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• Effect of park use and green spaces on
COVID transmission is currently un-
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• Modelled transmission against mobility
and landscape variables in England.

• Reducing mobility and shifting mobility
outdoors may reduce transmission.

• Parks may have provided a relatively
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• Park benefits are likely greatest in urban
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The COVID-19 pandemic has had severe impacts on global public health. In England, social distancing measures
and a nationwide lockdown were introduced to reduce the spread of the virus. Green space accessibility may
have beenparticularly important during this lockdown, as it could have provided benefits for physical andmental
wellbeing. However, the associations between public green space use and the rate of COVID-19 transmission are
yet to be quantified, and as the size and accessibility of green spaces vary within England's local authorities, the
risks and benefits to the public of using green space may be context-dependent. To evaluate how green space af-
fected COVID-19 transmission across 299 local authorities (small regions) in England, we calculated a daily case
rate metric, based upon a seven-day moving average, for each day within the period June 1st - November 30th
2020 and assessedhowbaseline health andmobility variables influenced these rates. Next, looking at the residual
case rates, we investigated how landscape structure (e.g. area and patchiness of green space) and park use influ-
enced transmission. We first show that reducing mobility is associated with a decline in case rates, especially in
areas with high population clustering. After accounting for known mechanisms behind transmission rates, we
found that park use (showing a preference for park mobility) was associated with decreased residual case
rates, especially when green space was low and contiguous (not patchy). Our results support that a reduction
in overall mobility may be a good strategy for reducing case rates, endorsing the success of lockdown measures.
However, if mobility is necessary, outdoor park use may be safer than other forms of mobility and associated
activities (e.g. shopping or office-based working).

© 2021 Elsevier B.V. All rights reserved.
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1. Introduction

The COVID-19 pandemic has had severe impacts on public health
(Mahase, 2020) and remains an emergency of international concern.
m (T.F. Johnson).
In response to the pandemic, the UK government implemented social
distancing measures and nationwide lockdowns to control the spread
of the virus (UK Government, 2020). During these periods, the general
public were limited in the distances they could travel and, at certain
points, the number of times they could leave their residence each day;
with an allowance of onenon-essential trip during the peak of transmis-
sion (UK Government, 2020). Though social restrictions have fluctuated

http://crossmark.crossref.org/dialog/?doi=10.1016/j.scitotenv.2021.148123&domain=pdf
https://doi.org/10.1016/j.scitotenv.2021.148123
mailto:Thomas.frederick.johnson@outlook.com
https://doi.org/10.1016/j.scitotenv.2021.148123
http://www.sciencedirect.com/science/journal/
www.elsevier.com/locate/scitotenv


T.F. Johnson, L.A. Hordley, M.P. Greenwell et al. Science of the Total Environment 789 (2021) 148123
in response to case rates, social distancing has been constant and there
has been a general message of reduced movement and staying local
where possible for much of 2020 and throughout 2021. These restric-
tions have meant that members of the public became more reliant on
amenity spaces close to their residences for daily exercise and/or recre-
ation (Geng et al., 2021). Green spaces may provide a comparatively
safe place for these activities, though the amount and structure of
green space available for public use differs widely across the UK. Here
we evaluate if differences in the availability and structure of public
green space within local authorities in England (local government
bodies responsible for public services within a specified area), and
their usage, influenced the local rate of incidence of COVID-19.

Green spaces, which we define as vegetated non-arable areas - see
Taylor and Hochuli (2017) for further details - provide important cul-
tural and recreational ecosystem services, benefiting both mental and
physical health (Beyer et al., 2014; Cohen-Cline et al., 2015). These ben-
efits are usually considered in terms of reducing the prevalence or se-
verity of conditions such as mental stress (Nutsford et al., 2013) or
cardiovascular disease (Seo et al., 2019), and some of these benefits
have continued throughout the pandemic (Slater et al., 2020; Soga
et al., 2020). However, the influence of green space use on disease trans-
mission rates has received less investigation, but is of great importance
as green space use has increased rapidly during the pandemic (Venter
et al., 2020). Furthermore, it is unclear how ‘safe’ green spaces are dur-
ing periods of higher incidence especially in densely populated areas
(Shoari et al., 2020).

We anticipate that green space could impact COVID-19 incidence in
twoways: general health andwellbeing, and transmission. It is conceiv-
able that general health and wellbeing is greater in areas with more
green space, as higher levels of green space are associatedwith healthier
populations (Maas et al., 2006; Mitchell and Popham, 2007; van den
Berg et al., 2015). As COVID-19 has a greater impact on those with un-
derlying health conditions and sedentary lifestyles (Hamer et al.,
2020; Jordan et al., 2020), green spacemay, therefore, indirectly provide
some level of resilience to the disease and/or reduce incidence. How-
ever, our key focus here is on transmission, as it is likely that the
major benefits of outdoor recreation in green space are related to a
lower risk of infection. Current evidence suggests that COVID-19 is
spread via droplet infections, contact with contaminated individuals
or surfaces, and through aerosol transmission (Bahl et al., 2020). These
risks are likely minimised in green space areas, as generally, they are
less spatially confined, and contain fewer surfaces prone to frequent
touching or contact. Consequently, green space use may represent a
safe form of recreation by minimising risk of infection.

