (2019)

Feder et al. (2020) and Liang et al. (2019)
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the mutation of the Proline-186 residue in tomato ALS/ can
confer chlorsulfuron resistance (Yu et al. 2010). The CBE-
mediated mutation of the tomato ALS/ gene successfully
created chlorsulfuron-resistant tomato plants (Veillet et al.
2019). Noticeably, the precise base edition efficiency at
tomato ALSI Pro186 codon was up to 71.4%, and 12.9% of
these chlorsulfuron-resistant tomato plants were transgene-
free (Veillet et al. 2019). These results highlight the feasibil-
ity of CBE for tomato genetic improvement.

Genome editing-mediated re-evaluation
of tomato genes essential for fruit ripening

RNAi-mediated gene silencing or identification of the
genes underlying spontaneous mutants was widely used for
evaluating gene function in tomato before the emergence
of genome editing systems (Wang et al. 2019b). With the
establishment of different genome editing systems, espe-
cially CRISPR/Cas9, in tomato, tomato mutations can be
generated rapidly, and numerous tomato genes involved in
development and ripening, fruit yield and quality, and stress
responses have been functionally validated using genome
editing-mediated targeted mutagenesis (Xu et al. 2019).
Noticeably, CRISPR/Cas9-mediated re-evaluation of tomato
transcription factors and cell wall modifying enzymes in
fruit ripening (Table 2) highlights that several aspects of
tomato fruit ripening should be reconsidered.

Revisiting the function of transcription factors
in fruit ripening

Tomato is a typical climacteric fruit, and the phytohor-
mone ethylene is critical for tomato fruit ripening (Liu
et al. 2020b). There are abundant spontaneous mutants
in tomato, and some of these mutants show significant
ripening-deficient phenotypes (Giovannoni 2007). The
identification of the genes underlying the three important
ripening-deficient mutants, including ripening inhibitor
(rin), nonripening (nor), and colorless nonripening (Cnr),
showed that all RIN, NOR, and CNR genes are transcrip-
tion factor-encoding genes (Manning et al. 2006; Tigche-
laar 1973; Vrebalov et al. 2002). RIN, NOR, and CNR
have long been regarded as master regulators in tomato
fruit ripening via transcriptional regulation of downstream
fruit ripening-related genes, such as other transcription
factor-encoding genes, ethylene biosynthesis genes, and
cell wall modifying enzyme-encoding genes (Seymour
et al. 2013). By mainly using RNAi, a few other tomato
transcription factors from different families, such as AP2a,
FULI, FUL2, TAG1, HB1, and MADSI, have been proven
to also be important regulators in tomato fruit ripening
(Bemer et al. 2012; Cao et al. 2020; Chen et al. 2020a,

b; Chung et al. 2010; Dong et al. 2013; Itkin et al. 2009;
Karlova et al. 2011; Lin et al. 2008). Thus far, the func-
tion of six transcriptional regulators, including RIN, NOR,
CNR, AP2a, FUL1, and FUL2, in tomato fruit ripening has
been re-evaluated using CRISPR/Cas9-mediated targeted
mutagenesis (Table 2). Noticeably, CRISPR/Cas9-induced
mutations in the three master regulators (RIN, NOR, and
CNR) showed inconsistent ripening phenotypes as spon-
taneous mutants or RNAi plants (Gao et al. 2020; Ito et al.
2017; Wang et al. 2019b), which indicates that the tran-
scriptional regulatory network involved in tomato fruit
ripening should be reconsidered.

RIN has long been believed to be essential for the induc-
tion of tomato fruit ripening, because the rin spontane-
ous mutant showed a near-complete inhibition of ripening
phenotype and did not produce red pigmentation, soften or
induce an ethylene burst (Vrebalov et al. 2002). However, the
CRISPR/Cas9-mediated RIN-knockout mutation still initi-
ated partial ripening and showed moderate red pigmentation
(Ito et al. 2017; Li et al. 2018b), indicating that RIN is not
required for tomato ripening initiation. The specific role of
RIN in tomato fruit ripening was recently investigated using
the RIN-knockout mutation generated by CRISPR/Cas9, and
RIN was proven to still be essential for the progression of
tomato fruit ripening by inducing autocatalytic system-2 of
ethylene production and subsequent full ripening (Li et al.
2020d). In addition, the NOR mutant in tomato generated by
CRISPR/Cas9 also only displayed partial non-ripening phe-
notype (Gao et al. 2019b; Wang et al. 2019b), which is dis-
tinct from the nor spontaneous mutant (Kumar et al. 2018;
White 2002). The specific role of NOR in fruit ripening was
also recently investigated, mainly using the NOR-knockout
mutation generated by CRISPR/Cas9, indicating that NOR
still plays an important role in tomato fruit ripening by inter-
acting with other ripening-related transcription factors and
transcriptionally activating ripening-related target genes
(SIACS2, SIGgpps2, and SIPL) (Gao et al. 2020). The nor
spontaneous mutant is a gain-of-function mutation or a dom-
inant-negative mutation by producing a truncated 186-amino
acid protein (NOR186), which disrupts the transcriptional
activation region and is unable to transcriptionally activate
ripening-related target genes (Gao et al. 2020). Noticeably,
the overexpression of NOR cannot completely restore the
ripening phenotype of the nor spontaneous mutant (Gao
et al. 2020), indicating that there are other unknown factors,
resulting in the non-ripening phenotype of the nor mutant.
For the CNR mutant generated by CRISPR/Cas9, it only
showed two to three days of delayed ripening, and its fruit
obtained the full color finally (Gao et al. 2019b), which is
significantly different from the Cnr spontaneous mutant and
CNR silencing plants (Manning et al. 2006). Thus, CNR
is not the master regulator of fruit ripening, and its role in
tomato fruit ripening remains to be investigated in the future.
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Different from RIN, NOR, and CNR, three other tran-
scription factors including AP2a, FUL1, and FUL2 have
been proven to show consistent ripening phenotypes between
CRISPR/Cas9-mediated mutants and RNAi plants (Wang
et al. 2019b). Compared to wild-type tomato plants, both
tomato AP2a mutants and AP2a-RNAL plants initiated fruit
ripening earlier, but did not fully ripen (Karlova et al. 2011;
Wang et al. 2019b), which confirms that AP2a is a nega-
tive regulator of tomato fruit ripening initiation. By using
CRISPR/Cas9 mutagenesis, FUL1 and FUL2 were proven
to show overlapping functions during fruit ripening, because
the FULI mutant and FUL2 mutants showed no apparent
differences in final overall fruit color compared with wild-
type plants, but the FULI/ FUL2 double mutants did not
reach a red ripe color (Wang et al. 2019b). A similar rip-
ening phenotype was also observed in FULI/FUL2-RNAi
plants (Bemer et al. 2012). In addition, the FUL2 mutant
generated by CRISPR/Cas9 also showed a fruit develop-
ment phenotype that had not been described before in FUL2-
RNAI plants (Wang et al. 2019b), indicating an additional
role of FUL2 in fruit development.

