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Abstract

Parkinson’s disease (PD) is a neurodegenerative disorder etiologically linked to the loss of 

substantia nigra (SN) dopaminergic neurons in the mid-brain. The etiopathology of sporadic PD is 

still unclear; however, the interaction of extrinsic and intrinsic factors may play a critical role in 

the onset and progression of the disease. Studies in animal models and human post-mortem tissue 

have identified distinct cellular and molecular changes in the diseased brain, suggesting complex 

interactions between different glial cell types and various molecular pathways. Small changes in 

the expression of specific genes in a single pathway or cell type possibly influence others at the 

cellular and system levels. These molecular and cellular signatures like neuroinflammation, 

oxidative stress, and autophagy have been observed in PD patients’ brain tissue. While the 

etiopathology of PD is still poorly understood, the interplay between glial cells and molecular 

events may play a crucial role in disease onset and progression.
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Introduction

Parkinson’s disease (PD) is a progressive neurodegenerative disease, clinically defined as a 

movement disorder. The pathological hallmarks of PD are the degeneration of dopamine-

producing neurons in the ventral midbrain substantia nigra (SN) and associated widespread 

intraneuronal α-synuclein aggregation in Lewy bodies (Braak et al. 2003; Maiti et al. 2017). 

As the disease progresses, the loss of SN dopaminergic neurons results in the typical motor 

symptoms, such as bradykinesia, rigidity, impaired postural balance, and a characteristic 

resting tremor. PD patients develop dementia as the disease progresses (Goetz 2011; 

Moustafa et al. 2016). In addition, prodromal symptoms have been reported by PD patients 

years before the onset of disease. Some of these signs include constipation, insomnia, mood 

disorders, depression and anxiety (Mahlknecht et al. 2015). The etiopathology of sporadic 

PD is still unknown; however, studies suggest that the interaction of extrinsic and intrinsic 

factors, such as exposure to environmental toxins and specific immune responses, may 

trigger disease onset (Sulzer 2007). Moreover, according to Braak’s hypothesis, the 

idiopathic incidence of PD may originate outside the CNS (most probably in the enteric 

nervous system) while “the stereotypic topographic expansion pattern of the lesions may 

resemble that of a falling row of dominos” (Braak et al. 2003). The α-synuclein aggregation 

has recently been demonstrated to begin in the enteric nervous system and propagates to the 

brain via the vagus nerve (Kim et al. 2019).

PD brain analysis suggests that multiple pathways may be responsible for the death of nigral 

neurons. An electron microscopic observation of PD brain samples suggested apoptotic, 

necrotic, and autophagic cell death of nigral dopaminergic neurons (Anglade et al. 1997). 

The presence of an autophagosomal marker, the microtubule-associated protein 1A/1B-light 

chain 3 (LC3), in the Lewy bodies of the PD patients supports the active role of autophagy 

in this disease (Tanji et al. 2013). Beclin-1, an autophagy regulator protein, is also increased 

in PD brains (Spencer et al. 2009). Additionally, the aggregated form of α-synuclein, which 

is a predominant component of Lewy bodies, may be the result of dysfunctional autophagy 

(Arotcarena et al. 2019). Interestingly, in the post-mortem PD brain, observed microglial 

activation is correlated with the presence of this aggregated α-synuclein form (Croisier et al. 

2005). The active participation of inflammation in PD is seen by the presence of cytokines in 

PD brains (Nagatsu et al. 2000) and the presence of CD4 + T cells in PD animal models 

(Haque et al. 2020; Samantaray et al. 2015). Aggregated α-synuclein also induces reactive 

oxygen species (ROS) production in the cells (Reeve et al. 2015), and oxidative stress can 

exacerbate the α-synuclein aggregation (Glick et al. 2010; Scudamore and Ciossek 2018). 

Thus, the detection of multiple deleterious pathways in PD brains and associated animal 

models suggest that these pathways may interact with each other in disease initiation and 

progression.