In England approximately 87% of the population arewithin a 10-min
walk of public parks and gardens (Shoari et al., 2020). However, both
the structure and amount of green space vary between local authorities,
and both could influence COVID-19 incidence. Generally, it has been
found that greater health benefits are derived from larger areas of
green space (Ekkel and de Vries, 2017). In the context of disease trans-
mission, larger areas may offer more space per individual, lowering
transmission risk. However, smaller fragmented areas of green space
are common in many residential areas and are, therefore, more accessi-
ble to much of the population and may be used more frequently. Fur-
ther, if public use is distributed across fragmented green spaces, the
wider effects of a transmission incidence could be reduced, as contacts
would be isolated to the members of a neighbourhood or community
adjacent to a particular green space. This process can be seen in animal
diseases where habitat fragmentation reduces transmission due to lim-
iting interactions between groups in different patches (Mccallum and
Dobson, 2002). However, fragmentation also typically results from re-
ductions in the total area of green space (Fahrig, 2013), leading to less
overall space per individual, possibly increasing transmission rates.

Whilst the effects of green space on COVID-19 transmission are cur-
rently unclear, other environmental and social factors are known to in-
fluence both the spread and severity of the disease. For example, human
2

mobility drives the spread of infectious diseases (Kraemer et al., 2019)
and studies have shown that reducing social interactions by restricting
mobility can lead to a decrease in transmission rates of COVID-19
(Chinazzi et al., 2020; Gatto et al., 2020). Furthermore, as diseases are
often spread along transport links and in offices (Gatto et al., 2020;
Zhang et al., 2018), enforcing lockdown situations that curtail move-
ment, such as requiring people to work from home, can have a great ef-
fect on reducing transmission rates. In addition to mobility, health and
social factors have been associated with increased severity of the dis-
ease such as age, underlying health conditions, and deprivation
(Richardson et al., 2020; Williamson et al., 2020). Consequently, any
possible effects of green space must be considered after attempting to
account for factors that could increase recorded incidence.

Given the stated benefits of green space, it is important to attempt to
evaluate the impact of green space use on transmission rates using the
available evidence. In addition, understanding the influence of green
space on COVID-19 incidence could provide an estimate of the value
of green space formaintaining public health if subjected to a resurgence
of the COVID-19 pandemic. And, in the longer term, indicate the poten-
tial benefits of local green space on future pandemics of comparative se-
verity. Here, using time series of COVID-19 caseswithin local authorities
in England, we explore how both green space use and access (i.e. avail-
ability of green spaces) influence COVID-19 incidence. Our approach is
to first construct a baseline transmission model to attempt to control
for factors likely to influence recorded COVID-19 incidence and then
to explore how green space influenced case rates above or below this
baseline. We predict that green space and the way it is structured will,
in itself, have no effect on case rates. However, we expect that an in-
crease in relative park use (i.e. spending time in green space over indoor
activities) will make the structure and availability of green space impor-
tant (Fig. 1). Specifically, when green space is low, park use will likely
represent a safer formofmovement (e.g. compared to shopping), unless
the green space becomes a congregation zone that inflates transmission
risk. Furthermore, we predict that case rates will be lower when green
space is fragmented, as the disease will be contained in more localised
areas. For example, if the local authority has one large park the presence
of an infected individual puts more people at risk than an infected indi-
vidual attending one of many parks. Further, we predict, as others have
found (Kraemer et al., 2020), that increased mobility will increase inci-
dence, but that park use (measured as relative use of parks) is a rela-
tively safe form of mobility (e.g. preferable over shopping).

2. Methods

2.1. Data compilation

2.1.1. COVID-19 case rates
We compiled daily lab-confirmed cases (incidence) of COVID-19 in

England from February 15th 2020 up to November 30th 2020 (available
from https://coronavirus.data.gov.uk/). We only included cases until
November, as in December England began an aggressive vaccination
campaign and themore infectious COVID B1.1.7 variant began to spread
widely (Horby et al., 2021) – factors that could confound our models
(see below). Cases were recorded at the lower tier local authority
level (administrative areas for local government; N = 299). These
local authorities vary in size (3–26,000km2), demographics, cultures,
and in socio-economic circumstances. Incidence over this time was
highly variable with periods of rapid increases, which were then rela-
tively controlled by periods of national lockdown (Fig. 2). To determine
factors influencing COVID-19 transmission, we estimated case rates for
each day in each local authority. Case rates were derived by fitting log-
linear models, regressing the natural log of daily cases against date
(days). To reduce the effect of daily variation in reported cases and in-
stead capture the general trend, we fit these regressions over 7-day
moving windows (Fig. S1) e.g. to estimate the case rate on August 4th,
a regression was fit between cases from August 1st – 7th, for August