Overall, these evidences indicate that the three tomato
spontaneous mutants (rin, nor, and Cnr) cannot be used as
loss-of-function mutations, and the transcriptional regula-
tory network involved in tomato fruit ripening is complex
and highly redundant. CRISPR/Cas9-mediated targeted
mutagenesis can be used to re-evaluate other tomato tran-
scription factors essential for fruit ripening in the future.

Revisiting the function of cell wall modifying
enzymes in fruit ripening

As an important feature of fleshy fruit ripening, softening
is important for fruit flavor development and overall palat-
ability (Klee and Giovannoni 2011). Over the past 30 years,
transgenic plants for silencing tomato genes encoding cell
wall-related enzymes, including polygalacturonase (PG)
(Cantu et al. 2008; Sheehy et al. 1988; Smith et al. 1990,
1988), pectin methylesterase (Tieman and Handa 1994; Tie-
man et al. 1992; Wen et al. 2013), galactanase (TBG) (Smith
et al. 2002), xyloglucan endo-transglycosylase (Desilva
et al. 1994), expansin (Brummell et al. 1999; Cantu et al.
2008), and pectate lyase (PL) (Uluisik et al. 2016; Yang et al.
2017), have been generated to determine which activities
are involved in regulating fruit softening. Silencing of these
genes usually had no or only modest effects on tomato fruit
softening, but suppressing PL expression significantly inhib-
ited tomato fruit softening (Uluisik et al. 2016; Yang et al.
2017). The role of three pectin degrading enzyme-encod-
ing genes, including PL, PG2a, and TBG4, in tomato fruit
softening was re-evaluated recently using CRISPR/Cas9-
mediated targeted mutagenesis (Table 2). The PL mutant
generated by CRISPR/Cas9 showed consistent ripening

phenotypes to PL-RNAI plants and conferred significantly
enhanced fruit firmness, which highlights a key role of PL
in tomato fruit softening (Wang et al. 2019a). Previous stud-
ies showed that the silencing of PG2a and TBG4 had no
and modest effects on tomato fruit firmness, respectively
(Smith et al. 1990, 2002), but both PG2a and TBG4 muta-
tions generated by CRISPR/Cas9 had no effects on tomato
fruit firmness (Wang et al. 2019a). Interestingly, mutations
in PG2a and TBG4 had effects on other aspects in tomato
fruit ripening, including fruit color and carotenoid formation
(Wang et al. 2019a), which was not described previously in
their silencing plants (Smith et al. 1990, 2002).

Other aspects in fruit ripening remain to be
re-evaluated

In addition to transcription factors and cell wall modifying
enzymes, other aspects, mainly including ethylene biosyn-
thesis enzymes, ethylene receptors, microRNA (miRNA),
and epigenetic regulators, have also been proven to regulate
fruit ripening (Chen et al. 2020a, b; Wang et al. 2020c).
However, most of these aspects in tomato fruit ripening was
only evaluated using the RNAi method. Thus, these aspects
in fruit ripening, especially ethylene biosynthesis enzymes
and receptors, should be re-evaluated using genome editing,
which will provide insights into the regulatory networks of
fruit ripening, especially the ethylene-mediated key regula-
tory hierarchy in climacteric fruit ripening.

Applications of genome editing in tomato
improvement

In addition to the basic research, the genetic improvement
of tomato has also been greatly promoted by genome edit-
ing (Kwon et al. 2020; Wang et al. 2019c). Genome edit-
ing has been applied in tomato breeding for improving fruit
yield and quality, increasing stress resistance, accelerating
the domestication of wild tomato, and customizing tomato
cultivars for urban agriculture by mainly using the CRISPR/
Cas9 tool for creating precise knockout mutations (Fig. 2);
these applications of genome editing in tomato improvement
are summarized in Table 3.

Improving tomato fruit yield and quality

As one of the most important agronomic traits in crop
breeding, the yield of tomato mainly depends on fruit set-
ting rate, flowering speed, and final cell number and size of
fruit, and genetic studies have identified some tomato yield-
associated genes (Ariizumi et al. 2013; Zsogon et al. 2017).
Inducing mutations in the promoter of the tomato signaling
peptide gene CLV3, the tomato inflorescence architecture
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Fig.2 A chart illustrating the
applications of genome editing
in tomato improvement
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gene COMPOUND INFLORESCENCE (S), or the tomato
architecture gene SELF PRUNING (SP), was generated by
CRISPR/Cas9, and some of these CRISPR/Cas9 cis-regu-
latory mutations showed an increase in the number of floral
organs or the size of fruit, conferring enhanced tomato fruit
yield (Rodriguez-Leal et al. 2017). Thus, CRISPR/Cas9
drove mutagenesis of promoters will be used as a new plant
precision breeding method, especially for engineering quan-
titative trait variation for crop improvement.

