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Abstract

Background and Objective: Various digital pathology tools have been developed to aid in 

analyzing tissues and improving cancer pathology. The multi-resolution nature of cancer 

pathology, however, has not been fully analyzed and utilized. Here, we develop an automated, 

cooperative, and multi-resolution method for improving prostate cancer diagnosis.

Methods: Digitized tissue specimen images are obtained from 5 tissue microarrays (TMAs). The 

TMAs include 70 benign and 135 cancer samples (TMA1), 74 benign and 89 cancer samples 

(TMA2), 70 benign and 115 cancer samples (TMA3), 79 benign and 82 cancer samples (TMA4), 

and 72 benign and 86 cancer samples (TMA5). The tissue specimen images are segmented using 

intensity- and texture-based features. Using the segmentation results, a number of morphological 

features from lumens and epithelial nuclei are computed to characterize tissues at different 

resolutions. Applying a multiview boosting algorithm, tissue characteristics, obtained from 

differing resolutions, are cooperatively combined to achieve accurate cancer detection.

Results: In segmenting prostate tissues, the multiview boosting method achieved ≥ 0.97 AUC 

using TMA1. For detecting cancers, the multiview boosting method achieved an AUC of 0.98 

(95% CI: 0.97–0.99) as trained on TMA2 and tested on TMA3, TMA4, and TMA5. The proposed 

method was superior to single- view approaches, utilizing features from a single resolution or 

merging features from all the resolutions. Moreover, the performance of the proposed method was 

insensitive to the choice of the training dataset. Trained on TMA3, TMA4, and TMA5, the 

proposed method obtained an AUC of 0.97 (95% CI: 0.96–0.98), 0.98 (95% CI: 0.96–0.99), and 

0.97 (95% CI: 0.96–0.98), respectively.

Conclusions: The multiview boosting method is capable of integrating information from 

multiple resolutions in an effective and efficient fashion and identifying cancers with high 

accuracy. The multiview boosting method holds a great potential for improving digital pathology 

tools and research.
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1. Introduction

In 2016, it is expected that more than 180,000 men are diagnosed with prostate cancer and 

more than 26,000 men are died from the disease (second leading cause of deaths from 

cancer) [1]. For prostate cancer diagnosis, over one million biopsies are annually performed. 

Biopsied prostate specimens are sectioned and usually stained with hematoxylin and eosin 

(H&E) to enhance the contrast in specimens. The stained specimens are examined under an 

optical brightfield microscopy by pathologists. A majority of the specimens are negative for 

prostate cancer. Cancer specimens are assigned a histological grade (or disease status) 

according to the Gleason grading system [2]. Assessing the qualitative characteristics of 

tissues/cells, pathologists determine a Gleason grade between 1 (relatively benign) and 5 

(highly aggressive). The Gleason grade offers the definitive diagnosis of prostate cancer and 

forms the basis for cancer management and treatment today. The manual and qualitative 

nature of prostate pathology, however, not only limits the speed and throughput but also 

impedes the accuracy and reliability due to the substantial inter- and intra-observer 

variations in grading [3–5]. Automated and quantitative tools for prostate pathology could, 

therefore, aid in improving prostate cancer diagnosis.

Digital pathology [6] is an emerging practice of computerized image processing, analysis, 

and interpretation of digitized tissue specimen images. Digitized tissue specimen images are 

often segmented into a number of histological objects/classes (e.g., epithelium, stroma, and 

nucleus) due to their biological, chemical, and functional differences [7]. The segmented 

histological objects are used to characterize and quantify tissue appearances and 

microstructures; for example, alteration of glandular shape and spatial distribution and 

arrangement of cells and nuclei. The quantitative measures are utilized, in a machine 

learning framework, to make a diagnostic decision. Due to the automated and quantitative 

nature, digital pathology holds a potential for advancing the current practice of cancer 

pathology [8]. Numerous digital pathology methods have been proposed for analyzing 

differing types of tissue specimen images [9,10]; for instance, prostate cancer [11], breast 

cancer [12], neuroblastoma [13], and colorectal cancer [14]. A variety of approaches have 

been employed to quantify tissue characteristics such as color [15], morphology [15–17], 

Fourier transform [18], wavelet transform [15,19], gray level co-occurrence matrix [20], 

fractal analysis [15,21], local binary pattern [22], probabilistic models [23], and graph 

theory [24]. Machine learning algorithms, including decision tree [25], k-nearest neighbor 

[19,15,21], Bayesian [26], support vector machine (SVM) [15,16], boosting [27], and deep 

learning [28,29] have been applied to determine the disease status.