https://coronavirus.data.gov.uk/


Fig. 1.Mechanisms bywhich green space and patchiness could interactwith parkuse to influence COVID-19 transmission. Theupper two rows describe the primary predictions,whilst the
bottom row explains alternate predictions. All variables (e.g. population density) except green space and patchiness, respectively, are held at a constant in these predictions. Green circles
with a tree icon indicate thepresence of green space.Dotted lines indicatewalking routes,whichbecomesparkusewhen the lineoverlaps a green space. The green health symbol indicates
that the landscape metric and park use is beneficial, whilst the red toxic symbol indicates a risk.
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5th a regression was fit between August 2nd – 8th. The coefficients of
thesemodels provided a daily case rate.We converted these coefficients
into a daily percentage change in cases. We opted to calculate case rates
instead of using raw daily case numbers, as case rates more adequately
capture transmissibility i.e. regardless of whether cases jumped from 5
to 10, or 50 to 100, the case rateswould capture the doubling effect. Fur-
thermore, case rates are more robust to variation in the population size
of a local authority.

2.1.2. Baseline transmission variables
We compiled variables which describe the mechanisms considered

to influence case rates (Table 1). Firstly, we derived two variables
which describe the structure of the local authority population: popula-
tion density – residential population density (controls for green space
in the green transmission model below); and population clustering –
Moran's I spatial autocorrelation of residential population density (con-
trols for patchiness in the green transmission model below). Secondly,
we compiled three variables which characterise the human population
in each local-authority prior to COVID-19: health – risk of premature
death or a reduction in quality of life due to poor mental or physical
health (Ministry of Housing Communities and Local Government,
2019); demography - the percentage of the population over 70 (Office
for National Statistics, 2021a); economy – the percentage of
unemployed-individuals in the non-retired local authority population
(UK Government, 2018). A high baseline health, whereby few individ-
uals have pre-existing underlying health conditions, may decrease the
chances of an individual presenting with severe symptoms of COVID-
19 (Clark et al., 2020). Accounting for this baselinehealthmay also assist
in controlling for the presence of asymptomatic undetected infections in
case rates.

National lockdowns, and the resulting reduction in people's mobil-
ity, were an important tool for reducing transmission within England
during the COVID-19 pandemic. We used Google Community Mobility
3

Reports to track human mobility and its effect on case rates (Google,
2020). These reports chart movement trends over time across six cate-
gories: retail and recreation, groceries and pharmacies, transit stations,
workplaces, residential, and parks. These trends describe how visitors
to, or time spent in, each of the six categories changed compared to a
pre-pandemic 5-week period (the median value from January 3rd to
February 6th 2020). As the mobility data contained missing values
(c.12%) for some local authorities and dates (Fig. S2),wewere conscious
that these missing values may lead to statistical inference errors within
the models below. As a result, we filled missing mobility values using
mice:multiple imputation chained equations Rpackage and ‘2l.pan’ impu-
tation approach, which is a hierarchical normal model within homoge-
nous within group variances (Van Buuren and Groothuis-Oudshoorn,
2011). This hierarchical structure allowed us to model mobility trends
accounting for differences in local authorities. We included the follow-
ing termswithin our imputationmodel: five Googlemobility timeseries
(all except residential), as well as a 1-day lag period for each timeseries,
the number of days along the timeseries since February 15th with a
cubic polynomial term, an indicator variable to describe whether each
day was a weekend or not, and the timeseries of daily COVID-19 cases
within the local authority. We also included terms that didn't vary
through time, including: the latitude and longitude of the local author-
ity, and all local authority covariates within the baseline and green
transmission models below (population density, population clustering,
health, demography, economy, green space, and patchiness). Finally,
we also included some national metrics that could influence local mo-
bility, including: a timeseries of daily COVID-19 cases measured at the
national scale, as well as the mean daily temperature and precipitation
within Central England. We ran this model through 10 chains, each
with 20 iterations, and 20 pan iterations. The imputation model
converged.

Conventionally, as part of a multiple imputation framework,
these 10 chains should then be modelled separately and coefficient



