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Abstract

Functional genomics research is continually improving our understanding of genotype-phenotype 

relationships in humans, and comparative genomics perspectives can provide additional insight 

into the evolutionary histories of such relationships. To specifically identify conservation or 

species-specific divergence in humans, we must look to our closest extant evolutionary relatives. 

Primate functional genomics research has been steadily advancing and expanding, in spite of 

several limitations and challenges that this field faces. New technologies and cheaper sequencing 

provide a unique opportunity to enhance and expand primate comparative studies, and we outline 

possible paths going forward. The potential human-specific insights that can be gained from 

primate functional genomics research are substantial, and we propose that now is a prime time to 

expand such endeavors.
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Determining how the genome and environment interact and contribute to the development 

and evolution of human phenotypes is critical for advancing the field of medicine and 

satisfying our general curiosity of who we are and how we got to be here. Certain human 

traits, such as sickle cell anemia and lactose tolerance, are associated with genetic variants at 

individual loci. For such traits, the genetic associations almost always reveal likely causal 

mechanisms. In the cases of sickle cell anemia and lactose tolerance, the mechanisms of 

causation consist of alterations in the coded protein structure and changes in enhancer DNA 

sequences, respectively. However, most phenotypes, like heart disease and height, are 

complex and influenced by hundreds or thousands of genetic loci. Variants associated with 

complex traits are often located in regulatory, non-coding regions of the genome. Moreover, 

the effects of individual loci on such traits are typically very small, and the function of each 

associated locus is often unclear. Together, these features present a challenge to identifying 
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the mechanisms that underlie genotype-phenotype associations for complex traits. 

Collecting additional information about the relationship between genetic variants and the 

regulation of gene expression can reveal the regulatory pathways through which loci 

influence the development and evolution of complex traits. The field of functional genomics 

leads these efforts by characterizing gene regulatory dynamics, and it has radically advanced 

our understanding of genotype-phenotype relationships.

Efforts to characterize population-level gene regulation in humans have expanded in recent 

years, resulting in massive repositories of information. For example, the Genotype-Tissue 

Expression (GTEx) project [1] classifies regions of the human genome that impact how 

much a gene is expressed, and the Roadmap Epigenomics Mapping Consortium [2] catalogs 

human epigenomic data. Additionally, the Encyclopedia of DNA Elements (ENCODE) 

Consortium [3], the Mouse ENCODE Consortium [4], and the model organism ENCODE 

(modENCODE) Project [5] categorize functional elements in the human genome, mouse 

genome, and genomes of other model organisms, respectively. These efforts resulted in a 

wealth of data and insight into gene regulation and regulatory elements, but they are missing 

key insights because of their inability to classify genetic variants as either highly conserved 

or specific to humans. The inference of conservation can indicate that a locus has been 

associated with a critical function throughout evolution, and mutations in conserved loci are 

likely to have deleterious consequences. In turn, human-specific genetic variants may 

underlie human-specific phenotypes, including complex traits and diseases that are observed 

exclusively or more often in humans.

Comparative genomics provides us with tools to identify features that are shared across 

species and to detect species-specific features. Comparison across closely related species, 

such as primates, can provide specific information regarding a feature’s evolutionary history, 

suggesting either neutrality, conservation, or species-specific divergence. Unfortunately, we 

do not yet have concerted efforts to collect comparative functional genomics data from 

closely related species. Indeed, GTEx and the Roadmap Epigenomics Mapping Consortium 

focus solely on human gene regulation, and do not include samples from other species. 

Conversely, the ENCODE project catalogs data from multiple species, including humans, 

and uses these data to evaluate conservation across long evolutionary time scales. However, 

because the evolutionary distances between the examined species (human, mouse, nematode, 

and fly) are large, ENCODE data can only be used to classify genetic loci as conserved 

when they have been unchanged for hundreds of millions of years. Further, ENCODE data 

cannot be used to identify recent changes that have evolved exclusively in the human 

lineage. Indeed, in order to infer genetic loci in humans that have been conserved on time 

scales smaller than hundreds of millions of years (for example, in all primates), as well as 

isolate human-specific genotype-phenotype relationships, it is imperative to pursue 

functional genomics investigations in some of our closest living relatives. The field of 

primate functional genomics is not new, but in this commentary, we propose that now is a 

prime time to expand research endeavors in this area.