Many of the previous works in digital pathology arbitrarily chose the resolution or scale at 

which a tissue image is processed and/or analyzed [30]. It is likely determined by the 

resolution at which the tissue specimen is digitized. This approach is contrary to a 

pathologist who examines a tissue specimen under a microscope at different resolutions; for 

example, the presence (or absence) of basal nuclei (indicative of cancer) is assessed at a 

higher resolution (e.g., ×20 or ×40 magnification) whereas a lower resolution is suitable to 

observe the glandular shape or formation. Accordingly, the current pathological review 

process adopts a multi-resolution (or scale) approach. There have been several multi-

resolution digital pathology approaches, mainly based on a coarse-to-fine strategy 
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[13,31,26,32]. The coarse-to-fine strategy, in general, makes an initial decision (or 

diagnosis) at a coarser resolution, and then refines the decision at finer resolutions. In this 

strategy, the choice and order of coarse and fine resolutions are still, by and large, arbitrary. 

Further, it is not trivial to correct earlier mistakes (or misclassifications) as well as to 

determine the optimal resolutions for analysis. Alternatively, a multiview learning approach 

is able to combine information from multiple sources (multiple resolutions in our case) and 

to make a better decision. It was first developed in the context of the semi-supervised 

learning, so called co-training algorithm [33]. Later, several techniques were developed in 

the context of the supervised learning; for example, classifier fusion [34], local learning 

[35], and boosting [36].

In this study, we propose an automated, cooperative, and multi-resolution approach to 

improve prostate cancer diagnosis (Fig. 1). Tissue specimens are digitized and segmented 

using intensity- and texture-based image features [37]. Utilizing the segmented lumens and 

epithelial nuclei, a number of morphological features are computed to characterize tissues at 

varying resolutions. A multiview boosting classification method [38] is adopted to achieve a 

robust and accurate tissue segmentation and diagnosis through an effective and efficient 

cooperation between differing resolutions. We systematically evaluate the performance of 

the multiview boosting method using a large set of digitized tissue images from tissue 

microarrays (TMA).

The rest of this manuscript is organized as follows. In Materials and Methods section, we 

begin with describing the dataset and multiview boosting algorithm. In the following 

subsections, tissue segmentation, tissue morphological feature extraction, and classification 

method are described. In Results section, the experimental results, including tissue 

segmentation and cancer detection, are presented. In Discussions section, the implications 

and limitations of our study are discussed. Finally, we conclude in Conclusions section.

2. Materials and methods

2.1. Dataset

We employed five tissue microarrays (TMA) from Tissue microarray research program at 

the National Institutes of Health. Tissue specimen sample cores in TMA are stained with 

hematoxylin and eosin (H&E) and scanned under a standard brightfield microscope (Leica 

Biosystems) at 40× magnification, resulting in a spatial resolution of 0.228 μm × 0.228 μm. 

A tissue sample core may contain one or more glands. An experienced pathologist (S.M.H) 

reviewed each tissue specimen sample core and determined its disease status using the 

Gleason grading system. Five TMAs contain 205 (70 Benign, 135 Cancer), 163 (74 Benign, 

89 Cancer), 185 (70 Benign, 115 Cancer), 161 (79 Benign, 82 Cancer), and 158 (72 Benign, 

86 Cancer) tissue specimen samples, respectively (Table 1). The first TMA (“TMA1”) is 

used to train and test a tissue segmentation method; 101 (212,104 epithelium, 279,811 

stroma, 72,827 nucleus, and 56,851 lm pixels) and 104 (219,235 epithelium, 275,893 

stroma, 83,291 nucleus, and 63,144 lm pixels) tissue samples are used for the purpose of 

training and testing, respectively. For cancer diagnosis, the second TMA (“TMA2”; 

including 163 samples) is used as the training dataset, and third, fourth, and fifth TMAs 
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(“TMA3”, “TMA4”, and “TMA5”; including 185, 161, and 158 samples, respectively) are 

used as the validation datasets.