Fig. 2. a) Daily lab-confirmed cases across England, with lockdown periods (with restricted mobility) indicated with red shading. b) Google mobility trends (Google, 2020), describing
change in mobility over time for five different categories, relative to a baseline period (January 3rd to February 6th 2020). We excluded the sixth category ‘residential mobility’ as it is
measured differently to all other categories (Google, 2020). Each line within the mobility trends represents a local authority. All plots extend from February 15th to November 30th
2020. For the ‘parks’ plot, we limited the y-axis at 300% to exclude a small number of extreme observations with high park use.
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standard errors should be inflated with Rubin's rules (Little and
Rubin, 2002). However, given the small percentage of missing
values, and that there are currently no well-defined steps for using
Rubin's rules in generalized additive models (see our models
below), we instead averaged mobility values across the 10 chains
to produce mean estimates of mobility for each category, day, and
local authority i.e. conducting single imputation.We ensured the im-
putations produced plausible values (Fig. S3). From this mobility
dataset, we derived a variable which described overall mobility
change for each date in each local authority, which is the average
mobility change across five of the six categories (excluding residen-
tial) for each day in each local authority. We excluded the residential
mobility category as it is inversely correlated with all other catego-
ries and is measured differently (Google, 2020). However, as there
4

is likely a delay between a mobility reduction and a case rate reduc-
tion (Lauer et al., 2020), we lagged the overall mobility change met-
ric by linking each case rate with themeanmobility change from 2 to
12 days prior. As a result of this lag, we trimmed the temporal extent
of the dataset to cover March 1st – November 30th 2020 (instead of
February 15th – November 30th 2020).

2.1.3. Green variables
We compiled two variables which describe the structure of green

spaces in each local authority: patchiness – median frequency of parks
within a 1km2 radius around households in the local authority (Office
for National Statistics, 2021b); green space – available green space per
person (m2) within the local authority, derived by dividing the green-
cover area by the local authority population size. Green-cover area



Table 1
Description of variableswithin the baseline and green transmissionmodels, including the scale atwhich the variable ismeasured,where ‘Static’ indicates only one value is derived per local
authority, whilst there are unique values for each case rate in ‘Timeseries’ variables.

Variable Description Scale

Baseline transmission model
Population
density

Local authority population size in mid-year 2019 divided by local authority area [in sq.km]. Source: Office for National Statistics (2021a) Static

Population
clustering

Moran's I spatial autocorrelation of residential population density in 2011, extracted from the UK's gridded 1 km resolution population raster.
Source: UK Government (2020b)

Static

Health The health aspect of the multiple deprivation index, describing the risk of premature death or a reduction in quality of life due to poor mental or
physical health. Low values indicate greater health deprivation. Source: Ministry of Housing Communities and Local Government (2019)

Static

Demography Percentage of local authority population aged over 70 in June 2019. Source: Office for National Statistics (2021b) Static
Economy Percentage of local authority population (adult non-retired) unemployed in December 2019. Source: UK Government (2020c) Static
Mobility change Daily mean overall mobility in each local authority across five of the Google mobility metrics: transport, workplaces, parks, grocery & pharmacy

stores, and retail & recreation. Overall mobility averaged over the previous 2 to 12 days before each case rate. Source: Google (2020)
Timeseries

Community
cases

Seven-day rolling average in cases within each local authority. Variable also included within the green transmission model. Source:
https://coronavirus.data.gov.uk/

Timeseries

Green transmission model
Green space Green space per person (m2). Derived by dividing total green space area in each local authority by the local authority's population size. We

consider green spaces as any area meeting the following land cover types: broadleaved woodland, coniferous woodland, improved grassland,
neutral grassland, calcareous grassland, acid grassland, fen, marsh and swamp, heather, heather grassland, and bog. We excluded agricultural
land cover types as these were deemed a largely inaccessible/private land cover area. Source: Rowland et al. (2017)

Static

Patchiness Median frequency of parks within a 1 km buffer around local authority houses. Source: Office for National Statistics (2021a) Static
Park use Contribution of park use to the overall mobility metric, derived by extracting the residuals of a linear model between park mobility (response)

and overall mobility (predictor) within each local authority. A positive residual value indicates park use exceeds what we would expect given
park and overall mobility trends within the local authority. As with the mobility change variable, park use is averaged over the 2 to 12 days
before each case rate. Source: Google (2020)

Timeseries
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was calculated from the UKCEH 2015 25m land cover raster (Rowland
et al., 2017) and covered a variety of landscape categories (Table 1).
For this green-cover area calculation, we set a 1km buffer around the
local authority, to represent green space access of households on the
local authority border.

Using the mobility dataset, we also produced a park use variable,
which represents how parks are used relative to overall mobility. This
park use metric is derived by fitting a linear model between park use
and overall mobility within each local authority, and extracting the re-
sidual park use, where positive values represent a preference for using
parks over other forms of mobility for a given date (in the original
percentage units). Parks include public gardens, castles, national forests,
campsites, observation points, and national parks, but exclude
surrounding countryside in rural areas. As a result, the Google (2020)
definition of parks differs slightly to the landscape categories used in
our green space metric but was our best available representation of
how green space was used during the pandemic. As in the overall
mobility change metric, park use represents the mean use of parks in
the prior 2 to 12 days.
2.2. Modelling