With the improvement of human living standards, greater
fruit quality is increasingly needed by consumers and
genome editing has also been used for the genetic improve-
ment of tomato fruit quality (Table 3). Fruit quality is usu-
ally composed of color, size, shape, nutrients, sweetness,
acidity, aroma, and also shelf life (Bai and Lindhout 2007).
Although red tomatoes are the most common, tomatoes with
other colors are also needed in the market for different con-
sumers. Pink tomatoes are more popular in Asia than red
tomatoes (Zhu et al. 2018), and CRISPR/Cas9-mediated
targeted disruption of tomato MYBI2, a master regulator
of tomato flavonoid biosynthesis, in different red tomatoes
successfully generated pink tomatoes (Deng et al. 2018;
Yang et al. 2019; Zhu et al. 2018). CRISPR/Cas9-mediated
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knockout of the carotenoid isomerase (CRTISO) and phy-
toene synthase 1 (PSYI) genes in tomato from the carot-
enoid biosynthesis pathway produced orange and yellow
tomatoes, respectively (Dahan-Meir et al. 2018). However,
these pink, orange, and yellow tomatoes were generated at
the expense of some nutrients, such as flavonoids and carot-
enoids. Purple tomatoes, such as the new developed tomato
line “Sun Black,” are much-loved by consumers because
they are rich in health-promoting anthocyanins (Blando et al.
2019). The targeted insertion of a strong promoter upstream
of the endogenous anthocyanin biosynthesis gene SIANT!
in red-fruited tomatoes using CRISPR/Cas9 or TALEN pro-
duced purple tomatoes (Cermak et al. 2015), which is also
an excellent case study of genome editing-mediated targeted
gene insertion in plant breeding.

In addition to change visual fruit color, genome editing
has also been used to improve the intrinsic quality of tomato
fruit (Table 3). Tomato fruit contains abundant nutrients,
such as lycopene, vitamins, and minerals, making a sub-
stantial nutritional contribution to our daily diet (Zhu et al.
2018). Multiplex editing of five genes associated with the
carotenoid metabolic pathway of tomato, including stay-
green 1 (SGR1), lycopene e-cyclase (LCY-E), beta-lycopene
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Table 3 A list of publications on genome editing-mediated tomato improvement

Targeted gene

Genome editing tool

Phenotype

References

To improve tomato fruit yield and quality

CLV3, S or SP

MYBI2

CRTISO or PSY1

SIANTI

SGRI, LCY-E, Blc, LCY-BI, and
LCY-B2

SIDDBI, SIDETI and SICYC-B

SIGAD?2 and SIGAD3

GABA-TP1,GABA-TP2, GABA-
TP3, CAT9 and SSADH

SIIAA9 or SIAGL6
SIARF?7 and SIARFS
ALC

PL

CRISPR/Cas9 (cis-regulatory
mutations)

CRISPR/Cas9

CRISPR/Cas9

TALEN and CRISPR/Cas9
(targeted insertion of a strong
promoter)

CRISPR/Cas9

CBE

CRISPR/Cas9

CRISPR/Cas9

CRISPR/Cas9
CRISPR/Cas9
CRISPR/Cas9
CRISPR/Cas9

To increase tomato resistance to stresses

SiMlol

SLPMR4

ACETIa and ACETI1b
SIDMRG6-1

SIJAZ2

elF4E]

TYLCV genome

SILBD40
ALS

CRISPR/Cas9

CRISPR/Cas9

CRISPR/Cas9

CRISPR/Cas9

CRISPR/Cas9

CRISPR/Cas9

CRISPR/Cas9

CRISPR/Cas9
CBE

To accelerate domestication of wild tomato

FW2.2, FAS, MULT and CycB

SP5G, SP, CLAVATA3,
WUSCHEL and SIGGP1

CRISPR/Cas9

CRISPR/Cas9

To customize tomato cultivars for urban agriculture

SP, SP5G and SIER

HEL

CRISPR/Cas9

CRISPR/Cas9

An increase in floral organ number
or fruit size, conferring enhanced
tomato fruit yield

Pink tomatoes

Orange tomatoes and yellow toma-
toes, respectively

Purple tomatoes

5.1-fold increase in the lycopene
content

Increased carotenoid, lycopene,
and p-carotene

sevenfold to 15-fold increase in
GABA accumulation

1.34-fold to 3.50-fold in GABA
accumulation

Parthenocarpy
Parthenocarpy
Extend long-shelf
Extend long-shelf

Improved resistance to powdery
mildew fungus Oidium neoly-
copersi

Improved resistance to powdery
mildew fungus O. neolycopersi

Improved resistance to necro-
trophic fungus Botrytis cinerea

Improved resistance to different
oomycete or bacterial pathogens

Improved resistance to bacterial
Pto DC3000

Improved resistance to potyvirus
PepMoV

Improved resistance to yellow leaf
curl virus TYLCV

Enhanced drought tolerance

Conferring resistance to sulfonylu-
rea herbicide chlorsulfuron

Threefold increase in fruit size and
a tenfold increase in fruit number

Conferred domesticated pheno-
types yet retained parental dis-
ease resistance and salt tolerance

Compactness and growth cycle
of tomato plants were dramati-
cally increased and shortened,
respectively

Vine-like growth of tomato

Rodriguez-Leal et al. (2017)

Deng et al. (2018), Yang et al.
(2019) and Zhu et al. (2018)
Dahan-Meir et al. (2018)

Cermak et al. (2015)

Li et al. (2018d)
Hunziker et al. (2020)
Nonaka et al. (2017)
Liet al. (2018a)

Ueta et al. (2017)
Hu et al. (2018)
Yu et al. (2017)

Uluisik et al. (2016) and Wang
et al. (2019a)

Nekrasov et al. (2017)

Santillan Martinez et al. (2020)
Jeon et al. (2020)

de Toledo Thomazella et al. (2016)
Ortigosa et al. (2019)

Yoon et al. (2020)

Tashkandi et al. (2018)

Liu et al. (2020a)

Danilo et al. (2019) and Veillet
et al. (2019)

Zsogon et al. (2018)

Liet al. (2018c)

Kwon et al. (2020)