Algorithm 1.

Multiview boosting.

Input

S = {(x1, y1), …, (xn, yn)} where xi ∈ X1 × … × Xm,

yi ∈ {1,..,k}, weak learning algorithm WL,

number of iteration T, baseline B

Initialize

i ∈ {1, …, n}, j ∈ {1, …, m}, l ∈ 1, …, k}: f0, j(i, l) = 0

Cost matrices: C0, G(i, l) = C0, j(i, l) =
1 if yi ≠ l

−(k − 1) if yi = l
where C0, G is the global cost matrix

for t = 1 to T do

 Train WL using Ct − 1, 1, …, Ct − 1, m

 for j = 1 to m do

  Get weak classifier ht, j and edge δt, j on Ct − 1, j

  Compute αt, j = 1
2 ln

1 + δt, j
1 − δt, j

 for j = 1 to m do

  Update cost matrices: Ct, j(i, l) =
exp ft, j(i, l) − ft, j i, yi if yi ≠ l

−∑p = 1, p ≠ yi
k exp ft, j(i, p) − ft, j i, yi if yi = l

  where ft, j(i, l) = ∑z = 1
t 1 ℎz, j(i) = l αz, jdz, j(i),

  and dz, j(i) = 1 if ℎz, j(i) = yi or ∄q ∈ 1, …, m , ℎz, q(i) = yi
0 else

Get ℎt = argmax
ℎt, j

edge ℎt, j on Ct, G  and δt on Ct, G

 Compute αt, j = 1
2 ln

1 + δt
1 − δt

 Update global cost matrix: Ct, G(i, l) =
exp ft, G(i, l) − ft, G i, yi if yi ≠ l

−∑j ≠ yi
k exp ft, G(i, j) − ft, G i, yi if yi = l

  where ft, G(i, l) = ∑z = 1
t 1 ℎz(i) = l αz

Final hypothesis

H(x) = argmax
l ∈ 1, …, k

fT (x, l) where fT (i, l) = ∑t = 1
T 1 ℎt(i) = l αt

2.2. Multiview boosting

Consider a dataset S = {(x1, y1), …, (xn, yn)} where xi ∈ X is an example and yi ∈ Y is a 

class label. X comprises a number of views X = X1 ×…×Xm and Y = {1, …, k}. An 
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example xi in a view m is represented as xi, m. In a cost matrix C, each row and column 

denotes an example and a class label, respectively, i.e., C(i, l) is the cost of classifying the 

example i as the class l. It maintains a cost matrix Cj for a view j and a global cost matrix 

CG. A weak classifier hj is learned on a view j, satisfying the edge condition if 

Cj ⋅ 1ℎj ≤ Cj ⋅ B where 1h is the prediction matrix defined as 1ℎj(i, l) is 1 if hj(i) = l and 0 

otherwise. A baseline B is a cost matrix Uγ defined as Uγ (i, l) is (1 − γ)
k + γ if yi = l and 

(1 − γ)
k  if yi ≠ l. Edge of hj is computed as δj = Cj • Uj − Cj • 1j. It maintains the cost matrices 

in a way that the hardest examples for a view are managed by the other views. To achieve 

this, the matrices are updated as follows: ith row in Cj is updated (dj(i) = 1) only if the 

classifier from the view j correctly classifies the example i or if the rest of the classifiers 

misclassify it. Also, the global cost matrix CG is utilized to select the best classifier from the 

classifiers built on different views at each iteration. Thereby, the final boosting classification 

model is a weighted sum of the classifiers from different views. Depending on the training 

procedure, a classifier from a particular view may be selected multiple times with different 

weights or completly missed from the model construction. The algorithm of multiview 

boosting is presented in Algorithm 1.