We developed two core models (Fig. 3): baseline transmission –
aimed at controlling for the major mechanisms influencing case rates;
and green transmission – impact of landscape structure and park use
on case rates. The baseline and green transmission models are both fo-
cussed on case rates, but we anticipated that any effects of green
space on COVID-19 case rates were likely to be much smaller than var-
iables known to influence disease transmission (e.g. population den-
sity). As a result, we structured our analyses to first account for the
presence of these more influential variables in a baseline transmission
model, and then in the green transmission model, we explored how
green areas (the focus of this study) can alter the residuals of these
case rates. Conventionally, it is advised to include all variables within
one regression instead of analysing the residuals separately
(Freckleton, 2002). However, variableswere highly correlated (e.g. pop-
ulation density and green space are derived in similar ways), and re-
sulted in multicollinearity issues. Dealing with the major mechanisms
first (e.g. population density) mitigated these multicollinearity issues.
5

To control for the baseline health and transmission mechanisms
influencing COVID-19 case rates, we developed a generalised additive
model within the mgcv R package (Wood, 2021), with case rate as the
response – inverse hyperbolic sine transformed to address heavy tailed
residuals. We included the following parameters as linear predictors:
health, demography, economy, population density (log10 transformed),
population clustering, and mobility change. We also included interac-
tions between population density and clustering, population density
and mobility change, and population clustering and mobility change.
Inmodel development, it was clear that the residualswere experiencing
extreme positive temporal autocorrelation,where case rate valueswere
very similar to values from the previous day. As a result, we also in-
cluded the previous days case rate (one day lag) as a linear predictor
in the model. We included random intercept smoothing over the
local authorities to account for the non-independence of multiple
case rates within the same local authorities. Due to working hour re-
strictions in England, case counts on Saturdays and Sundays were
largely underestimated, and then over-estimated on Mondays and
Tuesdays. As a result, we also included a cyclic smoothing term
(with up to 7 knots) over day of the week to capture reporting biases
and control for daily variation (days within a week) in case
reporting. We extracted the residuals from this model for the green
transmission model.

To assess how landscape structure and park use influenced residual
case rates,we again developed a generalised additivemodel, with resid-
ual case rates from the baseline transmissionmodels as the response, as
well as the following linear predictor parameters: park use, green space
(log10 transformed), patchiness, as well as interactions between park
use and green space, and park use and patchiness. Thesemodels also in-
cluded random intercept smoothing over local authorities, but we did
not control for the smoothing over days of the week, which was ad-
dressed in the earlier baseline transmission model.

2.2.1. Sensitivity analysis
In both the baseline and green transmission models, we were con-

scious that some parameter effects may have varied through time. For
example, some covariates may have been particularly influential prior
to mandatory mask wearing in shops on July 24th 2020. As a result,
we extracted the first four weeks of data from our case rate dataset
and ran the models on this subset. We then shifted the data forwards

https://coronavirus.data.gov.uk/


Fig. 3.Model structure for baseline transmission and green transmission difference models, depicting the process for developing the response variables, as well as the predictors used in
each model.
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one week and re-ran the models, repeating this procedure (moving
window), creating 40 replicates of the coefficients each representing a
different-overlapping period of time betweenMarch 1st and November
30th 2020. From this, we established that the majority of coefficients
were very stable over time (Fig. S4), but mobility change, health, case
rate lag, and park-use were somewhat variable. Looking at how these
coefficients change through time, it was clear that mobility change
had a temporal trend, where mobility effects were greatest when
cases were at their highest. As a result, we amended the baseline trans-
mission model to include an interaction between the mobility variables
and the number of cases (averaged over the nearest 7 days) in the local
authority at a given moment in time (see Eq. S1–2 for the final model
structures). There was no clear temporal trend in the health, case rate
lag, and park-use variables so these remained untouched within the
models.We also noted that themagnitude of themobility change effect
was far greater in the first lockdown period (March – May 2020). We
suspect the large effect is genuine, but given there were spatial biases
in case-testing availability during the first lockdown, we opted to re-
model the data with a trimmed temporal extent (June 1st to November
30th 2020). From this, it was apparent that coefficients were generally
far more conservative using the trimmed dataset, albeit still in the
same direction (Fig. S5). Given this discrepancy in results (depending
on the temporal extent), we opted to restrict our analyses throughout
the rest of this manuscript to solely focus on the more conservative
trimmed temporal extent,which is likely to be far less effected by spatial
variability in case-testing availability – so more robust. As a result, all
model outputs and projections (see below) are derived from the data
covering June 1st to November 30th 2020.

In the analyses, we opted to fill missing mobility values with impu-
tation instead of using complete-case analyses, where any observations
with missingmobility data are removed. However, given the small per-
centage of missing values, and that the mobility data is averaged across
five categories, and then again through time, we wanted to ensure
model coefficients did not change drastically under imputation, which
could be a sign of a statistical inference error (Johnson et al., 2021). As
a result, we repeated the analyses using only complete-case observa-
tions and compared model coefficients between the missing value ap-
proaches. Given the similarity in the complete-case and imputation
coefficients (Fig. S5), we continued using the coefficients from the im-
putation model which covered a greater array of local authorities.

