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Abstract

Predictive coding models can simulate known perceptual or neuronal phenomena, but there have been fewer attempts to
identify a reliable neural signature of predictive coding for complex stimuli. In a pair of studies, we test whether the N300
component of the event-related potential, occurring 250–350-ms poststimulus-onset, has the response properties expected
for such a signature of perceptual hypothesis testing at the level of whole objects and scenes. We show that N300 amplitudes
are smaller to representative (“good exemplars”) compared with less representative (“bad exemplars”) items from natural
scene categories. Integrating these results with patterns observed for objects, we establish that, across a variety of visual
stimuli, the N300 is responsive to statistical regularity, or the degree to which the input is “expected” (either explicitly or
implicitly) based on prior knowledge, with statistically regular images evoking a reduced response. Moreover, we show that
the measure exhibits context-dependency; that is, we find the N300 sensitivity to category representativeness when stimuli
are congruent with, but not when they are incongruent with, a category pre-cue. Thus, we argue that the N300 is the best
candidate to date for an index of perceptual hypotheses testing for complex visual objects and scenes.
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Introduction
The stars in the night sky are not arranged in the shape of a great
bear and there is no rabbit on the moon; it is our prior knowledge
of these shapes that invokes such descriptions. Increasingly, it is
clear that perception does not depend on the sensory stimulus
alone but is also dynamically influenced by our prior knowl-
edge (Summerfield et al. 2006; Voss et al. 2012; Vo and Wolfe
2013; Caddigan et al. 2017; Gordon et al. 2017; Lupyan 2017;
Smith and Loschky 2019). Indeed, many models of perception
include some form of perceptual hypothesis testing (PHT), in
which perception, a hard inverse problem, is conceived of as a

process of generating a hypothesis on the basis of both sensory
input and prior knowledge and the current context (Helmholtz
1925; Gregory 1980; Hochberg 1981; Rock 1983; Clark 2013; Huang
and Rao 2011). Recently, one class of PHT models has garnered
increased interest: predictive coding models (Rao and Ballard
1999; Friston 2005; Spratling 2010), which posit that each area of,
for example, visual cortex learns statistical regularities from the
world that it then uses, jointly with the input from the preceding
area, to make predictions about the stimulus. In particular, the
prediction and incoming sensory signal are proposed to undergo
an iterative matching process at each stage of the processing
hierarchy. Most of these models are hierarchical in nature, with
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the prediction feeding back on the preceding area. The mis-
match (“prediction error”), if any, between the prediction and the
incoming sensory signal is then propagated to higher layers in
the processing hierarchy, revising the weights of the hypotheses,
until the feedback matches the incoming signal and the error is
zero (Rao and Ballard 1999; Friston 2005; de Lange et al. 2018).
These predictive coding models have risen to prominence in
recent years, in part because they represent an efficient coding
scheme for the complexity of the visual world and, perhaps more
importantly, because they posit a role for the abundant feedback
connections known to exist between visual areas.

The bulk of support for predictive coding models has
come from the models’ ability to simulate known perceptual
or neuronal phenomena (reviewed in Spratling 2016). The
empirical data used for such models have primarily come from
experiments manipulating basic features of simple stimuli,
such as variations in grating orientation or color (Kok et al.
2017; Marzecová et al. 2017, 2018; Rungratsameetaweemana
et al. 2018; Smout et al. 2019, 2020). However, it should also
be possible to find signatures of predictive coding at higher
levels of visual analysis. Such a signature would be observed
to a variety of types of complex visual stimuli (objects, faces,
and natural scenes) across most or all viewing conditions. More
importantly, it should be responsive to statistical regularity,
or the degree to which features in the input are “expected”
(either explicitly or implicitly) by the system based on prior
knowledge. We learn regularities of object and natural scene
features by being exposed to prototypical objects and natural
environments over our lifetime. This prior knowledge facilitates
our processing when the regularities in the incoming sensory
stream meet our expectations (Caddigan et al. 2017). Thus, a
good measure of predictive coding would index when stimuli
deviate from the regularities we expect to see. In particular, the
measured response should increase with increasing irregularity,
in keeping with the increased iterations, or inference-based error,
proposed to occur when an item does not match the prediction.
Importantly, the measure should also show context-dependency,
as statistical regularities need to be sensitive to the immediate
context in order to be of use to the system.

Using complex visual objects, Schendan and Kutas (2002,
2003, 2007) have shown that the N300 component of the event-
related potential (ERP) can be interpreted as an index of object
model selection processes, a framework that fits within PHT
(Schendan and Ganis 2012; Schendan 2019). Here we build on
these findings, addressing the question of whether the N300 is
also sensitive to statistical regularity for complex visual stimuli
other than objects—in particular, for good and bad examples of
visual scenes. Moreover, critically, we ask whether the N300 is
sensitive to in-the-moment expectations for visual information,
as established by, in the present work, and verbal cues. Taken
together, this kind of evidence would support the characteriza-
tion of the N300 more broadly as a signature of predictive coding
mechanisms, operating in occipitotemporal visual cortex at the
scale of whole objects and scenes.

The N300
The N300 is a negative going component with a frontal scalp
distribution that peaks around 300 ms after the onset of a visual
stimulus. It has been shown to be sensitive to global perceptual
properties of visual input (Mcpherson and Holcomb 1999; Schen-
dan and Kutas 2002, 2003) but not to manipulations limited to
low level visual features (e.g., color, or small-scale line segments;
Schendan and Kutas 2007) that are known to be processed in

early visual cortex. Components that precede the N300 in time
have instead been linked to processing of and expectations for
such low-level features. For example, a component known as
the visual mismatch negativity (vMMN) occurs between 100 and
160 ms in target-oddball paradigms, where it is larger for the
visual oddball stimuli. The vMMN has sometimes been associ-
ated with predictive coding (Stefanics et al. 2014; Oxner et al.
2019). However, given its sensitivity to the current experimental
context—and, importantly, not to statistical regularities built
up over a lifetime—as well as its source location to occipital
cortex (Susac et al. 2014; File et al. 2017), the vMMN would be
classified as indexing early stage PHT processing. In contrast,
the N300 is a “late” visual component, with likely generators in
occipitotemporal cortex (Sehatpour et al. 2006; Schendan 2019).
It immediately precedes access to multimodal semantic memory
(reflected in the N400, which is observed later in time than
the N300 when both are present; Kutas and Federmeier 2011).
The N300 is therefore well positioned to capture the iterative,
knowledge- and context-sensitive process of visual processing of
the global features of stimuli, as proposed by predictive coding
models, and thus seems promising as a candidate index of
intermediate to late stage PHT processing.