Therefore, recent studies have focused on ascertaining which cellular pathways lead to the 

onset of pathological changes in specific brain regions. Experimental studies in animal 

models and human post-mortem tissues have recognized some key players in the progression 

of PD. Therefore, one specific event may be required to initiate cell death (primary 

pathway), which leads to the involvement of other secondary pathways, much like the 

“falling row of dominos”. Significant participants in the central nervous system (CNS) 

Zaman et al. Page 2

Metab Brain Dis. Author manuscript; available in PMC 2021 June 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



include neurons, astrocytes, microglia, oligodendrocytes, vessel-associated cells, resident 

innate immune cells, and immune cells from the peripheral system. A complex network of 

crosstalk between these cells together with cytokines and chemokines supports function of 

the normal brain. However, any subtle changes of extrinsic or intrinsic factors in the 

surrounding environment may disrupt regular interaction. Increasing numbers of studies are 

suggesting the critical role of neuroinflammation in neurodegenerative diseases. There is a 

delicate molecular balance during the neuroinflammatory process, and glial cells can help 

prevent or repair the damage caused by initial insults (Fig. 1). Activation of glial cells 

together with signals from infiltrating immune cells can contribute to pathophysiological 

changes in neurodegenerative diseases. Thus, it is becoming increasingly clear that a 

complex communication network between neurons, glia, and immune cells may play a 

detrimental role in the disease process.

Beyond sporadic PD, there are known genetic risk factors involved in initiating Parkinsonian 

progression (Nuytemans et al. 2010). Well defined mutations include: Leucine-Rich Repeat 

Kinase 2 (LRRK2), Protein DJ-1 (DJ-1), α-synuclein (SNCA), Ubiquitin C-Terminal 

Hydrolase L1 (UCHL1), PTEN-Induced Putative Kinase 1 (PINK1), and Parkin (PRKN) 

(Abeliovich and Gitler 2016; Jin and Youle 2012; Jones 2010; Liu et al. 2017; Marongiu et 

al. 2009; Nuytemans et al. 2010). Familial PD (autosomal dominant or recessive inheritance 

of the genes) patients represent only 5–10 % of PD cases. Moreover, the disease onset and 

progression are heterogeneous (Martinez and Peplow 2017), suggesting several subtypes of 

PD may exist. The critical role of mitochondria in PD is demonstrated in these known 

mutations, which result in mitochondrial damage and ROS formation (Klein and 

Westenberger 2012; Selvaraj and Piramanayagam 2019). As discussed below, animal models 

of PD with these mutations are valuable to aid understanding of the underlying cellular and 

molecular disease mechanism(s) in other non-familial cases.

Neuroinflammation

Microglia

The role of microglia in neuroinflammation has been studied in neurodegenerative diseases 

such as PD, Amyotrophic lateral sclerosis (ALS), and Alzheimer’s disease (AD) due to their 

activated presence at lesion sites in diseased patients’ brains (McGeer et al. 1988a, b). 

McGeer and collaborators (McGeer et al. 1988a, b) detected reactive microglia in the SN of 

PD and AD patients; they suggested that the presence of microglia is a sensitive indicator of 

pathological changes in these neurodegenerative disorders. Histological evaluation of PD 

patient brains also detected activated microglia and reactive astrocytes (Kam et al. 2020), 

suggesting neuroinflammation may be a critical factor in the disease process (Lecours et al. 

2018; Long-Smith et al. 2009).

Microglia and astrocytes are known to play crucial roles in maintaining brain homeostasis 

(Barres 2008; Colombo and Farina 2016; Gertig and Hanisch 2014; Heithoff et al. 2021; 

Khakh and Sofroniew 2015; Linnerbauer et al. 2020; Paolicelli et al. 2011); alterations in 

glial cell activation status caused by peripheral events may eventually lead to pathological 

changes in the CNS. Microglia are resident innate immune cells (initial responders in the 

CNS) derived from the primitive hematopoietic progenitors in the yolk sac on embryonic 
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day 8; by embryonic day 10.5, these cells colonize the developing brain (Alliot et al. 1999). 

Later, microglia maintain their region-specific density by self-renewal (Ajami et al. 2007; Li 

and Barres 2018). Microglia appear in the brain before other glial cells (astrocytes and 

oligodendrocytes) and neurons (Kriegstein and Alvarez-Buylla 2009), suggesting that they 

could play essential functions in the brain during development. They also perform immune 

surveillance (Nimmerjahn et al. 2005) and respond to CNS pathogens and injuries. Studies 

have shown that microglia actively prune synapses in the developing brain, playing a 

prominent role in maintaining brain homeostasis during development (Weinhard et al. 2018). 

A recent study by Socodato and collaborators observed synaptic pruning in adult mice 

following alcohol intoxication (Socodato et al. 2020), leading to anxiety-like behavior. 

Similarly, the regulation of neurogenesis in the adult hippocampus indicates microglial 

involvement in maintaining brain homeostasis later in life (De Lucia et al. 2016; Diaz-

Aparicio et al. 2020; Frost and Schafer 2016; Sato 2015).

Associated with the diverse array of neurons (Lein et al. 2007), microglial populations in the 

brain are also heterogeneous (Li et al. 2019), and the SN (characteristically affected in PD) 

is densely populated by microglia (Lawson et al. 1990). Like neurons, microglial 

populations also demonstrate distinct region-dependent molecular identity (Grabert et al. 

