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Abstract
Various allogeneic (allo) stem cell transplantation platforms have been developed over the last 2 decades. In this review we focus on 
the impact of in vivo and ex vivo graft manipulation on immune reconstitution and clinical outcome. Strategies include anti-thymo-
cyte globulin- and post-transplantation cyclophosphamide-based regimens, as well as graft engineering, such as CD34 selection 
and CD19/αβT cell depletion. Differences in duration of immune suppression, reconstituting immune repertoires, and associated 
graft-versus-leukemia effects and toxicities mediated through viral reactivations are highlighted. In addition, we discuss the impact 
of different reconstituting repertoires on donor lymphocyte infusions and post allo pharmacological interventions to enhance tumor 
control. We advocate for precisely counting all graft ingredients and therapeutic drug monitoring during conditioning in the peripheral 
blood, and for adjusting dosing accordingly on an individual basis. In addition, we propose novel trial designs to better assess the 
impact of variations in transplantation platforms in order to better learn from our diversity of “counts” and potential “adjustments.” 
This will, in the future, allow daily clinical practice, strategic choices, and future trial designs to be based on data guided decisions, 
rather than relying on dogma and habits.

Neglected basic principles of transplantation: 
count!

αβT cells are considered to be the major driver of the curative 
graft-versus-leukemia (GVL) effect, as well as graft-versus-host 
disease (GVHD), a life-threatening complication that limits the 
widespread use of allogeneic stem cell transplantations (allo-
SCTs).1–3 Retrospective studies analyzing real world stem cell 
transplantation data and graft compositions from registries and 
larger centers suggest that the dose of αβT cells is not well bal-
anced when infused into patients, with a substantial fraction 
of patients receiving too many αβT cells. The surplus of αβT 
cells per body weight seems to mainly result in increased inci-
dences of both acute and chronic GVHD, without improving 
GVL effects or engraftment.4,5 Within this context, approxi-
mately 25% of all individuals in T cell repleted allo-SCT with 
matched unrelated donors (MUDs)4 and 50% from haploiden-
tical donors would benefit from infusing fewer donor cells5 
(Figure 1). This observation emphasizes that grafts differ sub-
stantially in immune compositions, and these variations need 

to be taken into consideration when treating patients. Limiting 
T cell numbers rarely interferes with stem cell numbers needed 
for a sufficient engraftment.4,5 In addition to qualitative and 
quantitative variations of cell types in the stem cell product, che-
motherapeutic drugs used during conditioning can also impact 
complications and efficacy after allo-SCT. This is a consequence 
of the fact that concentration of a defined drug, for example, in 
the blood stream, cannot be precisely predicted based on body 
weight, body surface area, or kidney or liver function. Active 
drug levels in the peripheral blood interfere, however, with acute 
and late toxicity and immune reconstitution, drug dosage needs 
to be better individualized for patients.6–10 Therapeutic moni-
toring chemotherapeutic drugs would allow for the creation 
of an optimized balance between tumor reduction, space for a 
new hematopoietic stem cell system, inflammation, as well as 
immune reconstitution. A first step to overcome inter-individ-
ual variations and progress towards the generation of personal-
ized transplantation care was the therapeutic drug monitoring 
of busulfan, which has been shown to reduce toxicity and has 
entered clinical practice in many centers across the globe.6–9 
Variations in fludarabine levels have been accounted to impact T 
cell reconstitutions,10 and prospective studies are under way to 
test whether fine-tuning fludarabine levels for each patient will 
better synchronize immune reconstitution and improve clinical 
outcomes (NL6940).

Balancing anti-thymocyte globulin in T cell 
replete and deplete transplantations