2.2.2. Model checking
We standardised (subtracting values from their mean and dividing

by their standard deviation) all predictor variables in the models to
6

determine effect sizes and reduce multicollinearity where interactions
are present. All model assumptions passed e.g. multicollinearity (vari-
ance inflation factors less than 3 within both the baseline and green
transmission model), concurvity (observed and estimated concurvity
less than 0.1), absence of spatial (Moran's I = 0.1) and temporal auto-
correlation (Fig. S6), homogeneity of variance, and normality of resid-
uals. When summarising results, we report the mean ± standard
deviation, and when describing model outputs we report the
standardised slope coefficient and 95% confidence intervals.We also re-
port the R2 for each model. All analyses were conducted in R 4.0.3 (R
Development Core Team, 2020).

2.2.3. Projecting cases
To understand how mobility patterns have influenced cases, we

projected cases using the baseline and green transmission models
under three scenarios: 1) cases under observed mobility patterns;
2) cases after a 20% reduction in each day's overall mobility; 3) cases
after a 20% increase in each day's park use. We ran the baseline and
green transmission models through each of the scenarios for every
local authority between March 1st and November 30th 2020. We
standardised all authorities so they had the same starting number of
cases (10), community cases (10), and lagged case rate (0.58%; the
mean case rate across local authorities on February 28th). These cases,
community cases, and lagged case rate were updated and iteratively in-
formed by the newmodel predictions, instead of the observed data. As a
result, the projected case rates are solely influenced by the landscape
structure and mobility patterns in the local authority. We constrained
the case rates so they could not exceed the range of the observed case
rates (−40% to 70%). We converted the projected case rates into
projected cases, against the starting case value of 10.
3. Results

Across the 299 local authorities, case rates fluctuated substantially
through time (Fig. 4a). Mobility declined substantially during the first
national lockdown in March to May, and in the run up to winter
(Fig. 4b). During the summer months, mobility and the variance in mo-
bility increased, and in some local authorities these increaseswere close
to 100% (doubling mobility). In contrast, park use increased during the
first lockdown and remained high (approximately 25% above baseline)
until winter approached in October (Fig. 4c). There was less variation in
park use trends between local authorities than in the mobility change
metric.



Table 2
Estimated regression parameters from the baseline and green transmission models with
95% confidence intervals. Values rounded to two significant figures, thosewith confidence
intervals not overlapping zero (i.e. significant at the p = 0.05 threshold) are shown in
bold. These coefficients were derived from models utilising the trimmed temporal extent
dataset covering June 1st to November 30th 2020 – see sensitivity analysis above.

Coefficient [95% confidence intervals]

Baseline transmission model
Intercept 0.38 [0.36, 0.39]
Lag case rate 1.55 [1.53, 1.57]
Population density 0.020 [−0.006, 0.050]
Population clustering 0.011 [−0.006, 0.028]
Mobility 0.17 [0.15, 0.19]
Case average 0.061 [0.042, 0.080]
Baseline health −0.031 [−0.054, −0.007]
Percentage over 70 −0.051 [−0.079, −0.023]
Percentage unemployed 0.0027 [−0.024, 0.029]
Mobility:case average 0.11 [0.092, 0.13]
Population density:population clustering 0.0060 [−0.011, 0.023]
Population density:mobility −0.011 [−0.025, 0.004]
Population clustering:mobility 0.029 [0.012, 0.047]

Green transmission model
Intercept 0.0001 [−0.016, 0.016]
Park use −0.057 [−0.074, −0.041]
Green space 0.0035 [−0.018, 0.025]
Patchiness 0.010 [−0.011, 0.032]
Park use:green space 0.032 [0.010, 0.053]
Park use:patchiness 0.024 [0.0026, 0.045]

Fig. 4. a) Temporal patterns in case rates (a),mobility change (b) and park use (c) betweenMarch 1st and November 30th 2020, with each line representing a different local authority. The
red line represents the Oxford local authority and acts purely as an example. Case rates are defined as the daily percentage change in cases calculated over a seven day moving average.
Mobility change is themeandaily percentage change overfivemobility types (Park, Grocery and Pharmacy stores, Retail and recreation, Transport, andWorkplaces) extracted fromGoogle
communitymobility reports (Google, 2020). Park use is the relative contribution of parkmobility to overall mobility change, derived by extracting the residuals of a linearmodelwith park
mobility regressed against overall mobility within each local authority i.e. are people visiting parks more than we would expect on a given date.
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3.1. Baseline transmission models

Using the dataset with a trimmed temporal extent of June 1st to
November 30th 2020 (see sensitivity analysis above), we observed an
association between a reduction in mobility and a decline in case
rates, and changes in mobility had a larger impact when there was a
higher number of average cases and when the population was more
clustered (Table 2; Fig. 5c, d). Population density and population
clustering had no significant impact on case rates. Increases in the
health index and proportion of the population over the age of 70 were
both associated with significant decreases in case rates (Table 2; Fig.
5a, b). This baseline transmission model had an R2 of 0.45.