Yang et al. (2020)
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cyclase (Blc), lycopene p-cyclase 1 (LCY-BI), and LCY-B2,
was engineered by CRISPR/Cas9, and the multiplex-edited
tomato fruit showed an approximately 5.1-fold increase in
the lycopene content (Li et al. 2018d). CBE-mediated nucle-
otide substitutions in three other tomato genes responsible
for carotenoid accumulation, including DNA Damage UV
Binding protein 1 (SIDDBI), deetiolatedl (SIDETI), and
Lycopene beta cyclase (SICYC-B), also showed a significant
increase in total carotenoid, lycopene, and p-carotene (Hun-
ziker et al. 2020). Tomato fruit contains a large amount of
gamma-aminobutyric acid (GABA) (Takayama and Ezura
2015), which is a non-protein amino acid and a health-
promoting functional compound as an inhibitory neuro-
transmitter (Bachtiar et al. 2015). Multiplex-edited tomato
fruit by targeting five genes involved in GABA metabolism,
including three GABA-T genes (GABA-TPI, GABA-TP2,
and GABA-TP3), CAT9 and SSADH, showed an increase
(1.34- to 3.50-fold) in the content of GABA (Li et al. 2018a).
Glutamate decarboxylase (GAD) is a key enzyme in GABA
biosynthesis, and CRISPR/Cas9-induced mutations of the
two tomato GAD genes SIGAD2 and SIGAD?3 significantly
increased GABA accumulation by sevenfold to 15-fold in
tomato fruit (Nonaka et al. 2017). These results suggest that
genome editing-mediated knockout or nucleotide substitu-
tions can be used to effectively improve plant nutrients by
regulating their synthesis and metabolism pathways.
Parthenocarpy is an important trait of horticultural
crops because seedless fruit taste better and also have vari-
ous industrial purposes (Gorguet et al. 2005; Ueta et al.
2017). Parthenocarpy is controlled by several phytohor-
mones, especially auxin (Pandolfini 2009). CRISPR/Cas9-
mediated mutations of the auxin/indole-3-acetic acid (Aux/
IAA)-encoding gene SIJAA9 and two AUXIN RESPONSE
FACTOR (ARF) transcription factor-encoding genes,
including SIARF7 and SIARFS, produced seedless tomato
fruit (Hu et al. 2018; Ueta et al. 2017), confirming the key
role of auxin in parthenocarpy. Noticeably, mutations of the
MADS-box gene SIAGAMOUS-LIKE 6 (SIAGL6) gener-
ated by CRISPR/Cas9 were also parthenocarpic and even
showed improved yielding under heat (Klap et al. 2017).
Thus, SIAGL6 is a novel and attractive gene of breeding for
seedless fruit, and the specific regulation role of SIAGL6
in parthenocarpy remains to be investigated. Shelf life is
also an important component of fruit quality, especially
from the consumer’s point of view. CRISPR/Cas9-induced
mutagenesis and replacement of tomato ALC identified from
tomato spontaneous mutant alcobaca (alc) and proven to
be an allele of the NOR gene (Bota et al. 2014; Garg et al.
2008), conferred a long shelf life for tomato fruit (Yu et al.
2017). The CRISPR/Cas9-induced mutation of the tomato
cell wall modifying enzyme-encoding gene PL significantly
improved the shelf life of tomato fruit by enhancing fruit
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firmness (Uluisik et al. 2016; Wang et al. 2019a). Notice-
ably, other fruit characteristics of AL- and CPL-edited plants
were not sacrificed (Wang et al. 2019a; Yu et al. 2017), and
the alc spontaneous mutant and PL-RNAI fruit even showed
increased resistance to plant diseases (Bota et al. 2014; Yang
et al. 2017). Thus, both the transcription factor-encoding
gene ALC and the pectate lyase gene PL are valuable genetic
resources for the genetic improvement of tomato.

Increasing tomato resistance to stresses

Plants are constantly subjected to numerous biotic stresses
(i.e., fungi, bacteria, viruses, and nematodes as well as other
plants) and abiotic stresses (i.e., drought, extreme tempera-
tures, and chemical reagents), and there are multiple genes
involved in plant responses to stresses (Ashrafi-Dehkordi
et al. 2018; Bai et al. 2018). Genetic improvement of tomato
for resistance to biotic and abiotic stresses is always a major
objective for tomato breeders (Tieman et al. 2017). Powdery
mildew, caused by the obligate biotrophic fungus Oidium
neolycopersi, is a severe fungal disease for both greenhouse-
and field-grown tomatoes worldwide (Jones et al. 2001), and
CRISPR/Cas9-induced mutations of disease susceptibility
(S) genes has been used to generate powdery mildew-resist-
ant tomato plants (Table 3). S genes, which are required
for successful pathogen infection, have received increased
attention, because disabling plant S genes by genome editing
is a novel breeding strategy for the genetic improvement of
plant disease resistance (Pavan et al. 2010; Zaidi et al. 2018).
MILDEW-RESISTANT LOCUS O (Mlo), which encodes a
membrane-associated protein with seven transmembrane
domains, is a conserved S gene conferring susceptibility to
powdery mildew fungus in both monocots and dicots (Ace-
vedo-Garcia et al. 2014). There are 16 Mlo genes (SIMlol to
SIMlo16), and transgenic RNAi showed that SIMlol is the
major contributor to powdery mildew susceptibility (Zheng
et al. 2016). The CRISPR/Cas9-induced mutation of SIMlol
significantly reduced powdery mildew susceptibility and
the transgene-free powdery mildew-resistant tomato can be
generated in less than 10 months (Nekrasov et al. 2017),
which highlights the efficiency of genome editing in plant
precision breeding. There are four Arabidopsis S genes con-
ferring susceptibility to powdery mildew fungus, Powdery
Mildew Resistant 1 (PMRI) to PMR4 (Vogel and Somerville
2000), and CRISPR/Cas9-induced mutation of SIPMR4, the
closest tomato ortholog of Arabidopsis PMR4 (SIPMR4),
significantly improved tomato resistance to the powdery
mildew fungus O. neolycopersi (Santillan Martinez et al.
2020). Grey mold caused by the ubiquitous necrotrophic
fungus Botrytis cinerea is another severe fungal disease for
field- and greenhouse-grown tomatoes and can also cause
serious post-harvest losses for tomato (Williamson et al.
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2007). However, genome editing-mediated tomato resist-
ance to biotic B. cinerea remains relatively unexploited.
Recently, CRISPR/Cas9-induced mutations of both tomato
acetylenase-encoding genes ACETIa and ACET1b showed
increased resistance to B. cinerea (Jeon et al. 2020). Several
candidate S genes conferring susceptibility to B. cinerea
have been identified from tomato by transgenic RNAi or
overexpression (Cai et al. 2020; Gonorazky et al. 2016; Sun
et al. 2017), and the application of genome editing-induced
mutations of these candidate S genes in breeding resistant
tomato plants is promising.