Anti-thymocyte globulin (ATG) is a polyclonal antibody 
composite, raised by animal immunization with human T cells 
and as such, recognizing many different targets expressed in the 
hematopoietic system.11–13 Different types of ATG and different LWW
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batches are currently used world-wide in sibling and in unrelated 
donor transplantations (eg, ATG-Thymoglobulin and ATG-
Fresenius; Table 1 and14–19). The impact of clinical outcome dif-
fers across the globe. Reduced incidences of GVHD have been 
reported when ATG was added to conditioning regimens in 
Europe, which translated into an increased GVHD-relapse free 
survival.12 However, ATG did not show improved composite 
endpoints in US-based prospective clinical trials or retrospective 
studies.13 To understand these different clinical outcomes, it is 
important to acknowledge that the timing of ATG before infu-
sion of the graft is crucial in determining the impact of ATG on 
the infused graft and subsequent immune reconstitution. When 
ATG is administered very early before transplantation (eg, from 
day –12) it mainly acts on host T cells and host-derived antigen 
presenting cells in order to facilitate engraftment and reduce 
GVHD by preventing cross-presentation. If ATG is adminis-
tered shortly before transplantation (from day –7 or later), most 
ATG types will, because of their rather long half-life, affect the 
graft. This results in an additional in vivo T cell depletion of the 
infused stem cell product by circulating active ATG (Figure 2). 
US-based clinical trials showed no benefit of ATG on relapse 
and GVHD-free survival after allo-SCT,19 most likely caused by 
the usage of irradiation during the conditioning of the patient 
and ATG administration, which was placed directly after irra-
diation. Irradiation of patients resulted in a higher in vivo T 
cell depletion when compared to chemotherapy-based regimens 
and thus more active ATG remained in the peripheral blood 
when the graft was infused. Consequently, a stronger donor T 
cell depletion was accomplished. The net effect was that GVHD 
was substantially reduced in this clinical trial, but at a cost of 
substantially more infectious-related deaths.45 Active ATG at the 
moment of stem cell infusion is a highly uncontrolled mechanism 
where inter-individual variations in active ATG levels have been 
acknowledged as a challenge. Within the context of cord blood 
transplantations, overexposure of active ATG after allografting 
has been reported to negatively impact immune reconstitution 
and clinical outcomes.46,47 A major development to master these 
variations in active ATG is the forthcoming practice to deter-
mine active levels of ATG, both pre- and post-allo-SCT,48,49 as 
well as the effort to generate predictive models to minimize large 
individual variations in pharmacokinetics (PK) and pharmaco-
dynamics (PD) of ATG.50 Within this context, inter-individual 
variations of active ATG have been also reported for a T cell 
replete reduced intensity conditioning cohort in adult patients 
to substantially impact clinical outcomes in terms of event-free 
and overall survival.51 We have proposed models which indicate 
that inter-individual variations in active ATG might be overcome 

by dosing ATG on lymphocyte counts prior to transplantation 
instead of on body weight, although this approach needs to be 
validated for other transplantation regimens and different types 
of ATG.52 Despite this rather limited knowledge, recommenda-
tions have been suggested by the European Society for Blood 
and Marrow Transplantation (EBMT) on dosing ATG based on 
individual lymphocyte counts in order to avoid too deep of a T 
cell depletion of the patient in the first months after allo-SCT.53 
These insights also have a major impact on T cell deplete trans-
plantations. For example, within the context of graft engineer-
ing, where ATG is used to allow a sufficient engraftment of T 
cell depleted grafts, ATG needs to be given very early before 
graft infusion (from day –12, thymoglobulin 1.5 mg/kg IV days 
–12 to –9) in order to prevent further disturbance of the pre-
cisely ex vivo designed graft composition.38 Again, the type of 
ATG will also impact its timing and dosing of ATG-Fresenius is 
different (12 mg/kg).29,39

Alternative ex vivo and in vivo T cell depletion 
platforms: campath and post-transplantation 
cyclophosphamide

To overcome the high variety in ATG products in terms of 
specificity and numbers used for in vivo T cell depletion, many 
centers have explored and still use campath. Campath is an 
anti-CD52 antibody which associates in clinical outcomes 
with low incidences of GVHD and can be given ex vivo “in the 
bag” or in vivo (Table  1 and20–22). A similar impact on inter-
individual variations in lymphocyte counts on active campath 
in the peripheral blood was reported.54 However, to the best 
of our knowledge, there have been no published transplanta-
tion studies based on this information. Disease-specific prop-
erties also need to be taken into consideration. For example, 
patients suffering from myelofibrosis have been reported to 
suffer from higher incidences of GVHD, and adding ruxolitinib 
before and shortly after transplantation has been reported to 
dampen GVHD, most likely by reducing cytokine storms.55,56 
Another interesting transplantation platform is in vivo T cell 
depletion by administration of high-dose post-transplantation 
cyclophosphamide (PTCy) shortly after transplantation to erad-
icate allo-reactive αβT cells, which was first reported in trans-
plantations using haploidentical donors. PTCy was also used 
more recently in HLA-matched donors (Table 1).23–28 Although 
PTCy allowed for a rapid increase in the use of haploidenti-
cal donors,57 most recent EBMT registry studies suggest that 
there is no substantial difference in composite endpoints when 