2.3. Tissue segmentation

To improve contrast and color representation, a tissue specimen image I (in RGB: red, green, 

and blue channels) is converted into 3 different color forms: 1) Histogram equalization 2) 

HSV (hue, saturation, and value) color space 3) La*b* (L: illumination, a* and b*: color-

opponent dimensions) color space. In total, 9 color channels are generated. To quantify the 

image characteristics, we employ intensity- and texture-based features. Intensity-based 

features include average, standard deviation, kurtosis, and skewness. Texture-based features 

are computed using local binary pattern (LBP) [39], local directional derivative pattern 

(LDDP) [40], and variance measure (VAR) [39] with two neighborhood topologies (P,R) = 

{(16,2),(24,3)} where P and R are the number of neigh- boring pixels and the radius, 

respectively. These operators generate a (binary) pattern code per pixel. The pattern codes 

are summarized into a histogram.

For a pixel x ∈ I, we extract the intensity- and texture-based features at different resolutions 

(or views) by drawing a rectangular window of differing sizes w ( w = 1, 3, 7, 15, and 31 

pixels; pixel resolution = 0.228 μm). For w = 1, the intensity value of 9 color channels 

constitutes 9 features. For w = 3, 36 features (average, standard deviation, kurtosis, and 

skewness per color channel) are computed. For w ≥ 7, we compute 36 intensity-based 

features and 108 texture-based features ((P,R) = (16,2): 18 features for LBP and LDDP and 

10 features for VAR per color channel; (P,R) = (24,3): 26 features for LBP and LDDP and 

10 features for VAR per color channel). A multiview boosting algorithm is adopted to 

cooperatively integrate the 5 different sets of features and to provide a histological class of a 

pixel.

A tissue specimen image is segmented into a lumen, nucleus, epithelium, and stroma in a 

cascaded manner ( Fig. 2 ). The tissue specimen image is first segmented into lumen and 

non-lumen areas. Lumens are determined by using a threshold value ( > 0.5) on the output of 
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the lumen vs. non-lumen multiview boosting classification ( + : lumen, −: non-lumen), 

followed by a size constraint ( > 50 μm2). Second, non-lumen areas are classified into 

nucleus and non-nucleus areas. Thresholding ( > 0.5) the output of the nucleus vs. non-

nucleus multiview boosting classification ( + : nucleus, −: non-nucleus), initial nuclei are 

identified. The size and shape of the initial nuclei are examined: If the size of a nucleus is 

smaller than 5 μm2 or the ratio of the major and minor axis is greater than 5 when its size is 

smaller than 25 μm2, then the nucleus is considered to be an artifact. Individual nucleus is 

identified by applying the Euclidean distance transform and a watershed algorithm (Fig. 3). 

Third, non-nucleus areas are grouped into epithelium and stroma. We identify epithelium by 

using a threshold value ( > 0.5) on the output of the epithelium vs. stroma multiview 

boosting classification ( + : epithelium, −: stroma), followed by a size constraint ( > 500 

μm2 ). Moreover, in order to identify and eliminate lumen artifacts, the perimeter of a lumen 

is examined. By definition, epithelial cells enclose a lumen in tissue. If < 40% of its 

perimeter is surrounded by epithelium, such lumen is excluded.