Importantly, as hypothesized by predictive coding models,
the amplitude of the N300 increases for less “expected” (i.e.,
less statistically regular) stimuli. The N300 is larger to pictorial
stimuli that lack a global structure as compared with when the
global structure of the object is clearly discernible (Schendan
and Kutas 2003). The N300 is also sensitive to repetition, with
a reduced amplitude for repeated presentations; importantly,
however, N300 repetition effects (but not those on earlier com-
ponents) depend on knowledge, as they are larger when the
visual stimulus is meaningful (Voss and Paller 2007; Schendan
and Maher 2009; Voss et al. 2010). Similarly, and critically, N300
amplitudes are sensitive to a variety of factors that reflect the
degree to which an object fits with prior experience. For example,
N300 amplitudes are sensitive to the canonical view of an object;
an open umbrella oriented horizontally (noncanonical) elicits a
larger N300 amplitude than an open umbrella oriented vertically
(Schendan and Kutas 2003; Vo and Wolfe 2013). Amplitude modu-
lations are also linked to factors such as object category member-
ship, presence of category-diagnostic object features, and (rated)
match to object knowledge (Gratton et al. 2009; Schendan and
Maher 2009; Schendan 2019). This pattern of data suggests that
the N300 may be a good marker for not only the global structure
of an object but the degree to which the input matches learned
statistical regularities more generally, with larger N300 ampli-
tudes for stimuli that do not match predictions based on learned
regularities and hence require further processing.

Thus far, empirical data have largely linked the N300 to object
processing, sometimes in the context of a scene (Mudrik et al.
2010; Vo and Wolfe 2013; Lauer et al. 2020), but still ostensibly
elicited by an object. Indeed, Schendan (2019) has specifically
linked the N300 to object model selection processes, in which
an input is matched to possible known objects. This model
selection process includes PHT computations. Here, however, we
hypothesize that the N300 may reflect a more general signature
of hierarchical inference within higher level visual processing. If
so, it should be elicited by other meaningful visual stimuli, such
as natural scenes. Scenes differ from individual objects in a few
ways. Scenes often contain multiple objects rather than promi-
nent objects that overshadow their backgrounds. Moreover, the
spatial layout of the environment is much more critical for under-
standing a photograph of a scene than a photograph of an object.
Finally, it is clear that the human visual system sees objects
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and scenes as importantly different as they have subsystems
dedicated to processing them (Epstein and Kanwisher 1998).
Thus, if the N300 reflects, not a specific facet of object processing
but, more generally, the computations associated with PHT in
higher level vision, then it should also be sensitive to statistical
regularity and prediction during scene processing.

In fact, scrambled scenes (created by recombining parts of
the scene image into a random jigsaw) have been found to elicit
larger N300 amplitudes compared with intact and identified
scenes (Pietrowsky et al. 1996). Because the scrambled scenes
were degraded, however, it is not clear whether these effects
simply reflect the disruption to the global structure of the image
or a deviation from statistical regularity more generally. Here,
we use intact scenes that are either highly representative of
their category (e.g., good exemplars of that category) or less
representative of their category (bad exemplars). Importantly, all
the images are good photographs of real world scenes (i.e., they
are not degraded); they are statistically regular or irregular by
virtue of how representative they are of their category. A highly
representative exemplar of its category, by definition, contains
better information about its category and thus serves as a better
initial prediction (i.e., has high statistical regularity). We ask
whether such statistically regular and irregular stimuli elicit
differential N300s, as would be hypothesized if this component
is indexing hierarchical inference or predictive coding beyond
objects.

Good and Bad Scenes
We have previously found that good scene exemplars are more
readily detected than bad exemplars (Caddigan et al. 2010, 2017);
that is, participants are better at discriminating briefly presented
and masked intact photographs from fully phase-scrambled ver-
sions when those images are good exemplars of their category
(i.e., beaches, forests, mountains, city streets, highways, and
offices). Good and bad exemplar status was determined with a
separate rating task in which participants rated on a 1–5 scale
how representative the image was of its category. We took the
60 highest and 60 lowest rated images from each category, and
verified that participants were significantly faster and more
accurate at categorizing the good scene exemplars than the bad,
indicating that our manipulation captured the degree to which
the image exemplified the category (Torralbo et al. 2013). Impor-
tantly, again, there were no artificially introduced objects in any
of the bad exemplars nor were they impoverished or degraded in
any way. Instead, their good and bad status derived entirely from
how representative they were of the category being depicted.
Note that, although category was relevant to the choice of stimuli
and whether they were designated good or bad, in Caddigan et al.’
experiments it was completely irrelevant to the intact/scrambled
judgment being made (was the stimuli an intact photo or noise?).
Nonetheless, participants had significantly higher sensitivity (d’)
for good than bad exemplars (Caddigan et al. 2010, 2017), suggest-
ing that with the very brief (34–78 ms) masked exposures good
exemplars perceptually cohere into an intact photograph sooner
than bad exemplars.

Relatedly, the categories of those same good exemplars are
better decoded, using functional magnetic resonance imaging
(fMRI) multi-voxel pattern analysis, than are the categories of
the bad exemplars in a number of visual areas, including V1
and the parahippocampal place area (PPA; Torralbo et al. 2013).
Interestingly, the blood oxygen level–dependent (BOLD) signal for
those same bad exemplars is larger than that for good exemplars

in the PPA (Torralbo et al. 2013), in keeping with predictions
from hierarchical predictive coding (i.e., increased activity for
the less statistically regular images). The poorer detection with
brief presentations, weaker representations in the brain, and
greater activity evoked by bad than good scene exemplars make
these stimuli good candidates for eliciting a neural signature of
hierarchical predictive coding.

Design of the Current Experiments
In Experiment 1, we recorded scalp EEG while participants viewed
good and bad scene exemplars and made a good/bad judgment.
If the N300 serves as an index of matching incoming stimuli
to learned statistical regularities, then N300 amplitude should
be smaller for good exemplars of natural scenes than the bad
exemplars. In this first experiment participants viewed the stim-
uli without any forewarning of what to expect (category and
good/bad status were fully randomized; see Fig. 1A), and all the
stimuli were unique images with no repeats in the experiment. If
we observe an effect of statistical regularity, then the particular
regularity brought online must stem from the current input, as
there was no confound of repetition priming or episodic memory.

However, an effective prediction process must also be sen-
sitive to context. Thus, in Experiment 2 we then manipulated
the expectations of the participants at the beginning of each
trial by presenting a word cue (e.g., “Beach”) that either matched
the upcoming scene’s category (on 75% of trials) or mismatched
the upcoming image category (e.g., preceding a forest with the
“Beach” cue; see Fig. 1B). If the N300 reflects a PHT process
then it should also be sensitive to the particular template (i.e.,
statistical regularity) activated by the cue. In particular, we would
predict that a cue with 75% validity would activate the statistical
regularities associated with the cued category. For images that
come from the cued category, then, we should observe smaller
N300s for good than bad exemplars, as in Experiment 1, since
good exemplars are a better match to the statistical regularities
of their category. However, in contrast, when the input image
does not come from the cued category (i.e., for mismatches), we
would predict a reduction or even elimination of the good/bad
N300 effect, since neither the good nor bad exemplar would fit
well with the cued statistical regularity. For example, good beach
exemplars should not systematically provide a better match to
the statistical regularities of a forest than a bad beach does.
Experiment 2, then, provides a critical test of the idea that the
N300 reflects the process of matching input to the currently
activated template—that is, the prediction.