Figure 1.  Overdosing of T cells during stem cell transplantation in T cell replete transplantations from matched unrelated and haploidentical 
grafts. We illustrate different T cell dosage within the context of 2 key studies.4,5 Haplo = haploidentical donor; MUD = matched unrelated donor; PBMC = peripheral mononu-
clear cells; PTCy = post-transplantation cyclophosphamide; SCT = stem cell transplantation; SIB = sibling.
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comparing ATG to PTCy in MUD donors (Table 1).29–33 Given 
that PTCy will be difficult to individualize in terms of PK and 
PD because of its complex chemistry,58 based on the retrospec-
tive analysis of registry data, one could even argue that dose 
adjusted ATG45,51 might be the preferred choice to date in fully 
matched MUD donors, while PTCy appears to be superior when 
9 out of 10 MUD donors29 or haploidentical donors32 are used.

Ex vivo T cell engineering strategies focusing 
on defined subsets

Ex vivo T cell engineering by means of CD34 selection (Table 1) 
34–37 or αβ T cell depletion (Table 1) 38–44 is the most controlled 
way to define graft composition to date, and has been shown to 
be at least as successful as other optimized platforms in reducing 
the incidence of GVHD while maintaining graft-versus-leukemia 
effects (Table  1). Pasquini et al34 reported that CD34 selection 
of peripheral derived blood stem cells of HLA-matched sibling 
donors results in a well-defined allograft, with 0.01–1 × 105 αβ T 
cells/kg, and is associated with a low incidence of chronic GVHD. 
Subsequently, αβ T cell/CD19 depletion entered clinical practice 
in haploidentical-SCT,59 matched related donors, and MUD.42 
These depletion techniques restrict αβ T cells to around 0.1–1 × 
105 αβ T cells/kg59 (comparable with CD34 selection) while pre-
serving natural killer (NK) cells (CD3 depletion) or NK and γδ 
T cells (αβ T cell depletion). αβ T cell depletion associated with 
a low incidence of acute GVHD in a cohort of pediatric patients 
with both malignant and nonmalignant diseases43,60 was reported 
also for PTCy (Table 1). In a very recent study of adult patients 
with malignant disease, with a longer follow-up, chronic GVHD 
rate was also surprisingly low.38 Because graft engineering is more 
expensive and cumbersome compared to the application of ATG 
or PTCy, at this stage, most centers use ATG- or PTCy-based 
regimens. However, as engineering chimeric antigen receptor T 
cells increases in availability and prevalence, the complexity and 
costs of graft engineering will become negligible for centers when 
assessing its potential strategic advantages.3

The use of more complex engineering techniques will largely 
depend on reimbursement strategies. Beginning in 2020 in the 
Netherlands, reimbursement for graft engineering should facili-
tate its implementation to a broader patient population. In addi-
tion, as randomized studies comparing different transplantation 
platforms strategies will either not be performed at a larger 

scale, or are quickly outdated given the rapid pace of develop-
ments, creation of a new network of studies, like those designed 
for coronavirus disease (COVID)-related research, seems to be 
timely.61 The EBMT registry covering transplantations and cel-
lular immune therapies like CAR T cells will be well-suited to 
serve as a potential backbone for these studies, but would need 
to be extended.62,63 These studies should also include inquiries 
into the socio-economic impacts and quality of life for patients 
in order to cover all aspects of earlier financial investments and 
future societal gains.62