2.4. Tissue morphology: feature extraction

We quantify tissue characteristics using morphological features of lumens and epithelial 

nuclei and relational features between lumens and epithelial nuclei (Fig. 4). The 

morphological features of a lumen are:

1. Area Larea: A number of pixels within a lumen

2. Compactness: Lperi/ Larea where Lperi is the perimeter of a lumen

3. Smoothness: Lperi/Lbperi where Lbperi is the perimeter of a bounding box of a 

lumen

4. Roundness: (r • Lperi)/Larea where is r the radius of a circle of size Larea

5. Convex hull ratio: Lconv/Larea where Lconv is the size of a convex hull of a lumen

6. Major-minor axis ratio: Ratio of major and minor axes of a lumen

7. Extent: Lperi/Lbarea where Lbarea is the size of a bounding box of a lumen

8. Bounding circle ratio: Lperi/Lbcirc where Lbcirc is the size of a minimum 

bounding circle of a lumen

9. Distortion: STD(Ld)/AVG(Ld) where Ld is the distance from the center of a 

lumen to the boundary of the lumen and AVG and STD represent the average and 

standard deviation

10. Epithelial perimeter ratio: Portion of the perimeter of a lumen that is connected 

to epithelium

11. Distance to the closest lumen

12. Symmetric index of a lumen boundary: Sum of vertical and horizontal symmetry. 

Vertical and horizontal symmetry are computed as Σ| LTi − LBi|/ Σ(LTi + LBi) and 

Σ| LRi – LLi|/ Σ(LRi + LLi), respectively, where LTi and LBi are vertical distances 

from a vertical axis to the boundary of a lumen and LLi and LRi are horizontal 
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distances from a horizontal axis to the boundary of a lumen. The vertical axis 

runs along the longest diameter, and the horizontal axis runs perpendicularly to 

the horizontal axis passing the center of a lumen

13. Symmetric index of a lumen area: Sum of left-right area symmetry and top-

bottom area symmetry. Left-right and top-bottom area symmetry are computed 

as |LLarea − LRarea|/(LLarea + LRarea) and |LTarea − LBarea|/(LTarea + LBarea), 

respectively, where LLarea, LRarea, LTarea, and LBarea denote the size of left, right, 

top, and bottom quadrants (determined by vertical and horizontal axes), 

respectively

14. Number of lumens

Similarly, epithelial nucleus features are computed:

1. Area

2. Compactness

3. Smoothness

4. Roundness

5. Convex hull ratio

6. Major-minor axis ratio

7. Extent

8. Bounding circle ratio

9. Distortion

10. Shape context [41]: For each nucleus, a log-polar histogram is constructed using 

4 bins for r (binr) and 4 bins for θ (bin θ). r is the distance between a nucleus and 

its neighboring nucleus. θ is the angle between the line of reference (x-axis) and 

the line through a nucleus and its neighboring nucleus. A histogram is defined to 

be the shape context of a nucleus

binr =

1, if r ≤ log(20μm)
2, if log(20μm) < r ≤ log(40μm)
3, if log(20μm) < r ≤ log(60μm)
4, if log(20μm) < r ≤ log(80μm)

binθ =

1, if 0° ≤ θ < 45° or 180° ≤ θ < 225°
2, if 45° ≤ θ < 90° or 225° ≤ θ < 270°
3, if 90° ≤ θ < 135° or 270° ≤ θ < 315°
4, if 135° ≤ θ < 180° or 315° ≤ θ < 360°

11. Distance fractal dimension: For each nucleus, the distances from a nucleus to its 

closest N neighboring nuclei are computed and sorted in an ascending order. The 

slope of the best linear least-squares fit is computed for the order versus distance 

plot. (N = 10, 20, 30)
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12. Higuchi fractal dimension [42]: For each nucleus, the distances from a nucleus to 

its closest N (up to 30) neighboring nuclei are computed and sorted in an 

ascending order, forming a data series: x(1), x(2), …, x(N). k new data series are 

constructed for m = 1, …, k :xmk = x(m), x(m + k), …, x m + N − m
k k . The length 

of xmk  is defined as Lm(k) = (∑i = 1

N − m
k |x(m + ik) − x(m + (i − 1)k)|) N − 1

N − m
k k

. The 

average length is computed as L(k) = 1
k ∑m = 1

k Lm(k). Repeating this for each k 

ranging from 1 to kmax, the best linear least-squares fit for the plot of ln L(k) 

versus ln k gives the Higuchi fractal dimension.