2016) suggesting distinct functions in different brain areas. Age and chronic stress are 

believed to induce morphological and functional changes (Lecours et al. 2018). Microglia 

and estradiol actively participate in the pre-optic area during the critical perinatal 

development period for sexual differentiation in male mice (Lenz et al. 2013). Transcriptome 

analyses in young adult male/female mice revealed the differentially expressed genes in 

microglia isolated from female mice compared to male mice (Villa et al. 2018). This study 

found that genes associated with inflammatory processes are more highly expressed in male 

mice. Contrary to this, females differentially expressed genes associated with inhibiting 

inflammatory responses and more robust repair mechanisms. The transcription factor driving 

the differentially expressed genes in microglia is the nuclear factor κB (NF-κB). This sex-

specific difference highlights the role of microglia since PD is more prevalent in males than 

females by a 2:1 ratio, respectively (Cerri et al. 2019; Hirsch et al. 2016; Picillo et al. 2017). 

Recent studies have likewise demonstrated neuroprotective properties of low-dose estrogen 

treatment in rats following spinal cord injury (Cox et al. 2021). Wu and collaborators 

demonstrated sex- and age-specific differences in SN microglia density in mice (Wu et al. 

2016). Moreover, they showed the association of activated microglia with SN dopaminergic 

neurons, where the high density of activated microglia leads to fewer SN neurons. Since 

microglia express estrogen receptors (Sierra et al. 2008; Thakkar et al. 2018; Wu et al. 

2016), neuroprotective estrogen may inhibit inflammatory responses in microglia reducing 

the incidence of PD in women.

Regional variations in microglial phenotypes and functions indicate they are versatile cell 

types, regulated in part by the local microenvironment (De Biase et al. 2017; Lenz et al. 

2013). The transcriptome analysis by Villa et al. (Villa et al. 2018) showed that in addition to 

having a neuroprotective phenotype, microglia from female mice express fewer 

inflammatory markers than those from male mice. In addition, De Biase et al. (De Biase et 

al. 2017) demonstrated a regional variation in microglial phenotypes in basal ganglia 

associated with local factors. A dense population of microglia in SN (Kim et al. 2000) may 
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predispose this brain region to immune challenge. Since basal ganglia are specifically 

affected in PD, this variation in microglial phenotype requires more attention to further 

evaluate its functional role in normal and disease states.

Microglial activity is commonly categorized by proinflammatory (M1) and 

antiinflammatory (M2) phenotypical characteristics (Fig. 2a). The presence of neurotoxic 

M1 microglia at the site of neurodegeneration suggests this phenotype may have replaced 

the neuroprotective M2-type microglia, or transformed from M2 to M1 during the disease 

process (Tang and Le 2016). Since the presence of local cues plays a critical role in 

regulating microglial phenotypes, the presence of aggregated α-synuclein, amyloid beta 

(Aβ) or other unknown stimuli may promote specific microglial phenotypical expression 

(Ferreira and Romero-Ramos 2018; Sala Frigerio et al. 2019). Moreover, the high density of 

microglia in SN may produce an abundance of proinflammatory cytokines/chemokines, 

leading to the degeneration of nigral neurons in PD. Although incompletely understood, 

neuroinflammation influenced by microglia may be a significant contributing factor in PD 

etiology.

A significant role of microglia in the pathogenesis of PD is also evident in PD-linked 

mutations. As mentioned earlier, there are well-defined genetic mutations, SNCA, LRRK2, 

PRKN, DJ-1, UCHL1, and PINK1, which are involved in PD. The SNCA gene encodes α-

synuclein, and missense mutations and multiplications of this gene lead to the development 

of PD (Ibanez et al. 2009; Singleton et al. 2003). These mutations can activate microglia 

(Kam et al. 2020) because of the complex interplay between microglia and α-synuclein 

(Choi et al. 2020; Ferreira and Romero-Ramos 2018; Wang et al. 2015). Activated microglia 

are predominantly involved in the clearance of excess α-synuclein in the cytoplasm, α-

synuclein also activates microglia, causing neuronal toxicity by production of ROS (Jin et al. 