Genome editing has also been used to increase tomato
resistance to other different types of pathogens, including
oomycetes, bacteria, and viruses (Table 3). The CRISPR/
Cas9-mediated mutation of SIDMR6-1, a tomato orthologue
of the Arabidopsis S gene DMR6 (Downy Mildew Resistant
6), resulted in improved resistance to different pathogens,
including the oomycete pathogen Phytophthora capsici, and
the bacterial pathogens Pseudomonas syringae pv. Tomato
DC3000 (Pfo DC3000) and Xanthomonas spp (de Toledo
Thomazella et al. 2016). The CRISPR/Cas9-mediated muta-
tion of SIJAZ2, the closest tomato ortholog of Arabidopsis
JAZ (JASMONATE ZIM DOMAIN) repressor AtJAZ2, also
significantly increased tomato resistance to Pto DC3000,
the causal agent of tomato bacterial speck disease (Ortigosa
et al. 2019). Pepper mottle virus (PepMoV) is a potyvirus
that can infect tomato plants (Melzer et al. 2012), and the
CRISPR/Cas9-mediated mutation of tomato e/F4E1, which
encodes a eukaryotic translation initiation factor and is a
recessive resistance gene against potyviruses (Wang 2015),
conferred tomato resistance to PepMoV (Yoon et al. 2020).
Interestingly, a stably engineered CRISPR/Cas9 system by
targeting virus genes encoding coat protein (CP) or replicase
(Rep) has been generated in tomato, and these tomato trans-
genic plants also showed significantly increased resistance
to the infection of tomato yellow leaf curl virus (TYLCV)
(Tashkandi et al. 2018).

Compared to genome editing-mediated tomato resist-
ance to biotic stresses, the genetic improvement of tomato
for resistance to abiotic stresses by genome editing remains
relatively unexploited (Table 3). Drought is one of the most
destructive abiotic stresses in plants, and many tomato cul-
tivars are highly sensitive to drought (Zhou et al. 2017b).
Recently, the CRISPR/Cas9-mediated mutation of LAT-
ERAL ORGAN BOUNDARIES DOMAIN (LBD) transcrip-
tion factor-encoding gene SILBD40 in tomato significantly
enhanced tomato drought tolerance (Liu et al. 2020a), which
highlights the usability of genome editing in breeding for
drought tolerance in tomato. In addition, the mutation of the
tomato branched-chain amino acid synthesis gene ALS/ gen-
erated by CRISPR/Cas9 and CBE showed increased resist-
ance to the sulfonylurea herbicide chlorsulfuron (Danilo
et al. 2019; Veillet et al. 2019).

Accelerating the domestication of wild tomato

Wild relatives contain some beneficial traits, such as stress
tolerance, which are usually lost in conventional breeding
(van de Wouw et al. 2010); thus, the de novo domestication
of wild species has been proposed as an important strategy
of crop improvement (Yin et al. 2017; Zsogon et al. 2017).
Solanum pimpinellifolium, the putative ancestral progenitor
of modern tomato varieties, is remarkably tolerant to biotic
and abiotic stresses (Zuriaga et al. 2009), and genome edit-
ing has recently been used to accelerate the domestication
of the wild tomato (Li et al. 2018c; Zsogon et al. 2018).
Multiplex editing of four yield- and productivity-related
genes, including FRUIT WEIGHT 2.2 (FW2.2), FASCI-
ATED (FAS), MULTIFLORA (MULT), and LYCOPENE
BETA CYCLASE (CycB), in the wild tomato S. pimpinellifo-
lium was engineered by CRISPR/Cas9 (Zsogon et al. 2018).
Noticeably, the multiplex-edited tomato plants showed a
threefold increase in fruit size, a tenfold increase in fruit
number, and a fivefold increase in fruit lycopene accumula-
tion (Zsogon et al. 2018). In addition, CRISPR/Cas9-medi-
ated multiplex editing of tomato genes, including flowering
repressor SELF-PRUNING 5G (SP5G), SELF PRUNING
(SP), the small-peptide-encoding gene CLV3 (CLAVATA3),
the homeobox-encoding gene WUS (WUSCHEL), and the
vitamin C-biosynthetic enzyme-encoding gene SIGGP1, also
conferred domesticated phenotypes, yet retained parental
disease resistance and salt tolerance in tomato plants (Li
et al. 2018c¢). These two studies on de novo domestication
of wild tomato provide a good demonstration of the domes-
tication of wild plants using genome editing. Noticeably,
genome editing has also been used for the de novo domes-
tication of the orphan Solanaceae crop “groundcherry”
(Physalis pruinosa) (Tiwari et al. 2020) and the recent allo-
tetraploid rice (Yu et al. 2021). Based on the roadmap for de
novo domestication (Fernie and Yang 2019), genome editing
will significantly accelerate the de novo domestication of
other wild relatives of important crops and semi- or non-
cultivated plant species.

Customizing tomato cultivars for urban agriculture

The cultivation of crops in urban environments is an ideal
approach for developing sustainable agriculture in the future
because of the loss of arable land worldwide (Pearson et al.
2010). Multiplex editing of three tomato genes, including
the classical flowering repressor gene SELF PRUNING (SP),
the paralog of SP SP5G, and the regulator of tomato stem
length ERECTA (SIER), was generated by CRISPR/Cas9,
and the compactness and growth cycle of the triple sp, sp3g,
and sler mutant were dramatically increased and shortened,
respectively (Kwon et al. 2020). Noticeably, the triple-deter-
minate mutant in cherry tomato produced its first ripe fruit
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at less than 40 days after transplantation (Kwon et al. 2020).
Meanwhile, harvest index of the triple-determinate mutant
was not significantly affected, and it grew well in indoor
farm systems, including a light-emitting diode (LED) growth
chamber and a self-contained, climate-controlled LED
hydroponic vertical farm system (Kwon et al. 2020). Thus,
these vine-like tomato plants with compact and early yield-
ing characteristics (Kwon et al. 2020) can be developed to
accommodate the plant size and space restrictions of urban
agriculture. Recently, the CRISPR/Cas9-mediated mutation
of the tomato HEL gene identified in a spontaneous tomato
helical (hel) mutant also caused vine-like growth of tomato
(Yang et al. 2020), which provides a new idea for developing
urban agriculture in the future.