T cell depletion and viral reactivations

The 2 clinical measurements of a well-balanced T cell recon-
stitution are the incidence of GVHD and viral reactivations. 
While data on incidence of GVHD are usually decently reported 
in registries and clinical trials, data on different viral reactiva-
tions or infections after allo-SCT in the different platforms are 
scarce (Table 1). Lack of reporting does not necessarily indicate 
the absence of the event. For example, initial reports on PTCy 
did not report on BK virus (BK)-reactivation, while later studies 
indicate that BK-reactivations are a substantial clinical problem 
in up to one fifth of all patients.24,25 Also, reporting on cyto-
megalovirus (CMV) reactivations is rather heterogenous. While 
incidences of infections are related to the overall cohort (fre-
quently around 30%–40%) most of the time, incidences can be 
underestimated, as reactivation occurs mainly in CMV-positive 
recipients. Reporting incidence in relation to recipient positivity 
would be more appropriate38 and allow for a better comparison 
of incidences between different trials and retrospective cohorts. 
The difference between preemptive CMV treatment and actual 
CMV disease is important information for assessing the strength 
of an immune system and more important than diving into dif-
ferent techniques and thresholds of CMV reporting, which are 
rather heterogenous and do not inform us about immune com-
petence.64 Incidences on Epstein-Barr virus (EBV) infections and 
reactivations are also not indicated in most reports (Table 1). 
Initial studies in 2001 showed an incidence of EBV reactiva-
tion of around 30% in T cell replete transplantation platforms, 
while after CD34 graft engineering with different techniques, 
65% of EBV reactivations were reported.37 EBV reactivations 
were, at the time of the initial reports, a substantial clinical 
problem, as anti-CD20 antibodies were only approved in 1998 
by the European Medicines Agency. In 2020, the use of ATG or 

Figure 2.  The dual sword of ATG, it is all about timing. APC = antigen presenting cell; ATG = anti-thymocyte globulin; DLI = donor lymphocyte infusion; GVHD = graft vs host 
disease.
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haploidentical donors were still identified as risk factors for EBV 
reactivations.65 Also in the absence of CD19 depletion within 
the context of an αβT cell depletion, incidences of EBV reactiva-
tion have been reported to be around 40%,38 frequencies which 
are in line with what was reported after campath condition-
ing.22 However, as these reports are from patients treated after 
anti-CD20 antibodies were approved, no substantial increases 
in posttransplant lymphoproliferative disorders are observed in 
either platform to date. Thus, reactivation of a virus does not 
necessarily affect clinical outcomes, as evidenced by the history 
of EBV reactivation over the last 2 decades. Adding CD19 deple-
tion during graft engineering to the αβT cell depletion platform, 
however, nearly abolished EBV reactivations in an interim anal-
ysis of an ongoing clinical trial (NL6940, de Witte and Kuball, 
unpublished observation, 2021). Thus, filling the knowledge gap 
on viral reactivations in relation to the transplantation regimen 
in a registry would allow for better assessment of immune com-
petence across different platforms. Viral reactivations do not 
always need to be harmful, and some viral reactivations might 
be even beneficial. For example, it has been suggested that CMV 
reactivations could assist in certain, but not all, transplantation 
platforms to improve leukemia control.64,66–71 Novel drugs that 

prevent CMV reactivation and have been introduced recently 
to the market72 could, within this context, be counterproductive 
for certain transplantation platforms.

Immune reconstitution impacts toxicity 
and efficacy of post-transplantation viral 
reactivations and maintenance therapies

Acknowledging that different transplantation platforms 
associate with different immune repertoires early after trans-
plantation1 increases our understanding of the different bio-
logical impacts of CMV reactivation on toxicity and leukemia 
control.68 These different immune repertoires can also provide 
a strategic reason to choose 1 transplantation platform over 
the other, as different options arise for maintenance thera-
pies after transplantation. αβ T cell depletion is, in contrast 
to all other platforms, dominated by an early NK cell and 
γδT cell recovery, most likely derived from the infused prod-
uct (Figure 3),38,39,43,60 which usually does not require immune 
suppression beyond 1 month. ATG-based platforms favor a 
strong recovery of αβT cells, which associate with the need of 

Figure 3.  Graft engineering. Different graft compositions are depicted from different graft sources after different types of graft engineering. NK = natural killer.
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additional immune suppression for at least 4 months.51 PTCy 
has been suggested to selectively deplete rapidly proliferating 
allo-reactive αβT cells. Rapidly reconstituting NK cells and 
γδT cells are most likely also diminished as collateral damage 
of PTCy. However most recent data suggest that depletion of 
allo-reactive αβT cells is less important than creating a αβT 
cell dysfunction and suppression.73,74 This would explain why 
a prolonged immune suppression is needed after PTCy. The 
increased immune suppressive environment after PTCy would 
also better explain the conflicting data reported on numbers 
between different immune reconstitution patterns observed 
after ATG and PTCy-based transplantation regimens.33,75 The 
described substantial differences in immune reconstitution 
patterns depending on transplantation regimens most likely 
explain the aforementioned conflicting data on the impact of 
CMV reactivation on leukemia control. NK and γδT cells, par-
ticularly after αβT cell depletion, are dominant subsets that 
will be protective as they both expand upon CMV reactiva-
tion and also cross-react with leukemic cells.67,68,76–82 We, and 
others, have shown that ex vivo T cell depletion strategy reg-
imens favor memory cells like NK cells and γδT cells.38,39,60 
However, a major challenge remains sporadic reporting and 
lack of harmonization in immune monitoring (eg, Table 2 and, 
25,38,39,41,42,83 for review53).