2007; Zhang et al. 2005). Furthermore, α-synuclein reduces microglial phagocytosis, 

leading to impaired clearance of aggregated proteins or cellular debris (Choi et al. 2015). A 

recent study showed that knockdown of LRRK2 inhibited microglial proinflammatory 

responses in cell culture model (Daher et al. 2014). SN neurons were also found to be 

protected in LRRK2 knockout mice following lipopolysaccharides (LPS) induced 

neuroinflammation as well as adeno-associated virus-mediated transduction of human α-

synuclein. Interestingly, these studies also showed that under normal conditions, the LRRK2 

expression was undetectable in the mid-brain of wild-type mice. However, its expression is 

increased in inducible nitric oxide synthase (iNOS)-positive myeloid cells in the SN neurons 

following overexpression of α-synuclein or exposure to LPS. These findings support the role 

of LRRK2 in the clearance of α-synuclein and activation of microglia. Similarly, the effect 

of PRKN mutation on microglia was detected in PARKIN−/−murine glial culture (Solano et 

al. 2008). It supported the microglial population more than the astrocytes when compared 

with wild-type cultures. Another cell culture study with PINK1 mutation demonstrated 

reduced proinflammatory and antiinflammatory cytokine production in microglia following 

LPS/interferon-gamma (IFN-γ) stimulation. These findings in animal models with genetic 

mutations and in cell culture studies strongly indicate that microglia play a critical role in the 

pathogenesis of PD.
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Astroglia

Along with microglia, astrocytes also contribute to neurodegenerative diseases (Teismann 

and Schulz 2004). Glial fibrillary acidic protein (GFAP), an astrocytic marker was isolated 

from demyelinated multiple sclerosis (MS) plaques (Eng et al. 2000). Astrocytes are the 

most abundant glial cell types in the brain (Miller 2018). Based on their location and 

morphological features, protoplasmic and fibrous astrocytes are located in the grey and 

white matter, respectively (Miller 2018). The highly ramified protoplasmic astrocytes 

maintain integrity of the blood-brain barrier (BBB) (Alvarez et al. 2013; Cabezas et al. 2014; 

Heithoff et al. 2021; Obermeier et al. 2013). An increased level of proinflammatory 

cytokines changes BBB permeability (Wong et al. 2004). The communication changes 

between astrocytes and blood vessels induce astrocytes to become reactive (Alvarez et al. 

2013). Moreover, studies have localized the aggregation of α-synuclein only in protoplasmic 

astrocytes, making these astrocytes relevant to the onset and progression of PD (Braak et al. 

2006; Halliday and Stevens 2011). Astrocytes are also a critical source of specific factors 

required for neuronal differentiation and survival (Allen and Eroglu 2017; Barreto et al. 

2011; Christopherson et al. 2005; Chung et al. 2015; Dringen 2000; Molofsky et al. 2014). 

Glial cell-line derived neurotrophic factor (GDNF) secreted by astrocytes promotes survival 

of SN neurons (Sariola and Saarma 2003; Yasuda and Mochizuki 2010). Indeed, the 

maintenance of SN neurons is a crucial function of astrocytes, since a decreased level of 

GDNF may lead to SN neuronal death and ultimately Parkinsonian symptoms (Betarbet et 

al. 2000). These critical functions of astrocytes indicate they could be actively involved in 

the pathogenesis of PD. Notably, a subpopulation of astrocytes in basal ganglia plays circuit-

specific roles and could possibly regulate the striatal function (Martin et al. 2015). Further 

studies of this sub-population of astrocytes may provide insights into the vulnerability of 

basal ganglia and the resulting development of neurodegenerative diseases.

Recent genomic and transcriptomic studies suggest that astrocytes function in a highly 

context-dependent manner. Moreover, there are different astrocytic subpopulations, which 

can either support the ongoing disease process or suppress it (Bayraktar et al. 2020; 

Liddelow and Barres 2017; Liddelow et al. 2017; Molofsky et al. 2014; Wheeler and 

Quintana 2019); Lin et al. 2017; Rothhammer et al. 2016; Wheeler et al. 2020). Like 

microglia, two astrocyte phenotypes have been detected in the brain (Fig. 1), A1 and A2, and 

they are associated with neuroinflammation and ischemia, respectively (Liddelow et al. 