Progress in primate functional genomics has been relatively slow. Most comparative 

functional studies in primates have been limited to the characterization of bulk gene 

expression and regulatory patterns in a small number of tissues from a small number of 
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species [6]. The main reason for the slow progress is that tissue samples from nonhuman 

primates, especially from apes, are difficult to obtain due to ethical and logistical 

considerations. Further, when samples are accessible, their preservation is often not optimal 

for a wide range of molecular assays. Hence, while population studies in humans and other 

model species have taken full advantage of the technological advances that led to cheaper 

sequencing-based assays [7], comparative genomic studies have lagged.

Despite the many challenges to obtaining primate samples, recent in vivo comparative 

research in human and nonhuman primates has made efforts to include larger samples of 

primates both within populations [8,9] and among species [10–12]. Expanded sets of tissue 

types [10,13–17] and tissue developmental stages [18] have also been examined, as have 

additional levels of gene regulation [19,20]. Research in this area has advanced our 

understanding of human diseases [13,21,22] and provided insight into the effects of social 

status and related environmental factors [23–26].

In particular, cercopithecoids such as baboons and macaques are proving to be beneficial 

models for evaluating many human traits. Several species within these groups naturally 

develop disorders and symptoms similar to those observed in humans, and these species can 

be studied using manipulations and treatments that cannot practically or ethically be applied 

to humans. One compelling examples is that of cardiovascular disease (CVD) [21]. A 

prominent contributor to CVD is atherosclerosis, or the build-up of fatty plaques in arterial 

walls. It is known that levels of low-density lipoprotein cholesterol (LDL-C) in plasma and 

high-cholesterol, high-fat (HCHF) diets can contribute to the development of 

atherosclerosis, but the mechanisms by which these factors alter cellular function to initiate 

atherosclerosis is unclear. It is difficult to perform the appropriate study to address this 

question in humans because one cannot easily perturb the long-term diet of tissue donors 

while simultaneously controlling for the many environmental confounding factors that may 

potentially affect the experiment. However, such an experiment is possible in nonhuman 

primates. Indeed, one comparative functional genomics study recently identified an 

interaction between HCHF diets and plasma LDL-C concentrations in captive baboons [22]. 

This interaction causes a change in miRNA expression in peripheral blood mononuclear 

cells, which is thought to regulate factors involved in the initiation of atherosclerosis lesions 

[22].

Another compelling example demonstrating the power of primate comparative functional 

genomics comes from studies in macaques, which have revealed how environmental factors 

like social experience influence disease susceptibility [24,25]. Like humans, macaques have 

complex hierarchical social networks. In macaques it is possible to confidently determine the 

social ranking of each individual. Moreover, one can influence the social ranks of individual 

monkeys by manipulating certain variables, such as the order in which animals are 

introduced to their environment. Importantly, this model system allows researchers to study 

the impact of social rank while controlling for the effects of other typically associated 

variables, such as access to food or other resources. In this setting, low-ranking macaques 

have fewer affiliative interactions than high-ranking macaques. The lack of social integration 

due to low social status is thought to make individuals more susceptible to stressors, like 

pathogen infections. After manipulating long-term dominance ranks in macaques, 
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researchers found that social status does alter immune cell gene expression responses to 

bacterial and viral infection [24]. Moreover, these effects appear to also depend on the social 

history of individuals, whether they have increased or decreased social status over time [24]. 

This observation has clear implications for human health management.

Recent progress in in vitro cell culture has also substantially enhanced primate functional 

genomics research. In particular, induced pluripotent stem cell (iPSC) technology allows us 

to establish renewable sample resources from different primate species and obtain 

differentiated cells and tissues that are not easily accessible otherwise. This development is 

particularly important for comparative studies that involve apes, from which sample 

collection is becoming increasingly difficult (sample collection from chimpanzees, for 

instance, is no longer allowed in the USA). The availability of a comparative panel of 

matched human and chimpanzee iPSC lines may ensure that we are able to continue 

studying humans alongside their most closely related extant evolutionary relative [27]. This 

comparative panel of iPSCs has opened the door to a new wave of primate functional 

genomics research. Primate iPSCs have been used in comparative assessments of 

transposable element regulation [28], chromatin accessibility [29], and chromatin folding 

[30] – assays that are difficult to perform on non-renewable sets of frozen tissue samples. 