New genome editing systems applied
in plants

Genome editing technology continuously undergoes inno-
vation (Anzalone et al. 2020), and some new genome edit-
ing systems have recently been established and applied in
plants. Herein, we mainly introduce three different types of
genome editing systems, including mitochondria-targeted
transcription activator-like effector nucleases (mitoTALENS)
(Kazama et al. 2019), APOBEC—Cas9 fusion-induced dele-
tion systems (AFIDs) (Wang et al. 2020b), and prime editing
systems (Lin et al. 2020), because they will likely further
revolutionize basic research and precision breeding in plants.

mitoTALENSs for mitochondrial genome editing

In addition to nuclei, plastids (chloroplasts) and mitochon-
dria also harbor DNA, and many important genes are pre-
sent in mitochondria and plastids (Bock and Knoop 2012).
Although stable transformation of plant mitochondrial
genomes is still infeasible, two recent reports successfully
achieved stable and heritable targeted modification of the
mitochondrial genes in rice, rapeseed, and Arabidopsis by
using nuclear transformation and mitoTALENs which are
composed of a TALEN nuclease and a mitochondria locali-
zation signal (Arimura et al. 2020; Kazama et al. 2019).
The mitochondrial gene atp6-1 encoding an ATP synthase
subunit also has a copy in the nuclear genome, and mito-
TALEN-mediated editing of atp6-1 resulted into mutations
only in its mitochondrial copy (Arimura et al. 2020), which
confirms the specificity of mitoTALEN-mediated mitochon-
drial genome editing. To optimize mitoTALEN-mediated
mitochondrial genome editing in plants, three different pro-
moters (i.e., CaM V35S, Ubiquitinl, and RPS5A) and two
types of TALENS (i.e., conventional TALEN and compact
TALEN) were compared, and the RPS5A promoter and
conventional TALEN were proven to be the most efficient
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(Arimura et al. 2020). There are approximately 60 genes and
abundant non-coding DNA in plant mitochondrial genomes
(Gualberto and Newton 2017), and mitoTALEN will further
unravel the role of mitochondrial genomes in plant cellular
processes. In addition, engineering plastid genomes, which
are also organelle genomes, has been successfully used to
improve many economic and agronomic traits in different
plants (Li et al. 2021). Thus, the potential application of
mitoTALEN-mediated mitochondrial genome editing in crop
improvement is highly anticipated.

AFIDs for precise and predictable multi-nucleotide
deletions

The widely used genome editing system CRISPR/Cas9
usually results in frequent small indels, including short
insertions and short deletions, which likely cannot destroy
the small functional regulatory elements and domains in
genomic DNA (Wang et al. 2020b). To overcome this limi-
tation, larger deletions should be produced by genome edit-
ing systems. The recently developed APOBEC—Cas9 fusion-
induced deletion systems (AFIDs), which mainly include
AFID-1, AFID-2 and AFID-3, were proven to efficiently
produce large (multi-nucleotide) deletions in the genomes
of rice and wheat (Wang et al. 2020b). Compared to other
strategies of genome editing for producing large deletions,
AFIDs, especially AFID-3, have significant advantages
in producing predictable deletions (Wang et al. 2020b).
AFID-3 has the most additional elements including uracil
DNA-glucosidase from Escherichia coli and apurinic or apy-
rimidinic site lyase (AP lyase) from E. coli, and approxi-
mately one-third of the deletions produced by AFID-3 are
predictable (Wang et al. 2020b). These AFID systems confer
precise and predictable multi-nucleotide deletions in plant
genomes and will significantly accelerate the study of small
functional regulatory elements and domains in genomic
DNA. In addition, increasing evidences indicate that small
functional regulatory elements and domains in genomic
DNA, such as upstream open reading frames (uORFs) and
other cis-regulatory elements, are also promising targets for
crop improvement (Li et al. 2020a; Xu et al. 2017; Zhang
et al. 2020; Zhou et al. 2017a), and some transcription fac-
tors function in different physiological functions by selec-
tive binding to different cis-regulatory elements (Xiao et al.
2013). Thus, AFIDs will accelerate precise plant breeding
by fine-tuning of the expression of target genes, mainly at
the transcriptional and translational levels.

Prime editing, a breakthrough in precise genome
editing

Although genome editing is revolutionizing basic research
and precision breeding in plants, most genome editing
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systems cannot confer precision genome editing by install-
ing desired substitutions, insertions and deletion (Li et al.
2020c). CRISPR/Cas-mediated HDR is a previous major
strategy of precision genome editing in plants (Li et al.
2020c), but HDR-mediated precision genome editing
remains challenging because of the low efficiency of produc-
ing HDR and delivering DNA templates in plants (Lin et al.
2020). Prime editing, a breakthrough in precise genome edit-
ing, was recently developed in human cells (Anzalone et al.
2019) and was then quickly applied in plants by multiple
research groups worldwide (Table 4) (Butt et al. 2020; Hua
et al. 2020; Jiang et al. 2020b; Li et al. 2020b; Lin et al.
2020; Lu et al. 2020b; Tang et al. 2020; Xu et al. 2020a,
b). Prime editing mainly consists of two parts, including
the fusion of a catalytically impaired Cas9 (H840A) nick-
ase (nCas9) and a reverse transcriptase M-MLV-RT (Molo-
ney murine leukemia virus reverse transcriptase), and an
engineered guide RNA, pegRNA (prime editing guide
RNA) (Anzalone et al. 2019). pegRNA is composed of a
sgRNA for targeting specific sites, a reverse transcrip-
tion (RT) template for conferring predefined edits, and a
primer-binding site (PBS) for allowing the 3’ end of the
nicked DNA strand to hybridize to the pegRNA (Anzalone
et al. 2019). As a search-and-replace genome editing tool,
prime editing specifically searches the target site in genomic
DNA by using the sgRNA in pegRNA and replaces it in the
nCas9 (H840A)-mediated nicked DNA strand by using the
reverse transcription reverse and the PBS and RT template
in pegRNA (Fig. 1b) (Anzalone et al. 2019). Prime edit-
ing can produce all 12 kinds of base substitutions, which is
obviously more omnipotent than DNA base editors, and can
result in predefined multiple base substitutions, insertions,
and deletions (Lin et al. 2020). Based on the four prime edit-
ing systems established in human cells, including PE1, PE2,
PE3, and PE3b (Anzalone et al. 2019), multiple prime edit-
ing systems (Table 4), which usually undergo the optimiza-
tion of codons and promoters or add other components, such
as nuclear localization signals, have been established and
applied in different plants. Noticeably, no off-target effects
were found in prime editing in plants (Li et al. 2020b). How-
ever, these prime editing systems usually have relatively low
or variable editing efficiency in plants (Table 4). The length
of PBS or the RT template in pegRNA and the position of
the nicking sgRNA have significant effects on the editing
efficiency of prime editing systems in rice (Lin et al. 2020),
and the enhancement of pegRNA expression conferred much
higher prime editing efficiency (up to 53.2%) in maize (Jiang
et al. 2020b). Three computational models, namely DeepPE,
PE_type, and PE_position, were recently developed to pre-
dict the efficiency of pegRNA in human cells (Kim et al.
2020), and designing pegRNA using these computational
models and upgrading prime editing vectors will further
optimize prime editing systems.