2017). Liddelow et al. (2017) suggested that A1 astrocytes may be harmful, because they up-

regulate classical complement cascade genes which damage synapses. In contrast, A2 

astrocytes up-regulate many neurotrophic factors, which support neuronal growth and 

survival in the developing and mature brain. This study showed that activated microglia 

secrete proinflammatory cytokines interleukin 1 α (IL-1 α), tumor necrosis factor (TNF), 

and complement component 1, subcomponent q (C1q). These factors promoted A1 

phenotypical astrocytes in the CNS after injury (Fig. 1). Other intrinsic and extrinsic factors 

also determine the fate of astrocytes following CNS insult. Some of these factors are age and 

sex dependent (Johnson et al. 2008). Both astrocytes and microglia are shown to release 

different cytokines and other inflammatory mediators during CNS inflammation (Shields et 

al. 2020; Tang and Le 2016; Tay et al. 2017; Yang and Zhou 2019). As depicted in Fig. 1, 

reactive astrocytes detected in neurodegenerative diseases are induced by activated microglia 
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following LPS exposiue. Crosstalk between these glial cells appears to modulate 

inflammation (Liddelow et al. 2017). Moreover, ongoing molecular events due to oxidative 

stress, autophagy, or inflammation may influence each other in the neurodegenerative 

process (Fig. 2a–c). The genetic alterations associated with PD are also expressed in 

astrocytes, strongly suggesting that glial participation is crucial in the pathogenesis of the 

disease.

T cells

The CNS is understood to possess immune privilege. Microglia, the innate immune cells of 

the brain provide immune surveillance and maintenance. Unlike microglia, adaptive immune 

cells, such as T cells, can participate in both the inflammation and recovery processes in 

CNS diseases (Luckheeram et al. 2012). Activated T cells can infiltrate the brain and 

promote neurodegeneration as found in animal models of PD (Kustrimovic et al. 2016). In 

general, T cells are classified based on their use of CD4 and CD8 co-receptors to bind to 

major histocompatibility complex (MHC) molecules. CD8 + cytotoxic T cells interact with 

MHC class I molecules, whereas CD4 + helper T cells interact with and recognize the 

antigen presented by MHC class II molecules (Huang et al. 2009). These CD4 + T cells are 

further phenotypically differentiated into specific subtypes: Th1, Th2, Th17, and regulatory 

T cells (Tregs). Cytokine signaling pathways regulate this differentiation and activate 

lineage-specific transcription factors and epigenetic modifications (Chabot et al. 2001; 

Codarri et al. 2011). These CD4 + T cells in the CNS are observed in neurological disorders, 

especially in autoimmune diseases like MS (Codarri et al. 2011; Komuczki et al. 2019). CD4 

+ T cells are also detected in human CNS and animal models of PD (Brochard et al. 2009; 

Haque et al. 2020; Samantaray et al. 2015), AD (Baruch et al. 2015; Dansokho et al. 2016; 

Monsonego et al. 2003), and stroke (Ito et al. 2019). Their presence in neurological disorders 

suggests that CD4 + T cells are involved in neuroinflammation. Recent studies have shown 

that activation of calcium activated neutral protease (calpain) and CD4 + T cells are linked 

with the pathology of MS, PD, traumatic brain injury (TBI), spinal cord injury (SCI), and 

optic nerve crush injury, while calpain inhibition attenuates inflammatory T cells and 

promotes the recovery process (Haque et al. 2020; Hauben and Schwartz 2003; Kipnis et al. 

2003; Moalem et al. 1999; Samantaray et al. 2015). Contrary to this, the inflammatory CD4 

+ T cell population present in ischemia-reperfusion injury and MPTP (1-methyl-4-

phenyl-1,2,3,6-tetrahydropyridine) treated mice are harmful to neurons (Brochard et al. 

2009; Haque et al. 2020; Hum et al. 2007; Samantaray et al. 2015). Based on evidence in 

different injury models, the role of T cell sub-populations can be either detrimental or 

supportive at the injury site, suggesting that the presence of local cues plays a significant 

role in directing T cell functions (Filiano et al. 2017).

The widely-used PD animal model, 6-hydroxydopamine (6OHDA), shows an increase in 

microglial MHC II expression (Cicchetti et al. 2002; Fuzzati-Armentero et al. 2019), which 

may activate CD4 + T cells. A study by Brochard et al. (2009) demonstrated the presence of 

CD8 + as well as CD4 + T cells in the SN of post-mortem PD patients and mice treated with 

MPTP. Additionally, CD4 + T cells (not CD8 + T cells) are detrimental to SN neurons in 

mice treated with MPTP (Brochard et al. 2009). This study showed that CD4 + T cell 

toxicity was dependent on the Fas/FasL pathway rather than the IFN-γ pathway. Studies 
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performed in our laboratory also observed a distinct subpopulation of CD4 + T cells in 

animal models of PD (Haque et al. 2020; Samantaray et al. 2015) following MPTP injection. 