Primate iPSCs have also been differentiated into other cell types, such as cardiomyocytes 

and endoderm cells, to examine static gene expression differences across species [31,32], as 

well as dynamic gene expression responses to environmental perturbations [33]. Outside of 

this comparative primate cell culture model, additional cell types [34,35] and organoid 

models [36] in other primate species [37,38] are also being developed and studied.

The potential insights that can be gained through these and additional lines of primate 

functional genomics research are substantial. Evaluating gene regulation and genotype-

phenotype relationships between humans and nonhuman primates not only reveals human-

specific variants but also provides a phylogenetic context and evolutionary timeframe for 

such changes. Comparative studies can reveal the processes and mechanisms by which 

aspects of human variation have evolved, adapted, or remained conserved. Because genetic 

variation is greater between species than within species, features that distinguish species 

from one another typically have larger effect sizes than features that differ between 

individuals from the same species. Comparative studies can therefore help expose loci of 

interest for further exploration within species (Figure 1). Thus, by combining comparative 

genomics and population genetics, primate functional genomics research presents a unique 

opportunity to identify human-specific variation that may improve our understanding of 

human traits.

Despite advances in cell culture and functional genomics technology, there are still 

substantial barriers to data collection, data processing, and data interpretation that impede 

progress in primate functional genomics. In particular, sample sizes in comparative studies 

of primates are often small, even when iPSCs are available. Combining data in meta-

analyses could remedy this; however, there is currently no standard for collecting or 

reporting functional genomics data across species. Further, the poor quality of nonhuman 

primate genome builds makes data processing difficult. In particular, the predominant 

challenge in analyzing primate functional genomics data is found at the level of genome 
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annotation. The human genome is the only primate genome with a robust annotation based 

on direct functional data, and genome annotations for practically all other primates are 

pieced together using the human annotation. Recent efforts using long-read sequencing have 

improved genome annotations in apes and macaques [39–41]. Nevertheless, for nonhuman 

primate genomes more broadly, the locations of genes and coding regions lack functional 

characterization, and information on other DNA elements such as noncoding RNAs, 

transcriptional regulatory sites, and regions associated with specific chromatin structures is 

extremely limited. The sparse annotations of nonhuman primate genomes make the 

functional interpretation of differential genetic and regulatory variants almost impossible. 

Moreover, because the quality of the human genome assembly and annotation is 

substantially higher than that of other primates, initial data processing steps, such as read 

alignment to reference genomes, may result in biased data filtering that can lead to biased 

quantitative estimates in downstream analyses.

To rectify these impediments, we must improve nonhuman primate genome assemblies and 

annotations. This can be accomplished by either obtaining a large number of genomics 

assays from a small set of species or collecting a limited set of genomics assays from all 

available species. Based on our experience (but admittedly, also given our scientific 

interests), our recommendation is for researchers to invest in acquiring detailed annotation 

information from a small subset of nonhuman primates. Ideally, this set would span the 

primate phylogeny and include a subset of species relevant for clinical research. A possible 

starting sample set could include chimpanzees as representative apes and the closest extant 

evolutionary relatives of humans, macaques and baboons as representative cercopithecoids, 

marmosets as representative platyrrhines, and mouse lemurs [42] as representative 

strepsirrhines. Collecting additional annotation information on chimpanzees will be difficult 

given the moratorium on chimpanzee research, but previously established cell lines, 

especially iPSCs, as well as previously collected and preserved tissue samples, are still 

available for this research.