Materials and Methods
Participants

The data for Experiment 1 came from 20 right-handed college-
age subjects (mean age = 24.36 years, range = 18–33 years; 12
women), and the data for Experiment 2 from a separate set of
20 right-handed subjects (mean age = 22.44; range 18–30 years;
14 women). In both experiments, participants gave written,
informed consent and were compensated for their participation
in the study with course credit or cash. The study was approved
by the Institutional Review Board of the University of Illinois
at Urbana-Champaign. All participants were right-handed, as
assessed by the Edinburgh Inventory (Oldfield 1971) and none
had a history of neurological disease, psychiatric disorders, or
brain damage.
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Figure 1. Schematic of one trial in each of the experiments. (A) In Experiment 1, a fixation cross was shown in the center of screen for a randomly chosen interval between

1000 and 2000 ms. A good or bad exemplar image from 1 of the 6 categories was then presented for 200 ms, followed by a fixation cross. After a delay of 1000 ms, the

subjects respond to the question “Good or Bad?” with a button press and the next trial begins. (B) In Experiment 2, the trial sequence is similar to Experiment 1 with the

following differences. At the start of each trial a word cue (e.g., “Beach”) from 1 of 6 categories (beaches, city streets, forests, highways, mountains, and offices) is shown.

At the end of the trial the subjects make a delayed response, with a button press, to the question “Yes or No?” (“Yes” if the image matches the cue and “No” otherwise)

and the next trial begins. Cue validity was kept high (75%) to promote prediction; on 25% of the trials, there is a mismatch between the word cue and the image category.

(C) A sample of good and bad exemplars from each category used in our study.

Materials and Procedures

ERP-eliciting stimuli were pictures of natural scenes from 6 cat-
egories: beaches, forests, mountains, city streets, highways, and
offices (Fig. 1C). In a previous study, these images were collected
from the internet and rated for their representativeness of the
named category on Amazon Mechanical Turk, with participants
answering, for example, for beaches, “How representative is this
image of a BEACH?” for each image, with the interpretation of the

term representativeness left to the participants (Torralbo et al.
2013). In a separate experiment, participants were significantly
faster and more accurate at categorizing the good exemplars
than the bad, further confirming that our manipulation captured
the degree to which the image exemplified the category. The 60
top rated images were used as good exemplars for each category,
and the 60 lowest rated images were used as bad exemplars
for each category (for details on the choice of good and bad
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exemplars, see Torralbo et al. 2013). Images were resized to
340 × 255 pixels and presented on a black background with a
fixation cross at the center. The images were randomly presented
at 1 of 3 locations: the center of the scene, or with the nearest
edge 2 degrees to the left or right of fixation, with a total of
120 good images and 120 bad images presented at each location.
Here, we report only results for centrally presented images.1 The
stimuli were all unique images with no repeats in the presenta-
tion sequence.

In Experiment 1, participants were instructed at the beginning
of the study that they would be seeing good and bad exemplars
of 6 scene categories and that their task at the end of each trial
was to indicate via button press whether the image was a good
or a bad exemplar of its category. Participants first practiced with
9 trials to acclimatize to the task environment, and these images
were not repeated in the main experiment. Then, they completed
3 blocks each consisting of an equal number of trials, for a total
of 240 centrally presented trials (trials were also presented to
the left and right visual fields in each block). The trial counts
for centrally presented stimuli, for each category (good and bad
combined) are as follows: beaches = 39; cities = 41; forests = 38;
highways = 42; mountains = 36; and offices = 44.

Participants were seated at a distance of 100 cm from the
screen, and the images subtended a visual angle of 7.65◦ × 5.73◦

(width × height). Subjects were instructed to maintain fixation
on the central fixation cross and to try to minimize saccades and
eye blinks during stimulus presentation. As depicted in Figure 1A,
each trial began with a fixation cross presented on a blank screen
for a duration jittered between 1000 and 2000 ms (to reduce the
impact of slow, anticipatory components on the ERP signal). The
scene image, either a good exemplar or a bad exemplar from 1 of
the 6 categories, was presented for a duration of 200 ms, followed
by a fixation cross on a blank screen for 500 ms. At the end of
the trial a prompt with “Good or Bad?” was displayed on the
screen, and participants pressed 1 of 2 response buttons, held
in each hand (counterbalanced across participants), to indicate
their judgment. The experiment lasted for approximately 1 h and
15 min. Subjects were given two 5-min breaks at roughly 25 and
60 min from the start of the experiment.

Experiment 2 was identical to Experiment 1, except that each
trial began with a word cue, presented for 500 ms (Fig. 1B), which
corresponded to 1 of the 6 scene categories used in the exper-
iment: beach, city street, forest, highway, mountain, and office.
For each category, we ensured that 5 trials of each type (good and
bad exemplars) were mismatched. There were thus 75% matched
trials (15 trials each of good and bad within each of the 6 scene
categories) and 25% mismatched trials, for a total of 180 (90 good
and 90 bad) matched trials and 60 mismatched trials (30 good and
30 bad). Overall cue validity was kept high to promote the use
of the cue to form expectations about what kind of image would
appear next, while still ensuring that we would nevertheless have
a sufficient number of mismatch trials to obtain a stable ERP to
that condition as well. Instead of making a good or bad judgment,
at the end of each trial participants were prompted to respond
“yes” or “no,” with a button press, to the question of whether

1 The laterally presented scenes were included to separately answer
questions about hemispheric biases in scene processing that are outside
the scope of this manuscript. Because ERP waveforms for laterally
presented stimuli have important morphological differences compared
with those from centrally presented stimuli, the data from the two
presentation conditions cannot be combined.

or not they thought that the picture had matched the cue. Hand
used to respond “yes” or “no” was counterbalanced.

ERP Setup and Analysis

EEG was recorded from 26 channels of passive electrodes that
were equidistantly arranged on the scalp, referenced online to
the left mastoid and re-referenced offline to the average of
the left and right mastoids. Additional electrodes placed on the
outer cantus of each eye and on the orbital ridge below the left
eye were used to monitor saccadic eye movements and blinks.
Impedances were kept below 5 KΩ for scalp channels and 10
KΩ for eye channels. The signal was bandpass filtered online
(0.02–100 Hz) and sampled at 250 Hz. Trials with artifacts due
to horizontal eye movements or signal drift were rejected using
fixed thresholds calibrated for individual subjects. Trials with
blinks were either rejected, or, for subjects with higher numbers
of blink artifacts (12 in Experiment 1 and 8 in Experiment 2),
were corrected using a blink correction algorithm (Dale 1994). We
confirmed that the analytical results were unchanged if blinks
were rejected instead of corrected. On average, in Experiment
1, 6.83% of good exemplar trials and 9.04% of bad exemplar
trials were rejected due to artifacts, and no condition had fewer
than 63 trials per subject in the analysis. The average number
of retained trials was, for good exemplars, 112 (range 81–119)
and, for bad exemplars, 109 (range 63–120). In Experiment 2, in
the match condition, 10.8% of good exemplar trials and 11.09%
of bad exemplar trials were rejected due to artifacts and no
condition had < 56 trials per subject in the analysis (retained
good exemplar trials: mean 80 [63–90]; retained bad exemplar
trials: mean 80 [56–90]). In the mismatch condition, 10.38% of
good exemplar trials and 13.89% of bad exemplar trials were
rejected due to artifacts (retained good exemplar trials: mean 27
[19–30]; retained bad exemplar trials: mean 26 [19–30]).