Interestingly, further characterization of CD4 + T cells suggested that the inflammatory CD4 

+ T cells are granzyme B/perforin expressing cells in MPTP mice, while the regulatory T 

cell (Tregs) population decreased following MPTP injection. Moreover, the calpain inhibitor 

calpeptin modulated the activation of granzyme B and perforin producing splenic T cell 

populations after MPTP treatment, significantly inhibiting this distinct sub-population of 

CD4 + T cells. Treatment of MPTP mice with calpeptin restored the Treg population. Along 

with these changes, calpain inhibition protected SN dopaminergic neurons from 

degeneration (Haque et al. 2020). The mechanisms and pathways related to this CD4 + T 

cell function in MPTP mice are still under investigation, but suppression of inflammation by 

calpeptin may reduce the damage to SN neurons following MPTP treatment. Our findings 

(Haque et al. 2020; Podbielska et al. 2016; Samantaray et al. 2015) suggest that calpain 

activates microglia, astroglia, and T cells following MPTP treatment. However, calpeptin 

prevents calpain activation and neuroinflammation with resulting SN dopaminergic neuronal 

survival (Haque et al. 2020; Samantaray et al. 2015). Thus, calpain may have pathogenic 

potential in both neuronal cell death and immune cell activation.

Kustrimovic and collaborators (Kustrimovic et al. 2016, 2018) evaluated PD patient blood 

samples to evaluate the role of peripheral adaptive immunity in PD. They found CD4 + T 

cells expresses dopaminergic receptors (Kustrimovic et al. 2014), and immature CD4 + T 

cells from PD patients mostly differentiate into the Th1 lineage, a proinflammatory 

phenotype (Kustrimovic et al. 2018). CD4 + T cells also produced an increased amount of 

IFN-γ and TNF-α in PD patients, suggesting the peripheral immune system plays an 

important role in the disease process.

Oxidative stress

Mitochondria

Aging is one of the leading factors associated with PD and AD. Studies have demonstrated 

the manifestation of oxidative stress in CNS cells due to ongoing cellular activity (Fig. 2c), 

supporting a crucial role of the mitochondria in oxidative damage, as seen in PD (Andersen 

2004; Blesa et al. 2015; Dias et al. 2013; Guo et al. 2018; Maguire-Zeiss et al. 2005). Any 

dysfunction of this cell organelle can be detrimental to cell function and viability. SN 

neurons in PD patients demonstrate specific complex I deficits (Schapira et al. 1990b) 

associated with mitochondrial dysfunction (Schapira et al. 1990a). MPTP and rotenone are 

commonly used toxins to create an animal model for PD. These toxins target complex I and 

damage mid-brain SN dopaminergic neurons (Betarbet et al. 2000; Hoglinger et al. 2005; 

Martinez and Greenamyre 2012; Testa et al. 2005) and motor neurons in the spinal cord 

(Samantaray et al. 2007). The extensive arborization of single nigrostriatal dopaminergic 

neurons (Matsuda et al. 2009) increases the susceptibility of the mitochondria to oxidative 

damage, due to the high energy demands of these neurons (Ge et al. 2020). Oxidative 

damage to mitochondria plays a crucial role in the onset and/or progression of PD. 

Additionally, the pathogenic form of α-synuclein inhibits complex I, causing mitochondrial 

degeneration (Martin et al. 2006). These studies also indicate that environmental toxins may 
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be a significant contributing factor in sporadic PD (Betarbet et al. 2000; Johnson et al. 2019; 

Klingelhoefer and Reichmann 2015).

Mutations detected in PD confirm the active participation of mitochondria in PD 

pathogenesis (Gautier et al. 2008; Ge et al. 2020; Kumar et al. 2020; Marongiu et al. 2009; 

Mouton-Liger et al. 2017). PINK1 and Parkin are required to maintain mitochondrial 

integrity (Guo 2012); these proteins also regulate mitophagy (Deas et al. 2011; Jin and Youle 

2012). ROS-induced mitochondrial dysfunction is one of the factors associated with aging 

(Cui et al. 2012), suggesting that mitochondrial functional impairment is detrimental for 

dopaminergic SN cells; however, SN neuronal loss due to mitochondrial dysfunction is not 

observed in all PD cases.

Reactive Oxygen Species (ROS)

Oxidative stress occurs due to the imbalance between production of ROS and the availability 

of antioxidants or radical scavengers (Forrester et al. 2018; Ng et al. 2013; Pizzino et al. 

2017) Oxidative stress is an important factor in cell death in response to a variety of 

pathophysiological conditions (Fig. 2c). Different pathways generate ROS in the brain 

during routine cellular processes; however, sometimes either overproduction or defective 

clearance leads to the accumulation of these free radicals (Dias et al. 2013). Mitochondria 

are significant contributors to ROS production (Cui et al. 2012), but oxidative stress is also 

reported to result from defective lipid peroxidation (Niki 2008), DNA damage (Narciso et al. 