This endeavor to improve nonhuman primates genome annotations could be similar, in a 

sense, to the ENCODE Project, which was originally purposed with identifying functional 

elements encoded in human genome sequences [3]. In the first publication of the ENCODE 

Project, researchers evaluated transcribed regions (RNA-seq), transcription factor binding 

sites (ChIP-seq, DNase-seq), chromatin structure (histone ChIP-seq, DNase-seq), and DNA 

methylation (RRBS assay) in several cell types. We propose that similar datasets be 

collected from a sample of nonhuman primates using systematic and comparable methods. 

The ENCODE Project initiated data collections by focusing on a subset of cell lines (K562, 

GM12878, H1 hESC, HeLA-S3, HepG2, and HUVEC) and then expanding to include 

additional primary cell types. Similarly, primate functional genomics research would benefit 

from first focusing on robust nonhuman primate cell lines, such as iPSCs and differentiated 

cells, and then expanding to include additional primary tissues and cell types. Robust iPSC 

lines reprogramed from chimpanzee cells exist, and efforts should be taken to develop 

comparable cell lines from other species.

The potential of iPSC technology for comparative genomics is substantial, but one should 

also be aware of its limitations. Differentiated cells have been shown to be a decent model of 
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primary tissues, but these in vitro models can inadvertently acquire unintended genetic 

mutations [43][44] and epigenetic modifications [45]. Cells differentiated in vitro also tend 

to show signatures of early development and rarely achieve full maturation [46]. Thus, we 

believe that the most effective study design is to perform comparative explorations using 

iPSCs and differentiated cells, followed by validation experiments that make use of primary 

tissue samples and cell types. By studying nonhuman primate iPSCs alongside primary cell 

types, a wealth of reference information can be obtained that would enable even further 

advances in the field of primate functional genomics.

Overall, while the challenges facing continued research in primate functional genomics are 

substantial, they are not insurmountable. The field of functional genomics as a whole has 

expanded well beyond what was initially thought to be possible. Similarly, improvements in 

nonhuman primate data reporting standards, genome sequence quality, and genome 

annotations will also expand the breadth of comparative primate research that is possible. 

Given this path forward, now is a prime time for primate functional genomics research.
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Figure 1. Evolution of genotype-phenotype associations can inform human-specific research.
Comparative research within primates and across large phylogenetic distributions of 

organisms can inform human-specific research. Because variation between species is greater 

than variation within species, features that distinguish species from one another typically 

have larger effect sizes than features that distinguish individuals from one another. Thus, the 

larger effect sizes between species can expose regions of interest for further exploration 

within human populations. However, while large phylogenetic comparisons can reveal 

aspects of conservation within humans, research in primates is necessary to isolate features 

that uniquely arose in the human lineage. Depicted here are representative examples of 

diseases that display differential susceptibilities across primates and mammals and that 

illustrate how comparative research may be used to inform human-specific research. Left 
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Panels: In the case of CVD, humans are prone to myocardial ischemia (MI) and 

chimpanzees are prone myocardial fibrosis [33]. By comparing human variation with 

chimpanzee variation, and grounding lineage specificity using a nonhuman primate 

outgroup, it is possible to identify human-specific genotype-phenotype associations related 

to MI susceptibility (top left panel). Once isolated, this human-specific variation may reveal 

variants of biological interest that can be considered further in human population genomics 

studies, where different individuals have different susceptibilities to MI and the effect sizes 

of genetic variants associated with trait variation are substantially smaller (bottom left 

panel). Right Panels: In the case of osteoarthritis (OA), humans and several other primates 

and mammals are susceptible to OA (OA ss.), while other animals have not been observed 

(not obs.) to naturally develop OA [13]. By comparing human variation with variation 

observed in other OA-susceptible lineages, it is possible to identify conserved genotype-

phenotype associations related to OA susceptibility (top right panel). Once isolated, this 

conserved variation may reveal variants of biological interest that can be considered further 

in human population genomics studies, where different individuals have different 

susceptibilities to OA and the effect sizes of genetic variants associated with trait variation 

are substantially smaller (bottom right panel). Figure images were adapted from http://

phylopic.org/, http://clipart-library.com/clipart/pco5XgRLi.htm, and https://

springloadedtechnology.com/guide-to-severe-knee-osteoarthritis/.
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