ERPs were epoched for a time period spanning 100 ms before
stimulus onset to 920 ms after stimulus onset, with the 100-ms
prestimulus interval used as the baseline. This processed signal
was then averaged for each condition within each subject. A dig-
ital bandpass filter (0.2–30 Hz) was applied before measurements
were taken from the ERPs. Based on prior work showing that
the N300 is frontally distributed and occurs between 250 and
350 ms (Federmeier and Kutas 2001; Schendan and Kutas 2002,
2003), we measured N300 mean amplitudes in this time window
across the 11 frontal electrode sites: MiPf (equivalent to Fpz on
the 10–20 system), LLPf, RLPf, LMPf, RMPf, LDFr, RDFr, LMFr, RMFr,
LLFr, and RLFr (first letter: R = right, L = left, Mi = midline; second
letter: L = lateral, M = medial, D = dorsal; and Pf = prefrontal and
Fr = frontal); on the 10–20 system, this array spans from Fpz
to just anterior of Cz and from mastoid to mastoid laterally,
with equidistant coverage. Statistics were computed using R (R
Core Team 2020). Specifically, we used the functions t.test, to
compute t-tests, and ttestbf (from the package: BayesFactor) to
compute Bayes factors. The t-test and Bayes factor calculations
compared the measured condition difference to 0. For within-
subject calculations of confidence intervals, we used the function
summarySEwithin() that is based on (Morey 2008). The function
anovaBF (from the package: BayesFactor) was used to compute
Bayes factors for interactions.

For completeness, we also analyzed 2 ERP components in
the time-window after the N300: the N400 and the late positive
complex (LPC). Prior work examining the N400 to pictures has
shown a frontal distribution (Ganis et al. 1996), and thus we again
used the 11 frontal electrode sites, but now in the time-window



6 Cerebral Cortex Communications, 2021, Vol. 2, No. 2

Table 1. Experiment 1, mean amplitudes in the N300 time-window (250–350 ms) over 11 frontal electrode sites (see Fig. 2), along with t-test and
Bayes factor values

Condition N Mean
(μV)

Mean Bad/Good
difference (μV)

Bad/Good difference
95% C.I.

t (19) P Bayes factor

Bad 20 −6.4 ± 0.61 −1.05 −1.46 to −0.64 −5.4 3.3E−05 747.7
Good 20 −5.3 ± 0.61

Notes: The N300 response to bad exemplars is more negative (larger) than that to good exemplars. The t-test and Bayes factor calculations compared the within subject
Good/Bad difference to 0.
± Values reflect the normed standard deviation within subjects. C.I.= confidence interval.

350–500 ms. For the LPC we chose posterior sites in the time-
window of 500–800 ms based on prior work characterizing the
distribution and timing of the LPC (Finnigan et al. 2002).

Results
Experiment 1

Behavior

To motivate participants to attend to the scenes, we asked par-
ticipants to make a delayed response on each trial, judging
whether the exemplar was a good or bad exemplar of the scene
category to which it was presumed to belong. Participants labeled
most good exemplars as “good” (mean = 86.2%, standard devi-
ation [SD] = 13.9%) and labeled bad exemplars as “bad” about
half the time (mean = 56.2%, SD = 15.6%). All trials (irrespective of
the choice of the participants) were used for the planned ERP
analyses, but, as described below, we also confirmed that the
results hold when conditionalized on subjects’ responses.

ERPs

Grand-averaged ERPs at 8 representative sites are plotted in
Figure 2. Responses to good and bad exemplars can be seen
to diverge beginning around 250 ms after stimulus onset, with
greater negativity for bad exemplars than for good exemplars.
The polarity, timing, and frontal scalp distribution of this ini-
tial effect is consistent with prior work describing the N300
(Mcpherson and Holcomb 1999; Schendan and Kutas 2002, 2003,
2007); see Supplementary Materials for a formal distributional
analysis.

N300

To characterize the good/bad effect on the N300, mean ampli-
tudes were measured from all 11 frontal electrode sites between
250 and 350 ms. Bad exemplars elicited significantly larger
(more negative) N300 responses (mean = −6.4 μV) than did good
exemplars (mean = −5.3 μV); t(19) = −5.4 and Bayes factor = 747.7
(Table 1; for a full distributional analysis see Supplementary
Materials). In other words, we see the predicted differential
response to statistically irregular exemplars (bad exemplars)
as compared with the statistically regular exemplars (good
exemplars). The larger amplitude for the bad exemplars, as
compared with the good exemplars aligns with PHT predictions
that would posit greater inference error, and, hence, greater
iterative processing for the bad exemplars as compared with
the good exemplars. These results also confirm that the N300
indexes a match to statistical regularities of natural scenes
and thus extend the validity of the N300 to not only objects, or
objects in scene contexts, but more broadly to complex natural
scenes.

The above analysis was computed on all trials, to avoid con-
founding N300 response patterns with the outcome of late stage
decision-making processes. However, for completeness, we also
analyzed the results conditionalized on participants’ responses
(i.e., including only good trials judged as good and bad trials
judged as bad). This yielded the same effect pattern (Bayes factor
for good/bad difference = 5.4; t = −2.89, P = 0.0094). For details see
Supplementary Materials (Table S3). We also analyzed the bad
exemplar trials, as about half of them were judged as good, and
did not see an N300 effect based on participants’ judgments of
only the bad exemplars (see Supplementary Materials).

Post N300 Components

Although the N300 was the component of primary interest, to
more completely characterize the brain’s response to the scenes,
we also examined good/bad differences in later time windows
encompassing the N400 (350–500 ms) and LPC (500–800 ms).
The details of the analyses and results are provided in the
Supplementary Materials and summarized here. N400 responses,
which index multimodal semantic processing, were larger for
bad (−3.3 μV) than for good exemplars (−2.2 μV), suggesting that
items that better fit their category allow facilitated semantic
access (Table S1). We note however, that given the similar scalp
distribution of the N300 and the N400 to picture stimuli (Ganis
et al. 1996), it is difficult to tell where the boundary of the 2
components might be and thus how much the N400 pattern
might be influenced by the preceding N300. LPC responses were
larger—more positive—to good (4.5 μV) than to bad (3.3 μV)
exemplars (Table S2). The LPC amplitude is known to positively
correlate with confidence in decision-making (Finnigan et al.
2002; Schendan and Maher 2009). Larger LPC responses to good
items, therefore, are consistent with the behavioral pattern in
which good exemplars were classified more consistently than
bad exemplars.