3.2. Green transmission models

Park use was associated with decreased residual case rates (Table 2;
Fig. 5e) but the size of the effect depended on the availability of green
space and how patchy it was. When patchiness was high and when
there was a large amount of greenspace, park use had less of an impact
on case rates, though was still associated with a significant reduction in
cases. The green transmission model had a small R2 of 0.01, despite the
significant effects.

3.3. Projected cases

Reducing mobility is a far more effective measure of limiting
COVID-19 transmission than increasing park use (Fig. 6). Across
local authorities between March 1st and November 30th 2020, a
20% reduction in mobility is projected to have led to 51% fewer
7

cases on average (Fig. 6b; 95% quantiles:−88.7% to−29.7%). In con-
trast, a 20% increase in park use is estimated to have only reduced
cases by 5.4% (Fig. 6c; 95% quantiles: −17.3% to 0.6%). So whilst



Fig. 5.Marginal effects of important parameters in the baseline transmission and in the green transmission models. Marginal effects are held at zero for all other parameters as variables
were z-transformed. Panels depict the effect of: a) health, with low values indicating health deprivation; b) the percentage of the population over 70; c) an interaction betweenmobility
and community cases (the 7-day average number of cases in the local authority); d) an interaction between mobility and human population clustering set at 0.2 (Low) and 0.7 (High),
where 0 indicates a random distribution of clustering, and 1 indicates a complete separation in clustering; e) an interaction between park use and patchiness (the median frequency of
parks within 1 km of each house in a local authority); and f) an interaction between park use and green space area per local authority capita. Error bars represent the 95% confidence
intervals. These marginal effect plots were derived frommodels utilising the trimmed temporal extent dataset covering June 1st to November 30th 2020 – see sensitivity analysis above.
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park use is associated with reducing COVID-19 transmission, the
benefits would only be relatively small. However, there is spatial
variation in these findings, with some areas potentially benefitting
more than others from a reduction in mobility or increase in park
use (Fig. 7).

4. Discussion

In this study, we attempted to quantify the effects of local green
space on COVID-19 case rates after accounting for mechanisms known
to influence pandemics in our baseline transmission model. We found
that high overall mobility was associated with increased case rates, es-
pecially when population clustering was high. After accounting for
these variables, we found that higher park use, compared to other ame-
nity areas, was associated with a reduction in case rates, especially in
local authorities with low green space and with contiguous green
space. These results suggest that utilising green spaces rather than car-
rying out other activities (e.g. visiting shops and workplaces) may re-
duce the transmission rate of COVID-19, but these benefits are limited
compared to reducing mobility more generally.

From our baseline transmissionmodel results, case rates were lower
in local authorities with healthier populations and older populations
(Fig. 5a–b). These results are logical, firstly as previous evidence has
shown COVID-19 has a greater impact on those with underlying health
conditions (Hamer et al., 2020; Jordan et al., 2020) and more severe
cases may be more likely to be tested and reported. Secondly, whilst
the elderly are more at risk of mortality from COVID-19 (Williamson
et al., 2020), this fact was widely reported in public health guidance
and older people may have reduced contact with other individuals
(Canning et al., 2020). Our baseline transmission model also shows
that reducing mobility is most valuable when community cases are
high and in areas with high population clustering (Fig. 5c–d). This is
8

consistent with person-person contact as the major mechanism of
transmission and appears to demonstrate the general effectiveness of
lockdownmeasures in reducing case rates, as others have demonstrated
previously (Davies et al., 2020; Lau et al., 2020). Mobility had less im-
pact in low clustered areas, which again may be expected, as people
aremore likely to be able tomaintain distance and the potential number
of interactions is reduced.

Once we had accounted for known drivers of case rates, we investi-
gated how landscape structure and park use (i.e. mobility in green
spaces) affected residual case rates using the green transmission
model. Herewe found that using parks, relative to other types of mobil-
ity, was associated with a reduction in case rates (Figs. 5–6). However,
reducing overall mobility (i.e. mobility to all amenity areas) led to a
far more substantial decline in case rates. For example, a 20% reduction
was projected to reduce cases by c.35%, whilst a 20% increase in park use
was projected to reduce cases by 5% to 10% (Fig. 6). This suggests that
the use of parks may have modestly helped in reducing transmission
rates in some areas during the pandemic, but reducing overall mobility
is substantially more beneficial than maintaining mobility at pre-
pandemic levels and spending that mobility in parks.