Site-directed mutations are essential for identifying the
function sites of targeted genes and for studying the bio-
logical significance of single nucleotide variants (SNVs) or
single nucleotide polymorphisms (SNPs) in plants (Angaji
2009; Henikoff and Comai 2003; Schilbert et al. 2020).
Compared to the time-consuming transgenic overexpression
of mutated genes in the gene mutant (Jiang et al. 2020a),
prime editing-mediated base substitution can conveniently
create a site-directed mutation in plants. Based on this sig-
nificant advantage, prime editing systems will revolutionize
basic plant research by increasing the depth of research. In
addition, prime editing also seems to be the best genome
editing tool for achieving plant precision breeding, and
prime editing-mediated introduction of elite alleles into
commercialized cultivars will significantly accelerate crop
improvement.

Outlook on genome editing-mediated
precision breeding in tomato

Conventional breeding is a rather time-consuming practice
and is usually accompanied by a loss of fitness and genetic
diversity (Wang et al. 2019c), and the revolutionary genome
editing technology substantially accelerates precision plant
breeding (Chen et al. 2019). Tomato is one of the most
important vegetable crops worldwide, and genome editing
has also been applied in tomato genetic improvement (Fig. 2;
Table 3). Noticeably, these applications of genome editing
in the genetic improvement of tomato were performed by
mainly using the CRISPR/Cas9 tool for creating precise
knockout mutations (Fig. 2; Table 3). Prime editing, which
is a breakthrough in precise genome editing and can install
desired substitutions, insertions, and deletion, has also
recently been established in tomato (Lu et al. 2020b). Thus,
the precise knock-in and replacement mutations generated
by other genome editing tools, such as prime editing, will
further accelerate precision breeding in tomato. In addition,
multiplex editing of a series of related genes usually pro-
vides better results during genome editing-mediated tomato
improvement (Table 3), but CRISPR/Cas9 does not always
confer successful editing in all desired tomato genes (Li
et al. 2018c; Zsogon et al. 2018). The recent Cas Hybrid
for Multiplexed Editing and Screening Applications (Chy-
MErA) genome editing system established in human cells
(Gonatopoulos-Pournatzis et al. 2020) has unique advan-
tages over multiplex editing, and thus, it is a promising
approach for achieving precision tomato breeding.
Although there are numerous applications of genome
editing in tomato breeding for improving several agro-
nomic traits, mainly including yield, nutritional quality,
and stress responses (Table 3), there is still a long way to go
for genome editing-mediated precision breeding in tomato.
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Table 4 Summary of the prime editing systems established in different plants

Systems Component description Editing efficiencies Applied in plants References
PPE2 Corresponding to PE2 in human cells: optimization of codons 2.6%-21.8% Wheat and rice  Lin et al. (2020)
and promoters for cereal plants
PPE3 Corresponding to PE3 in human cells: optimization of codons
and promoters for cereal plants
PPE3b Corresponding to PE3b in human cells: optimization of codons
and promoters for cereal plants
PE3 Corresponding to PE3 in human cells: optimization of codons and 2.22%-9.38% Rice Li et al. (2020b)
promoters for cereal plants, and adding two nuclear localization
signals (NLSs)
PPE3-V01 Corresponding to PE3 in human cells: optimization of codons 0.05%-1.55% Rice Tang et al. (2020)
and promoters for cereal plants, and adding two NLSs
PPE3-V02 Corresponding to PE3 in human cells: optimization of codons
and promoters for cereal plants, and adding three NLSs
PPE2-V02 Corresponding to PE2 in human cells: optimization of codons
and promoters for cereal plants, and adding three NLSs
PE-P1 Corresponding to PE3 in human cells: optimization of codons 0%—26% Rice Xu et al. (2020b)
and promoters for cereal plants, and adding two NLSs
PE-P2 Corresponding to PE3 in human cells: optimization of codons and
promoters for cereal plants, adding two NLSs and a hygromycin
phosphotransferase (Hpt), and using enhanced esgRNA
pPE2 Corresponding to PE2 in human cells: optimization of codons 0%-31.3% Rice Xu et al. (2020a)
and promoters for cereal plants, and adding four NLSs
pPE3 Corresponding to PE3 in human cells: optimization of codons and
promoters for cereal plants, and adding four NLSs and a Hpt
pPE3b Corresponding to PE3b in human cells: optimization of codons
and promoters for cereal plants, and adding four NLSs and a
Hpt
Surrogate pPE2 Corresponding to PE2 in human cells: optimization of codons
and promoters for cereal plants, and adding four NLSs and a
Hpt—ATG
pt
Sp-PE2 Corresponding to PE2 in human cells: optimization of promoters 0%-17.1% Rice Hua et al. (2020)
for cereal plants and adding two NLSs
Sp-PE3 Corresponding to PE3 in human cells: optimization of promoters
for cereal plants and adding two NLSs
Sa-PE3 Corresponding to PE3 in human cells: optimization of promoters
for cereal plants, adding two NLSs, and using SaCas9 and Sa
sgRNA
PE2 Corresponding to PE2 in human cells: optimization of promoters  0.26%—2% Rice Butt et al. (2020)
for cereal plants
PE3 Corresponding to PE3 in human cells: optimization of promoters
for cereal plants
pCXPEO1 Corresponding to PE3 in human cells: optimization of promoters  0.025%-1.66% Tomato Lu et al. (2020b)
to drive pegRNA and gRNA, and adding two NLSs
pCXPE02 Corresponding to PE3 in human cells: optimization of promoters
to drive pegRNA and gRNA, adding two NLSs, and using a
plant codon-optimized M-MLV-RT
pCXPEO3 Corresponding to PE3 in human cells: optimization of all pro-
moters, adding two NLSs, and using a plant codon-optimized
M-MLV-RT
pZ1PE3 Corresponding to PE3 in human cells: optimization of codons 6.5%-53.2% Maize Jiang et al. (2020b)
and promoters for cereal plants
PZ1PE3b Corresponding to PE3b in human cells: optimization of codons