Experiment 2

As mentioned in the introduction, a predictive coding signal
should be sensitive to context. In particular, if the context pre-
dicts a specific stimulus category then initial predictions should
reflect the statistical regularities associated with the predicted
category. The good/bad difference observed in Experiment 1 was
elicited without any expectation regarding the specific category
to be presented (i.e., category and good/bad status were com-
pletely randomized). Thus, the particular template or statistical
regularity with which the image was compared must have been
initially elicited by the input itself. This is also the case in almost
all previous work examining the N300 to objects. In Experiment
2, therefore, we set out to examine whether the N300 is sensitive
to expectations induced in the moment by context. We preceded
each image with a word cue that either matched or mismatched

https://academic.oup.com/cercorcomms/article-lookup/doi/10.1093/texcom/tgab030#supplementary-data
https://academic.oup.com/cercorcomms/article-lookup/doi/10.1093/texcom/tgab030#supplementary-data
https://academic.oup.com/cercorcomms/article-lookup/doi/10.1093/texcom/tgab030#supplementary-data
https://academic.oup.com/cercorcomms/article-lookup/doi/10.1093/texcom/tgab030#supplementary-data
https://academic.oup.com/cercorcomms/article-lookup/doi/10.1093/texcom/tgab030#supplementary-data
https://academic.oup.com/cercorcomms/article-lookup/doi/10.1093/texcom/tgab030#supplementary-data
https://academic.oup.com/cercorcomms/article-lookup/doi/10.1093/texcom/tgab030#supplementary-data


The N300: An Index for Predictive Coding Kumar et al. 7

Figure 2. (A) Grand average ERP waveforms for good (blue) and bad (maroon) exemplars in Experiment 1 are shown at 8 representative electrode sites distributed over

the head. Plotted channel locations are marked as triangles on the schematic of the scalp (LMCe and RMCe are just posterior of and lateral to Cz on the 10–20 system).

Negative voltage is plotted upwards. The waveforms differ over frontal sites beginning in the N300 time-window (250–350 ms), with greater negativity for bad exemplars

as compared with good exemplars. The bar plot gives mean amplitude over the 11 frontal electrode sites (darkened electrode sites on the schematic of the scalp) used

for the primary statistical analyses. The error bars plotted are within-subject confidence intervals. N = 20. (B) Topographic plots of the difference waves for the main

effect of representativeness (Bad–Good). In the N300 time-window we see a frontal distribution, whereas in the N400 time-window we see a centro-parietal distribution,

with a slightly left laterality.

the upcoming category. If the N300 difference observed in Exper-
iment 1 reflects the matching of incoming stimuli to learned sta-
tistical regularities, we should be able to modulate that difference

by activating either the appropriate (match cue) or inappropriate
(mismatch cue) statistical regularity. In particular, since neither
a good nor a bad exemplar of, for example, a beach, should be
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a better match to an inappropriate category (e.g., a forest), we
should find that the N300 good/bad difference is reduced or
eliminated when the cue mismatches the current category.

Behavior

On each trial, participants were asked to respond if the stimulus
matched the verbal cue (“Yes” or “No”) via a button press. In the
match condition, participants responded “Yes” to good exem-
plars (mean = 98.7% and SD = 2.4%) more often than to bad exem-
plars (mean = 67.9% and SD = 14.6%). In the mismatch condition,
wherein the exemplars did not fit the cued category, participants
responded “No” to good exemplars (mean = 95.9% and SD = 4.6%)
more often than to bad exemplars (mean = 94.0% and SD = 5.5%).
All trials were used for the ERP analyses.

ERPs

Scenes elicited an N300 response (Fig. 3) with similar timing,
polarity and scalp distribution to that observed in Experiment
1; see the Supplementary Materials for a formal distributional
analysis. Analyses of N300 mean amplitudes were conducted
using the same time window (250–350 ms) and frontal electrode
sites as in Experiment 1, here comparing good and bad exemplars
under the 2 cueing conditions: match and mismatch.

N300

In the match condition, when the scene was congruent with the
verbal cue, we replicated the N300 effect of Experiment 1 for the
good and bad exemplars, with a frontally distributed negativity
that was larger for the bad exemplars than the good exemplars
(Fig. 3 and Tables 2A and 2B). Importantly, and as predicted, this
N300 difference between good and bad exemplars was notably
reduced—indeed, likely absent altogether (Bayes factor 0.31)—
in the mismatch condition compared with the match condition
(Bayes factor for interaction of Good/Bad × Cuing = 4.0). This is
consistent with the idea that the N300 is indexing the fit of the
incoming stimulus to the template activated by the verbal cue.
That is, neither a good or bad exemplar of category A represents
a better match to a template for category B. The same pattern of
results is also seen when the analysis is conditioned on subjects’
judgment; that is, they responded to a cue congruent stimulus as
‘Yes’ and cue incongruent stimulus as “No,” see Supplementary
Table S6. We note that we chose to discuss the interaction in
terms of the good/bad effect being dependent on a matching
cue. However, one might also discuss the interaction in terms
of the effect of cueing being different as a function of good/bad
status (Fig. 4). Indeed, the good images show a decrease in the
N300 when they are preceded by a match cue than when they are
preceded by a mismatched cue (Bayes factor = 1.2 for good mis-
match–good match; t = −1.998, P = 0.06), consistent with the mis-
match cue producing a prediction error. In contrast, not only is
there little evidence for a cueing effect for bad exemplars (Bayes
factor = 0.68 for bad mismatch–bad match; t = 1.59, P = 0.13) but
the difference is numerically in the opposite direction (slightly
larger for match).

For completeness, and to compare the N300 in our experiment
with its characterization in the existing literature, we also per-
formed an analysis of variance (ANOVA) across multiple factors:
Good/Bad × Cueing (Match/Mismatch) × Anteriority × Laterality
× Hemisphere. There was a main effect of Good versus Bad
(bad larger than good; (F[1,19] = 15.34) and an interaction between
Good/Bad and Cueing (F[1,19] = 5.87), with larger Good/Bad effects
when the scene matched the cue. The main effect of Cueing

was not significant (F[1,19] = 0). For details on the distributional
analysis see Supplementary Materials.

Finally, to ensure that our results are not due to the differen-
tial number of trials in the match and mismatch condition, we
subsampled the trials in the match condition to be equal to that
of the mismatch condition. This subsampling did not change the
results (see Supplementary Table S7).