2016), formation of insoluble Parkin aggregates, decreased E3 ligase activity (LaVoie et al. 

2007), and possibly α-synuclein aggregation (Scudamore and Ciossek 2018). Dopamine 

metabolism also results in ROS production, probably contributing to SN dopaminergic 

neuron vulnerability to oxidative damage (Jenner 2003). Dopamine undergoes auto-

oxidation and produces dopamine quinones along with free radicals. Monoamine oxidase 

(MAO) and catechol O-methyl transferase (COMT) enzymes also participate in dopamine 

oxidation. MAO-B, which metabolizes dopamine in the cytosol, is localized on the 

astrocytic outer mitochondrial membrane. Since dopaminergic neurons utilize dopamine, the 

dopamine quinone formation may lead to dysfunction and ultimately death of these neurons 

(Burbulla et al. 2017; Miyazaki and Asanuma 2009). Post-mortem analysis of brain samples 

from PD patients also suggests oxidative stress in SN dopaminergic neurons (Jenner 1998; 

Siddiqui et al. 2012). However, oxidative stress may not be the causative factor, rather 

induced or activated by another pathway (Jenner 1998). The prominent participation of 

MAO-B in PD pathogenesis is supported by increased levels of this enzyme in PD patients 

(Siddiqui et al. 2012), and the MAO-B inhibitor, Seleginin, is used for treatment in these 

patients. Calpain inhibition also reduces ROS generation and caspase – 3 activity in cultured 

primary rat neurons (Podbielska et al. 2016), suggesting calpain may also promote ROS 

production and ultimately SN neuronal death in PD. Recent studies in our laboratory 

observed oxidative stress and calpain activation in MPTP mice; these effects were attenuated 

by calpeptin, suggesting calpain inhibition is neuroprotective for SN neurons (Haque et al. 

2020; Samantaray et al. 2015).
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Autophagy

Autophagy is a highly conserved cellular process in which aggregate-prone proteins are 

targeted for cellular degradation (Fig. 2b). Autophagy dysfunction has been associated with 

a variety of pathologies including neurodegenerative diseases (Anglade et al. 1997; 

Arotcarena et al. 2019; Cerri and Blandini 2019; Glick et al. 2010; Janda et al. 2012; Lynch-

Day et al. 2012; Menzies et al. 2017). The three primary types of autophagy include: (i) 

Macroautophagy - the primary pathway for removal of damaged cell organelles or unused 

proteins; (ii) Microautophagy- lysosomes directly engulf the cytoplasm by invagination, and 

(iii) Chaperon-mediated autophagy (CMA)- a very selective, complex pathway (Sala et al. 

2016). Macroautophagy is further divided into bulk and selective modalities. Selective 

autophagy removes cell organelles with specific designations, e.g., mitophagy (mitochondria 

removal), chlorophagy (chloroplast removal); lipophagy (lipid removal), or ribophagy 

(ribosome removal). PINK1 and Parkin are involved in the maintenance of mitochondrial 

function and cytoarchitecture (Gautier et al. 2008; Palacino et al. 2004). Gautier and 

collaborators (Gautier et al. 2008) observed that in PINK−/− mice, the loss of mitochondrial 

function is specific to dopaminergic circuitry, an interesting regional specificity of PINK1 

related to mitochondria function. Mitophagy as a selective form of autophagy degrades 

mitochondria (Fig. 2b), which is regulated by PINK1 and Parkin proteins (Deas et al. 2011; 

Jin and Youle 2012; Marongiu et al. 2009). In familial PD, Parkin and PINK1 mutations are 

the most common causes of autosomal recessive parkinsonism and possibly occur in early 

onset of the disease (Brooks et al. 2009). The known critical role of PINK1 and Parkin in PD 

highlights the significance of autophagy in the disease process. Additionally, the other 

known mutations involved in familial PD, including SNCA, LRRK2, UCHL1, and DJ-1, are 

known to alter activity of the CMA pathway (Sala et al. 2016). Since CMA also plays a role 

in α-synuclein clearance, the altered activity of CMA has been postulated to promote 

aggregation of α-synuclein in PD pathogenesis (Marongiu et al. 2009; Sala et al. 2016). In 

addition to functional and morphological maintenance of the mitochondrial network 

(Gautier et al. 2008; Palacino et al. 2004), PINK1 and Parkin also critically regulate the 

removal of dysfunctional mitochondria through mitophagy (Deas et al. 2011).