Not only infections, but drugs can also act differently, 
depending on the current immune environment (Figure 4). 
After T cell replete transplantation, lenalidomide has detri-
mental effects by inducing lethal GVHD if given shortly after 
transplantation.84 In contrast, tyrosine kinase inhibitors, cur-
rently used in clinical trials as maintenance therapies for leu-
kemia control, most likely do not substantially depend on 
the transplantation platform in terms of toxicity. However, 
part of their activity was suggested to be mediated via inter-
leukin-15 on CD8 positive αβT cells,85 and a strong immune 
suppression might therefore impair efficacy. However, more 
data are needed to thoroughly investigate the impact of 
post-transplantation pharmacological interventions on clin-
ical outcomes. Checkpoint inhibitors are another example 
of a drug where the currently available reports suggest that 
they are most likely harmful if administered too early after 

transplantation in T cell replete platforms. Toxicity in T cell 
deplete platforms might be less due to the reduced size of the 
αβT cell repertoire (Figure 4).2,86 Also the choice of bispecific 
molecules could be driven by the transplantation platform. 
Anti-CD3 engagers could bare the risk of inducing GVHD if 
used too early in T cell replete platforms, and trispecific killer 
engager molecules, which mainly act in NK cells, could be 
the preferred choice for transplantation platforms favoring a 
strong NK cell reconstitution.87

Donor lymphocyte infusions and engineered 
immune effector cells within the context of 
different transplantation platforms

Donor lymphocyte infusion (DLI) are considered as the cor-
nerstone of allo-SCT, either used as prophylactic intervention 
(thus in patients with a priori high risk of relapse) preemp-
tively (thus triggered by minimal residual disease or a reduced 
donor chimerism), or as therapy once relapse occurs.1,2 In par-
ticular, the preemptive and prophylactic usage of DLIs depends 
on the transplantation platform in terms of timing and dos-
ing (Figure 5) (modified and updated from Yun and Waller88). 
After αβT cell depletion, we have been able to administer a 
DLI to the majority of patients 3 months after allo-SCT, while 
preemptive or prophylactic DLI after other types of transplan-
tations are usually administered later, and for T cell replete 
transplantations are only an option for a minority of patients 
(for review see1). T cell replete platforms including ATG and 
PTCy require per default ongoing immune suppression for 
many months to keep co-infused graft T cells under control. 
In the case of GVHD, immune suppression needs to be pro-
longed. However, the drawback of acute GVHD is extensive 
chronic GVHD in a majority of patients, at least when treated 
with ATG, and will severely impact quality of life and overall 
survival. An additional important consideration is the upcom-
ing combination therapy of allo-SCT beyond DLI, but with 
genetically modified T, NK, γδT cells.3,77,89–93 These strategies 
favor platforms that do not depend on prolonged immune 
suppressions.

Table 2

Immunological Recovery After Allo-SCT With T Cell Depletion.

Study Intervention T Cell IR γδT Cell IR αβT Cell IR B Cell IR NK Cell IR

Berger et al25 PTCy Day 60 NA NA Day 60 Day 60
CD4 132/μL 46/μL 154/μL
CD8 491/μL

de Witte et al38 αβT cell depletion  Day 100 Day 100 Day 100 Day 100
43/μL CD8 148/μL; CD4 60/μL 130/μL 182/μL
vd2+ 21/μL
vd2- 22/μL

Locatelli et al39 αβT cell/CD19 depletion Day 100 Day 100 Day 100 Day 100 Day 100
CD3 254/μL 46/μL 186/μL 2/μL 196/μL
CD4 89/μL
CD8 98/μL