Post N300 Components

Again, for completeness, we also examined effects on the N400
(350–500 ms) and LPC (500–800 ms). These are presented in full in
the Supplementary Materials and summarized here. Given prior
work (reviewed in Kutas and Federmeier 2011), we expected the
N400 to be particularly sensitive to the match between the verbal
cue and the scene category. Indeed, overall, N400 responses to
good scenes that matched the verbal cue were facilitated (more
positive: −3.5 μV) than to good scenes that mismatched their
cues (−5.6 μV), consistent with the large literature on N400
semantic priming (see Supplementary Table S4). Moreover, we
replicated the effect in Experiment 1: N400 amplitudes were also
larger for bad (−5.3 μV) than for good exemplars (−3.5 μV) in the
match condition, although, again, we cannot rule out influence
from the prior N300 effects on the observed pattern. We see an
interaction of Good/Bad × Cuing in the N400 window (F = 13.7;
P = 0.0015; E = 1), with the largest facilitation for good exemplars
in the match condition. LPCs were larger (more positive) for
good exemplars in the match condition (2.7 μV) compared with
both bad exemplars (0.4 μV) in the match condition (replicating
Experiment 1) and to either scene type in the mismatch condition
(Good: 0.2 μV; Bad: 0.9 μV), presumably reflecting the increased
ease and confidence of responding to the good match items (see
Supplementary Table S5).

Discussion
In 2 experiments, we tested whether the N300 component of
the ERP has response properties expected for an index of hier-
archical predictive coding during late stage visual processing,
when global features of the stimulus are being processed. Across
many studies, larger (more negative) N300 responses have been
observed for conditions that might be characterized as statisti-
cally irregular (Pietrowsky et al. 1996; Schendan and Kutas 2002,
2003, 2007; Mudrik et al. 2010; Vo and Wolfe 2013). However, the
focus of the literature thus far has been limited to objects, objects
in scenes, or artificially degraded stimuli. If the N300 more gener-
ally reflects predictive hypothesis testing in later visual process-
ing, then it should be sensitive to statistical regularity outside
of the context of object processing and artificial manipulations
of global structure. To this end, in Experiment 1 we showed that
the N300 is sensitive to the difference between good (statistically
regular) and bad (statistically irregular) exemplars of natural
scenes. Because none of the scenes we used were degraded,
had any misplaced elements, or contained objects that were
surprising or violated expectations (e.g., a watermelon instead
of the expected basketball; see Mudrik et al. 2010; Vo and Wolfe
2013), these results strongly link N300 modulations to statistical
regularity as such.

Predictive coding posits a larger inference error in processing
statistically irregular items (bad exemplars) as compared with
statistically regular items (good exemplars), and, consistent with
this, N300 responses were larger for the statistically irregular
exemplars. Note that the observed pattern cannot be explained
by interstimulus perceptual variance (ISPV; Thierry et al., 2007;

https://academic.oup.com/cercorcomms/article-lookup/doi/10.1093/texcom/tgab030#supplementary-data
https://academic.oup.com/cercorcomms/article-lookup/doi/10.1093/texcom/tgab030#supplementary-data
https://academic.oup.com/cercorcomms/article-lookup/doi/10.1093/texcom/tgab030#supplementary-data
https://academic.oup.com/cercorcomms/article-lookup/doi/10.1093/texcom/tgab030#supplementary-data
https://academic.oup.com/cercorcomms/article-lookup/doi/10.1093/texcom/tgab030#supplementary-data
https://academic.oup.com/cercorcomms/article-lookup/doi/10.1093/texcom/tgab030#supplementary-data
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Figure 3. Grand average ERP waveforms for the good match (solid-blue), bad match (solid-maroon), good-mismatch (dashed-blue), and bad-mismatch (dotted-maroon)

conditions in Experiment 2 are shown at the same 8 representative electrode sites. In the match condition, responses to good and bad exemplars differ in the N300

time-window (250–350 ms), with greater negativity for bad exemplars as compared with good exemplars, over frontal sites (darkened electrode sites on the schematic

of the scalp). In the mismatch condition, the differences between good and bad exemplars on the N300 are diminished/eliminated. The bar plot gives the grand average

mean of the ERP amplitude over the 11 frontal electrode sites (darkened electrode sites on the schematic of the scalp) used for the primary statistical analyses (N = 20).

The plotted error bars are within-subject confidence intervals.

Schendan and Ganis 2013). The good exemplars we used have
more consistent low-level image statistics, and thus lower ISPV,
than the bad exemplars (see Torralbo et al. 2013). Thus, if the
pattern were driven by ISPV, we would have expected the good
exemplars to elicit larger ERP modulations (see Thierry et al.
2007; Schendan and Ganis 2013). Instead, we found that the good
exemplars have a lower amplitude ERP, consistent with the claim
that it is statistical regularity—and not ISPV—that is responsible
for the effect.

The data from Experiment 1, in combination with prior exper-
iments, show that the N300 manifests the expected response
properties for a general index of predictive coding mechanisms
for late stage visual processing (for studies that rule out the N300
indexing early visual processing see Schendan and Kutas 2002;

Johnson and Olshausen 2003) of complex objects and scenes.
Across the literature, the kinds of stimuli distinguished by the
N300 encompass global structure, canonical viewpoints, probable
views of objects in scene contexts, and, in our own experiment,
the category-level representativeness of the stimuli. We would
like to collectively refer to these properties as learned statistical
regularities. We mean statistics in the Bayesian sense: The sta-
tistical regularities reflect the system’s prior belief. Although fre-
quency of occurrence may be one factor that goes into construct-
ing a regularity, the regularities should be more sophisticated
than simple frequency. They should be constructed to maximize
the informativeness of the prediction and minimize, on average,
the amount of updating needed. Thus, canonicity, prototypicality
or representativeness will all be critical determinants of the



10 Cerebral Cortex Communications, 2021, Vol. 2, No. 2

Table 2A. The grand average mean values, in the N300 time-window (250–350 ms), shown for 11 frontal electrode sites (see Fig. 3), along with
t-test and Bayes factor values

Condition Cue N Mean
(μV)

Mean
difference
(μV)

95% C.I. t (19) P Bayes factor

Bad Match 20 −7.1 ± 0.94 −2.06 −2.6 to −1.5 −7.4 5.6E−07 30 457
Good Match 20 −5.1 ± 1.07

Bad Mismatch 20 −6.4 ± 1.65 −0.47 −1.7 to 0.73 −0.82 0.42 0.31
Good Mismatch 20 −6.0 ± 1.64
Good mismatch–Good match 20 −0.9 −1.84 to 0.04 −1.998 0.06 1.20
Bad mismatch-Bad match 20 0.68 −0.22 to 1.58 1.59 0.13 0.68

Notes: There is strong evidence (large Bayes factor) for greater negativity of the N300 for bad exemplars as compared with good exemplars when the cue matches the
stimulus. When there is a mismatch between the cue and the stimulus there is no evidence (small Bayes factor) for the difference between good and exemplars in the
N300 time-window. The t- test and Bayes factor calculations compared the within subject Good/Bad difference to 0.
± Values reflect the normed standard deviation within subjects.