Whilst park use, overall, had a relatively small effect, we did
note stronger effects of park use when the context of the local
area was considered as using parks was beneficial in authorities
with low green space and authorities with contiguous green
space (Figs. 5e–f and 6). That park use has a minor beneficial effect
overall seems to support our hypothesis that recreation in green
space and parks may be safer than in other amenity areas. This is
probably because it is easier to maintain distance and green spaces
have fewer surfaces which could result in transmission if contami-
nated. However, the limiting impact of this when green space is
high and accessible seems to suggest diminishing returns in how
park use can impact COVID-19 transmission. This is perhaps not



Fig. 6. a) Projected daily cases between March 1st and November 30th 2020 within Oxford under three scenarios: 1) observed mobility patterns (black); 2) a further 20% reduction in
observed mobility (red); and 3) 20% increase in observed park use (blue). In these projections, we set the initial cases (on March 1st) at 10, and with lagged case rate of 0.58% - the
mean value across local authorities on February 28th. All other covariates were held at their observed values. Error ribbons represent 95% confidence intervals. Panels b and c
represent the distribution of projected change in cases across local authorities under the 20% mobility reduction (b) and 20% park use increase (c) scenarios i.e. how much could cases
have been reduced under these scenarios. Case change was derived by dividing the total cases between the March and November periods under each scenario by the cases in the
observed mobility scenario (black), multiplying this value by 100, and then subtracting 100. Whilst these projections cover the period March 1st – November 30th 2020, the
coefficients used to derive the projections were taken from the trimmed temporal extent dataset of June 1st – November 30th 2020, where coefficients were more conservative and
less prone to bias (see sensitivity analyses above).
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surprising if the main value of parks in this context is as an alterna-
tive to other relatively more hazardous amenity areas. Conse-
quently, if there are other safe options outside of public parks
then parks will likely have little impact. However, our findings do
suggest that the use of public parks in a highly urbanised area
may be advantageous, though as noted above the strongest effect
was from the reduction of all forms of mobility. Therefore, cau-
tiously, and given that it corresponds with common sense, we sug-
gest that reducing mobility is a successful strategy for reducing
Fig. 7. Spatial variation in observed cases per capita (a), and projected case changes under a 2
dividing the total cases between March and November 2020 under each scenario by the cases
100 (see Fig. 6). The coefficients used to derive the projections in b and c were sourced from
30th 2020 – see sensitivity analysis above.
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case rates but given a need for some non-essential time outside of
a home, using green spaces such as local parks may be the next
best thing, particularly in highly urbanised areas.

A major limitation of the work is the difficulty in comparing across
local authorities that vary simultaneously in many different variables
likely important to case rates. This makes inference about the impor-
tance of their individual effects very difficult and so effect sizes should
be interpreted cautiously and with caveat. Another challenge is that
pandemics are rare events, consequently, our analysis covers only a
0% mobility reduction (b) and 20% increase in park use (c). Case change was derived by
in the observed mobility projection, multiplying this value by 100, and then subtracting
models utilising the trimmed temporal extent dataset covering June 1st to November
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snapshot of time for each local authority. During this period, many dif-
ferent factors not included in the analysis (e.g. chance super spreading
events) may have explained much of the variation between local au-
thorities. Despite this, the model fits are reasonably high. An additional
limitation in our analyses is the absence of complete Google mobility
data in some local authorities. We handled these missing values with
imputation and attempted to ensure models were robust by comparing
imputed models with complete-case models. Encouragingly, our
complete-case and imputed results are very similar, which suggests
the imputation has not introduced any missing data bias (Johnson
et al., 2021) – although both the imputation and complete-case analysis
could just be equally wrong. Given this uncertainty, and the further lim-
itations we have identified above, our mobility findings should be
interpreted cautiously.

One potential influence we failed to capture within our case rate
modellingwas the influence of environmental features like air pollution
and weather. Air pollution has already been to linked to an increase in
COVID-19 related deaths, and potentially even transmission (Travaglio
et al., 2021). Similarly, there are plausible hypotheses that suggest
weather effects like temperature, ultraviolet light, and wind speed
may influence the virus's persistence and in-turn transmission
(Carlson et al., 2020). Importantly, both of these environmental features
may also interact with the findings in our study. Firstly, park use may
become a more inherently risky activity if air pollution at the green
space is high. Secondly, as park use is likely very correlated with
weather, the effects of park use may be confounded by weather. Both
of these points warrant investigation, perhaps at a far finer scale than
the local authority level.

Understanding the risks of different amenity areas could be
important for longer-term management of COVID-19 and the
landscape-dependency of this advice could be important for developing
‘local-lockdown’ guidance. In particular, access to green spaces has been
shown to have benefits for mental and physical well-being (Slater et al.,
2020; Soga et al., 2020), and consequently, understanding the relative
risks of using these areas is important. Our results show that COVID-
19 case rates may be reduced with individuals spending time in parks,
relative to other amenity areas, especially in urbanised, high-density
areas. Although further research is needed, these findings suggest that
the use of parks for recreational activity in these contexts could be ad-
visable, demonstrating a possible additional utility of these green spaces
in addition to the known benefits to health and wellbeing (de Vries
et al., 2003;Mitchell and Popham, 2007; Nutsford et al., 2013) in normal
non-pandemic conditions.
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