and promoters for cereal plants
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Table 4 (continued)

Systems Component description

Editing efficiencies Applied in plants References

pZIWS

Corresponding to PE3 in human cells: optimization of codons and

promoters for cereal plants, doubling the number of pegRNA
expression cassettes, and using two promoter systems to drive

pegRNA expression
pZ1PE3-Csy4
ribonuclease 4 (Csy4) was added

pZ1PE3b-Csy4 On the basis of pZ1PE3b, a Csy4 was added
pZ1WS-Csy4  On the basis of pZ1WS, a Csy4 was added

On the basis of pZ1PE3, a Csy-type (CRISPR system yersinia)

The deterioration in flavor quality of modern commercial
tomato varieties relative to heirloom tomato varieties is a
serious problem according to consumer feedback, which can
be partially attributed to the excessive concern for yield and
external appearance in past tomato domestication and breed-
ing (Tieman et al. 2017; Xu et al. 2019). The achievement
of tomato genome sequencing (Sato et al. 2012), tomato
pan-genome construction using genome sequences of 725
tomato phylogenetically and geographically representative
accessions (Gao et al. 2019a), and recent panSV (structural
variant) genome for 100 diverse tomato lines (Alonge et al.
2020) identify a vast number of genes probably controlling
fruit characteristics, including fruit flavor. These abundant
and valuable gene resources are of great significance for
genome editing-mediated precision breeding in tomato.

Concluding remarks and future perspectives

Genome editing is revolutionizing basic research in plants
because of its great simplicity and usability in creating
plant mutations in genomic DNA. However, other classical
research methods, including RNAi-mediated gene silenc-
ing and the identification of genes underlying spontaneous
mutants, are still widely used for characterizing gene func-
tion in plants, especially in non-model plants. A series of
research reports indicate that CRISPR/Cas9-induced muta-
tions in several tomato genes essential for fruit ripening
show inconsistent ripening phenotypes compared to previ-
ous spontaneous mutants or RNAi plants (Table 2), and a
similar phenomenon was also reported in rice (Li et al. 2016;
Yu et al. 2020). These results highlight the significance of
revisiting plant genes essential for different physiological
processes using genome editing. Genome editing has been
successfully applied in all types of plants from monocots
to dicots, and the main reason for the unsuccessful applica-
tion of genome editing in some plants is the lack of a sta-
ble genetic transformation system. The latest establishment
of nanoparticle-mediated plant genome editing and the de
novo induction of gene-edited meristems for avoiding time-
consuming tissue culture (Table 1) bring great hope for the

usability of genome editing in these plants. Thus, genome
editing will be the standard method for characterizing gene
function in plants, especially in those plants that have suc-
cessfully established genome editing systems.

Genome editing has been applied in the breeding of
tomato (Fig. 2) and other important crops (Tiwari et al.
2020), and, noticeably, most of the mutants generated by
genome editing are loss-of-function mutations via the
knockout of targeted genes. Loss-of-function mutants have
unique advantages for characterizing gene function, but most
of them do not usually produce agriculturally useful pheno-
types (Zhu and Qian 2020). On the contrary, gain-of-func-
tion mutations via base replacement or targeted transgene
insertion show great potential for direct application in crop
improvement (Zhu and Qian 2020). The DNA base editor
CBE-mediated base substitution and CRISPR/Cas9-medi-
ated targeted transgene insertion of exogenous valuable
genes have been reported to increase tomato resistance to
abiotic stresses and to create purple tomatoes (Table 3). In
addition, the recent prime editing systems, which can confer
precision genome editing by installing desired substitutions
and insertions, are applied in different plants (Table 4), and
using chemically modified DNA as a donor in CRISPR/Cas9
can substantially improve the efficiency of gene insertion
(Table 1). Thus, broad applications of genome editing-medi-
ated gain-of-function mutations in precision plant breeding
are promising.

Although genome editing has been used to improve agro-
nomic traits, mainly including yield, nutritional quality, and
stress responses, in many different crops (Tiwari et al. 2020),
several less-developed or new breeding directions need to be
explored in future genome editing-mediated precision plant
breeding, including (1) genome editing-mediated extension
of the shelf life of horticultural products to reduce posthar-
vest loss; (2) genome editing of plant growth genes to pro-
duce compact, synchronized ripening, and rarely dropping
fruit and vegetables, which are more suitable for mechanical
harvesting; (3) genome editing-mediated de novo domestica-
tion of other wild relatives of important crops and semi- or
non-cultivated plant species; (4) the application of genome
editing in plant molecular farming to produce high-value
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recombinant pharmaceutical proteins by modifying recom-
binant pharmaceutical proteins or directly targeting inser-
tion of exogenous pharmaceutical protein-encoding genes;
(5) the application of genome editing in plant breeding for
diversification, such as conceived pungent tomatoes (Naves
et al. 2019). Finally, we believe that genome editing is a
key tool for achieving the long-term breeding goal of cre-
ating “smart crops” (Yu and Li 2021), which show rapid
adaptation to climate change and high resistance to extreme
weather conditions, as well as high yield and quality.
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