Figure 4. (A) Topographic plots of the difference waves for the 2 main effects of representativeness (Bad–Good) and cueing (Mismatch–Match). In the N300 time-window

the 2 main effects are qualitatively similar, with both main effects showing a frontal distribution. The N300 time-window also shows a quantitatively larger effect for the

representativeness (Bad–Good) than for the cueing (Mismatch–Match). In the N400 time-window, both effects are centro-parietally distributed with a slight left laterality.

(B) Topographic plots for the difference in the interactions for Good/Bad × Cuing are shown in 2 interpretations: in terms of the Good/Bad effect—(Bad–Good) × Match

and (Bad–Good) × Mismatch; and in terms of the cuing effect—Good × (Mismatch–Match) and Bad × (Mismatch–Match).
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Table 2B. The Bayes factor for the main effects and interaction
computed using Bayesian ANOVA

Effect Bayes factor

Good/Bad 118.1
Cueing 0.2
Good/Bad × Cueing 4.0

Note: This shows that there is evidence for the interaction of Good/Bad × Cue-
ing in Experiment 2.

regularities, as well as frequency or familiarity. A collection of
these regularities can be viewed as a template (see also Johnson
and Olshausen 2003), constructed to reduce, on average, the
prediction error. Thus, we can think of the differences on the
N300 component as an indicator of the degree to which an
incoming exemplar can be matched with a template, with greater
negativity for a stimulus when it does not match a template as
compared with when it does.

In Experiment 1, neither scene category nor exemplar sta-
tus (good or bad) was predictable from trial to trial, and thus
the statistical regularity driving the observed effect must have
been acquired over the life time (i.e., learning what does and
does not constitute a good exemplar of a category), rather than
within the context of the experiment. However, a key attribute
of PHT models, of which predictive coding is a popular exam-
ple, is that the hypotheses that are generated are sensitive to
the current context. If the N300 reflects a template matching
process, such that the input is compared against a contextually-
relevant learned statistical regularity, then the N300 sensitivity
to statistical regularity should vary in the moment, as a function
of context.

In Experiment 2, therefore, we set up expectations for a par-
ticular category on each trial using a word cue with high validity,
with the aim of pre-activating a particular scene category tem-
plate. Critically, however, on 25% of trials the scene did not match
the cued category. We found that the N300 is indeed sensitive
to regularities cued by the current context. When the scenes
were congruent with the cued category, we observed a significant
effect of statistical regularity (good versus bad) in the N300 time-
window, replicating the results from Experiment 1. Here the
good exemplars provide a better match to the activated template
than the bad exemplars, and thus the reduced inference error
or iterative matching is reflected in the amplitude of the N300.
In the mismatching condition, however, the presented stimulus,
whether a good or bad exemplar of its own category, does not
match the cued template (e.g., a “Forest” template has been cued
but a good or bad beach scene was presented). In this case,
notably, we failed to observe a reliable difference between the
N300 to good and bad exemplars. In the language of predictive
coding models, similar inference errors would be generated for
both statistically regular (good) and irregular (bad) exemplars
that mismatch the activated template, as they would both vio-
late the predicted regularities—or, at least, neither good nor
bad exemplars of another category should violate the predicted
regularities more than the other. Beyond the statistical regulari-
ties learned over a lifetime, including our increased familiarity
with more prototypical inputs, the N300 shows sensitivity to
the specific expectations the visual system has in the moment,
generated from the current context.

Others have discussed the use of visual templates in the
context of holding information active in memory to afford opti-
mal performance on, for example, visual matching tasks. In the

case of sequential match paradigms, it is assumed that subjects
can hold on to a recently seen target object—the “template” in
this case—and then use that information to judge subsequent
stimuli. Indeed, in these kinds of paradigms, differences in ante-
rior ERPs (which may be labeled N2s or N300s; see discussion
in Schendan 2019) have been observed between the match and
mismatch conditions. Moreover, using a verbal cue for object type
(e.g., “dog” followed by an image), Johnson and Olshausen (2003)
observed a significant effect of cueing on a frontally-distributed
negativity between 150 and 300 ms, which likely is encompassed
by what we are calling the N300. Responses were more positive
when the image matched the cue compared with when it did
not. They did not vary the representativeness of their images,
but it is reasonable to assume that they were on average more
representative than our bad images, specifically chosen to be less
representative. Thus, our results are in accordance with those
of Johnson and Olshausen (2003), and extend them, not only
to natural scenes, but also by showing that the effect of cuing
interacts with sensitivity to statistical regularity. Thus, Experi-
ment 2 brings together 2 important facets of visual processing
on a PHT framework. First, is the fact that the visual system
builds templates based on statistical regularities, accumulated
over the lifespan, and routinely uses those templates, elicited by
the input itself, to guide its iterative processing. Second, then,
is that fact that context information (such as a verbal cue) can
cause a particular template to be activated in advance of the
input, biasing processing toward that template.

The N300 Indexes PHT

We can think of visual identification and categorization as a cas-
cade of processes, starting with identification of low level visual
features, followed by perceptual grouping of features, and then
appreciation of the “whole” visual form of objects and scenes,
after which processing moves beyond the visual modality into
multi-modal semantics and decision-making. PHT mechanisms
can work within and across each of these stages. In the context
of object processing, prior work on the N300 has posited it as
an index of object model selection, an intermediate stage in
the process of object identification and categorization (Schendan
and Kutas 2002, 2003, 2007; Schendan 2019). Having extended
the N300 differences to natural scenes, we propose that the
N300 reflects PHT mechanisms in this intermediate stage more
broadly, not just object selection. Similar to other work (Schendan
2019), we believe that the N300 reflects processing at the point
wherein the input is matched to items in memory with similar
perceptual structures. However, our data show that this process
is not limited to objects and that it makes use of variety of
statistical regularities learned from the world, including those
critical for processing both objects and scenes.

The broadened view of the N300 as being reflective of a
general visual template matching process would suggest that
its source be occipitotemporal visual areas. Indeed, the N300
response to objects has been source localized to occipitotemporal
visual areas (Sehatpour et al. 2006; Schendan and Lucia 2010).
Although the N300 for scenes has not yet been source localized, a
high-density ERP study on scene categorization localized activity
in the 200–300-ms time window to these same occipitotemporal
visual areas (Greene and Hansen 2020).

Similarly, Kaiser et al. (2019, 2020), using both fMRI and ERPs,
demonstrated a similar sensitivity to intact versus jumbled
scenes in the occipital place area and PPA as they did in the
N300 time window. Moreover, our prior fMRI work with good
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and bad scene exemplars (Torralbo et al. 2013) would suggest
that the N300 for scenes originates in the PPA, a region known
to preferentially process natural scenes (Epstein and Kanwisher
1998). Using the same good and bad scene exemplars as in our
experiments, we found that, in the PPA, bad exemplars elicited
a greater BOLD signal than good exemplars (Torralbo et al. 2013),
mirroring the effect we observed for the N300. Interestingly,
in that same PPA region of interest we observed that good
exemplars were better decoded than bad exemplars; that is,
we were better able to predict the scene category presented
on the basis of activity patterns when the scene was a good
exemplar than when it was bad in the same region that showed
greater activity for the bad exemplar (Torralbo et al. 2013). In
other words, it was not the case that reduced activity for good
exemplars reflected a weaker representation but instead likely
reflected a more efficient representation, an interpretation that
aligns nicely with our characterization of the N300 effect as
one of visual template matching in occipitotemporal cortex.
We suggest that the N300 may be interpreted as a component
that reflects the iterative processing, as posited by PHT, in
occipitotemporal cortical regions, which helps match previously
learned regularities of objects and scenes with the incoming
stimulus.