Anglade and collaborators (Anglade et al. 1997) observed that cell death in SN 

dopaminergic neurons in PD patients is due to apoptosis and autophagy (Anglade et al. 

1997). The detection of more than one pathway in cell death indicates molecular 

heterogeneity among the SN dopaminergic neurons. Studies in PD animal models have 

reported dysfunction of the autophagy pathway (Lynch-Day et al. 2012). Moreover, 

intracellular and extracellular stress can initiate the autophagy pathway (He and Klionsky 

2009), suggesting that oxidative stress due to ROS formation in PD may induce autophagy 

and lead to degeneration of SN neurons (Janda et al. 2012). As mentioned earlier, the 

neuropathological hallmark of PD is the presence of aggregated α-synuclein inclusions in 

the cytoplasm. The pathological accumulation of this misfolded α-synuclein in PD patients 

may indicate a dysfunctional protein degradation process (Arotcarena et al. 2019). Since 

autophagy is the only known pathway in mammalian systems to degrade damaged cellular 

organelles and misfolded or aggregated proteins (Glick et al. 2010), its interruption might be 

a critical factor in accumulation of α-synuclein protein and later onset/progression of PD.
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Conclusions

Multiple regionally specific cellular and molecular pathways play active roles during the 

Parkinsonian disease process. Moreover, these pathways interact and influence each other 

under normal and pathological situations. Activated microglia and astrocytes can initiate 

neuroinflammation and assist in the progression of pathological damage to SN neurons. 

Similarly, oxidative stress may be caused by various insults, like environmental toxins or 

age-associated mitochondrial dysfunction, leading to ROS production. In dopaminergic 

neurons, auto-oxidation of dopamine is a significant source of ROS that leads to neuronal 

oxidative stress. The high energy demands of dopaminergic neurons during the aging 

process may contribute to mitochondrial dysfunction and oxidative damage. Since 

mitophagy clears dysfunctional mitochondria from SN neurons, mutation-related 

impairments in autophagy of defective proteins can allow for toxic protein accumulation in 

the cell. The effects of aging on these molecular pathways and cellular functions are 

imprecisely understood; thus, future studies of these molecular pathways and their 

interaction with each other during normal and pathological states are critical to developing 

disease-specific treatments.
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Fig. 1. 
Schematic representation of astrocyte activation and differentiation following CNS injury by 

different types of stimuli. Microglia (triggered by different stimuli) contribute to activation 

of astrocytes. Depending on the micro-environment, astrocytic phenotypic differentiation 

may result in A1 astrocytes, which contribute to inflammation and neuronal death. However, 

A2 astrocytes can promote neuronal survival and recovery of function. Calpain activity may 

facilitate A1 astrocyte differentiation and resulting neuronal injury. However, calpain 

inhibition by calpeptin may contribute to neuronal survival, CNS recovery and repair 

through A2 astrocytic activity
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Fig. 2. 
The diagram depicts several pathways involved in PD pathophysiology, a 
Neuroinflammation – Microglia are resident immune cells activated by various stimuli, 

e.g., environmental neurotoxins, pathogens, peripheral inflammation (CD4 + T cells), age, 

and chronic stress. These stimuli may promote divergent microglial phenotypes such as M1, 

a proinflammatory phenotype, which can be toxic to neurons. M1-type microglia secrete 

proinflammatory cytokines such as IL-1β, IL-6, IFN-γ, TNF-α, complement proteins, 

inducible nitric oxide synthase (iNOS), and reactive oxygen species (ROS). M2, an 
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antiinflammatory phenotype microglia, is believed to be neuroprotective. They secrete 

cytokines and growth factors such as IL-10, TGF-β, brain-derived neurotrophic factor 

(BDNF), and arginase-1 (Arg-1). Crosstalk between microglia and astrocytes may promote a 

time dependent secretion of cytokines/growth factors, contributing to PD pathological 

conditions, b Autophagy - Neuroinflammation influences all three types of autophagy: (i) 

macroautophagy (MacroAP), (ii) microautophagy (MicroAP), and (iii) chaperon mediated 

autophagy (CMA). Genetic mutations may contribute to dysfunction of CMA, leading to α-

synuclein aggregation. Mitophagy, a selective autophagy process, can clear dysfunctional 

mitochondria. Pink1 and Parkin maintain mitochondrial cytoarchitecture and function; they 

also regulate mitophagy. c Oxidative stress - Autooxidation of dopamine (DA) in 

dopaminergic neurons generates free radicals and DA quinone. These free radicals lead to 

oxidative stress. Associated with aging and specific toxins, mitochondrial dysfunction 

causes the generation of ROS, which ultimately results in oxidative cellular damage
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