Lang et at41 αβT cell/CD19 depletion Day 90 NA NA Day 90 Day 30
CD3 374–479/μL 24–83/μL 352–430/μL
CD4 120–159/μL

Maschan et al42 αβT cell/CD19 depletion Day 30 NA NA NA Day 30
CD3 245/μL 385/μL
CD4 40/μL
CD8 135/μL

Laberko et al83 αβT cell/CD19 depletion Day 120 Day 120 Day 120 Day 120 NA
CD3 220–384/μL 38/μL 262/μL 18–44/μL

Examples representing diversity in analyses.
allo-SCT = allogeneic stem cell transplantation; IR = immune reconstitution; NA = not available; NK = natural killer; PTCy = post-transplantation cyclophosphamide; μL = microliter.
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Conclusions: adjust!

Substantial variations in terms of immune reconstitution 
are observed within and between different allo-SCT platforms. 
However, it is striking that the vast majority of allo-SCT studies 

only report clinical outcomes as parameters of success, and that 
information on the actual “drug delivered”—the infused donor 
cells and their capacity to execute a GVL reaction—is often lack-
ing. Better capturing, understanding, and mastering a well-bal-
anced immune recovery for all platforms will be key for increasing 

Figure 4.  Transplantation platforms, associated dominant immune repertoires early after transplantation, and potential risk of GVHD induced by 
maintenance therapy. ATG = anti-thymocyte globulin; GVHD = graft vs host disease; NK = natural killer; PTCy = post-transplantation cyclophosphamide; SCT = stem cell transplantation.

Figure 5.  Dosing and timing of DLI. Risk of GVHD is plotted against T cell numbers received either during graft infusion, or later as donor lymphocyte 
infusion (modified and updated from Yun and Waller88). ATG = anti-thymocyte globulin; DLI = donor lymphocyte infusion; GVHD = graft vs host disease; PTCy = post-transplantation 
cyclophosphamide; SCT = stem cell transplantation.
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the overall success of transplantation, as well as for novel post-
transplantation interventions. This knowledge will allow for 
better assessment of the habits and strategic choices of different 
centers, can guide daily practice, and create a basis for novel trial 
designs. The benchmarking initiative started by EBMT can assist 
in increasing data completeness and quality63 to develop COVID-
inspired trial designs such as “a randomized embedded multifacto-
rial adaptive platform”61 for the entire community to create more 
data evaluating “counts” and “adjustments.”

Practical advice of count and adjust

One might argue that our proposed strategy of individualized 
allo-transplantation platforms and counting of all graft ingredi-
ents is either not applicable in daily routine due to its complexity, 
or should be first further evaluated in clinical studies. While clin-
ical studies are, of course, of great importance for future insights 
into individualized transplantation platforms, we provided vast 
evidence that many steps should be introduced today into clinical 
routines. We advocate for 4 different pillars, with different levels 
of readiness. The first pillar, which is ready for all centers today, 
is overcoming the vast overshoot of T cells in grafts for all T cell 
replete transplantations. This would only require the addition of 
CD3 to CD34 counts as a quality control before infusion at a 
center, as not all donor centers provide grafts with T cell counts 
(Figure  1). Donor centers are at the same time encouraged to 
add CD3 counts to CD34 counts during their daily routine. The 
second pillar is adjusting the dosing of ATG based on lympho-
cyte counts when using ATG-Thymoglobulin, as advised in the 
recent EBMT handbook.53 In contrast, more data will be needed 
for lymphocyte count-adjusted ATG-Fresenius before providing 
specific advice. The third pillar is graft engineering as an addi-
tional intervention that can be introduced into daily clinical prac-
tice if strategically interesting, although associated with expertise 
of the stem cell laboratory and also with additional costs during 
the beginning of the transplantation. Whether graft engineering is 
superior as compared to T cell replete transplantation strategies 
when carefully restricting dosing of T cells and ATG remains to be 
clinically studied. The fourth pillar is therapeutic drug monitoring 
during conditioning, which is well-established for busulfan. Dose 
adjustments of additional chemotherapy agents used during con-
ditioning have been studied less extensively and need further eval-
uation before being implemented into daily clinical routine. Thus, 
we conclude that the 2 main points of advice, either infusing less 
graft cells and when administering ATG-Fresenius adjusting tim-
ing, or dosing for patients with low lymphocyte counts, can be 
implemented at all centers today without any additional costs.
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