Although we are arguing that the N300 indexes PHT for late
stage visual processing of complex visual objects and scenes, it is
possible that other components could index PHT at other stages
of processing. For example, PHT matching low level sensory fea-
tures, such as gratings (Kok et al. 2012), to hypotheses about such
low level features should occur at earlier stages in the process-
ing hierarchy. Earlier visual sensory components can manifest
sensitivity to expected visual features (Boutonnet and Lupyan
2015) or to differences between well-learned visual categories,
such as words versus objects, and faces versus objects (Schendan
et al. 1998)—category comparisons that are thus at a much higher
taxonomy than within objects or scenes. Of particular relevance
to PHT is the vMMN which, as overviewed in the introduction,
temporally precedes the N300 and has been observed in experi-
mental contexts wherein a stream of standard stimuli that share
particular low-level visual features (e.g., orientation and color) is
occasionally interrupted by the presentation of a target stimulus
that carries a featural difference (Stefanics et al. 2014; Oxner
et al. 2019). Thus, the vMMN is sensitive to the context of recent
exposure to low-level visual information, possibly reflecting PHT
processes at that lower level.

The N300, instead, does not modulate with low-level differ-
ences and manifests sensitivity to both regularities established
through long-term experience and knowledge-based expecta-
tions derived from semantic contextual information. It may thus
index a late stage of visual PHT, at the transition into multimodal,
semantic processing. Immediately after the N300, ERP responses
to complex objects and scenes are characterized by an N400,
which we also observe in our experiment. The N400 is widely
accepted as a signature of multi-modal semantic processing,
elicited by not only visual words and pictures, but also meaning-
ful stimuli in other modalities (see review Kutas and Federmeier
2011), whereas the N300 seems to be about visual perceptual
structure (Schendan and Kutas 2002, 2003, 2007; Schendan 2019).
In some cases, it may be difficult to disentangle the precise
contributions of the N300 and N400 to observed effects of object
categorization and match to object knowledge (Gratton et al.
2009; Schendan and Maher 2009; Schendan 2019) since the N400
is known to be sensitive to the fit between, for example, a picture
and its context (Ganis et al. 1996; Federmeier and Kutas 2002).
Importantly, however, this does not impact the critical effect of

our good versus bad scenes, as neither contain contextually inap-
propriate items, nor, in Experiment 1, did we set up any context
prior to an image (i.e., the scene category is unpredictable).

Conclusion
In a set of experiments we have provided support for the hypoth-
esis that the N300 component is an index of PHT at the level of
whole-objects and scenes. Using statistically regular and irregu-
lar exemplars of natural scenes, we showed that items that are
a poorer match to our learned regularities for types of scenes—
and, thus, inputs that should lead to larger inference errors in
a predictive coding framework—indeed evoked a larger N300
amplitude compared with statistically regular exemplars, even
when the upcoming scene category was not predictable. We
further showed, not only that N300 responses to scenes are
modulated by context—such as the scene category predicted by
a verbal cue—but that they behave as expected for a template
matching process in which statistically regular images procure
their advantage by virtue of matching the current contextual
prediction.

Our work thus not only extends prior work on the N300 to
natural scenes but it suggests that the N300 reflects a general
template/model selection process of the sort proposed by PHT
models, such as predictive coding. We propose that the N300
indexes visual inference processing in a late visual time-window
that occurs at the boundary between vision and the next stage of
multi-modal semantic processing. Further studies will be needed
to explore the full range of the N300 response. For example, does
it require that the object or scene is attended or might it proceed
more automatically? Can it be modulated by contexts set up
in different modalities (e.g., auditory inputs: speech, sounds)?
Regardless, we propose that the N300 can serve as a useful
marker of knowledge guided visual processing of objects and
scenes, with templates based on prior knowledge serving as
hypotheses for visual inference as posited by PHT.

Supplementary Material
Supplementary Materials can be found at Cerebral Cortex Commu-
nications online.
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Stefanics G, Kremláček J, Czigler I. 2014. Visual mismatch nega-
tivity: a predictive coding view. Front Hum Neurosci. 8:1–19.

Summerfield C, Egner T, Greene M, Koechlin E, Mangels J, Hirsch J.
2006. Predictive codes for forthcoming perception in the frontal
cortex. Science. 314:1311–1314.

Susac A, Heslenfeld DJ, Huonker R, Supek S. 2014. Magnetic
source localization of early visual mismatch response. Brain
Topogr. 27:648–651.

Thierry G, Martin CD, Downing P, Pegna AJ. 2007. Controlling for
interstimulus perceptual variance abolishes N170 face selec-
tivity. Nat Neurosci. 10:505–511.

Torralbo A, Walther DB, Chai B, Caddigan E, Fei-Fei L, Beck DM.
2013. Good exemplars of natural scene categories elicit clearer
patterns than bad exemplars but not greater BOLD activity.
PLoS One. 8:e58594.

Vo ML-H, Wolfe JM. 2013. Differential electrophysiological signa-
tures of semantic and syntactic scene processing. Psychol Sci.
24:1816–1823.

von Helmholtz H. 1925. Treatise on physiological optics, Bd. 3 : the
perceptions of vision. English translation of the 3rd edition. The
Optical Society of America.

Voss JL, Federmeier KD, Paller KA. 2012. The potato chip really
does look like Elvis! Neural hallmarks of conceptual processing
associated with finding novel shapes subjectively meaningful.
Cereb Cortex. 22:2354–2364.

Voss JL, Paller KA. 2007. Neural correlates of conceptual implicit
memory and their contamination of putative neural correlates
of explicit memory. Learn Mem. 14:259–267.

Voss JL, Schendan HE, Paller KA. 2010. Finding meaning in novel
geometric shapes influences electrophysiological correlates of
repetition and dissociates perceptual and conceptual priming.
NeuroImage 49:2879–2889.


	The N300: An Index for Predictive Coding of Complex Visual Objects and Scenes
	Introduction
	The N300
	Good and Bad Scenes
	Design of the Current Experiments
	Materials and Methods
	Participants
	Materials and Procedures
	ERP Setup and Analysis

	Results
	Experiment 1
	Experiment 2

	Discussion
	The N300 Indexes PHT

	Conclusion
	Supplementary Material
	Funding
	Authors' Contributions
	Notes