13. Entropy of nuclei distribution: Dividing a tissue image into 50 μm X 50 μm 

disjoint partitions, the entropy is computed as 

H(nuclei) = − ∑i = 1
n ∑j = 1

n p xij logp xij  where p() is the probability mass 

function of the number of nuclei in a partition and xij is the number of nuclei in 

(i, j) partition.

14. Distance to the closest epithelial nucleus

15. Number of nuclei

16. Number of neighboring epithelial nuclei: Number of epithelial nuclei that are 

within 20 μm, 40 μm, 60 μm, and 80 μm from a nucleus.

Also, relational features utilizing both lumens and epithelial nuclei are computed:

1. Distance from a lumen to its closest epithelial nucleus

2. Number of epithelial nuclei that are assigned to a lumen: A nucleus is assigned 

to its closest lumen

3. Distance from an epithelial nucleus to its closest lumen

4. Number of distal epithelial nuclei: A nucleus is designated as a distal nucleus if 

it is 40 μm away from its closest lumen.

For each histological class (a lumen and epithelial nucleus), the morphological features are 

computed at different resolutions (or views) by sliding a rectangular window of differing 

sizes w (w = 100, 300, 500, 700 μm; view1, 2, 3, and 4) and from a whole tissue sample 

(view5), i.e., 5 different resolutions are employed (Fig. 5). The quantities describing lumens 

and epithelial nuclei within a window are summarized by computing up to 5 statistics (AVG, 

STD, minimum, maximum, and total sum). AVG, STD, mini- mum, and maximum of the 

summarized statistics form the morphological features (from 1st to 4th resolution). In total, 

670 features are computed (217 lm, 333 epithelial nucleus, and 120 relational features). We 

also calculate the 5 statistics of the morphological quantities from a whole tissue sample. 

These become the morphological features for the 5th view, comprising 175 features (54 lm, 

91 epithelial nucleus, and 30 relational features).
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2.5. Classification: Cancer vs. Benign

We employ a multiview boosting algorithm to cooperatively combine the 5 different sets of 

morphological features and to determine the disease status of tissue specimen samples. A 

linear support vector machine (SVM) [43] is adopted as a weak classifier. 10% of the 

training dataset is sampled based on the global cost matrix and used to build a weak 

classifier. For each view (or feature set), the discriminative morphological features are 

selected using Wilcoxon-rank sum test (p-value < 0.01; 17 features are selected on average) 

and used to learn the weak classifier. The boosting procedure terminates if it reaches 20 

boosting steps.

In order to evaluate the performance of the proposed method, four TMAs (TMA2, TMA3, 

TMA4, and TMA5) are employed. We train a multiview boosting classifier on TMA2 (74 

Benign, 89 Cancer) and test its performance on the rest of the TMAs (TMA3, TMA4, 

TMA5; 221 Benign, 283 Cancer). The correct and incorrect predictions by the multiview 

boosting classifier are summarized into a receiver operating characteristic (ROC) plot, and 

the area under the ROC curve (AUC) is computed. Boot-strap resampling with 20 0 0 

repetitions is adopted to assess 95% confidential interval (CI) of AUCs and statistical 

significance of the differences between AUCs of the two ROC curves [44].

3. Results

We adopted three multiview boosting classifiers to segment tissue sample images: 1) lumen 

versus non-lumen 2) nucleus versus non-nucleus 3) epithelium versus stroma. Training and 

testing on the manually selected ROIs from TMA1, we obtained an AUC of 0.99 (95% CI: 

0.99–1.00), 0.99 (95% CI: 0.99–0.99), 0.97 (95% CI: 0.97–0.98) for lumen versus non-

lumen, nucleus versus non-nucleus, and epithelium versus stroma, respectively. Applying the 

three multiview boosting classifiers in a cascaded fashion, lumens and epithelial nuclei were 

identified from the tissue specimen samples in TMA2, TMA3, TMA4, and TMA5.

Extracting and utilizing morphological features from lumens and epithelial nuclei at 5 

different views (w = 100, 300, 500, 700 μm, whole tissue), a multiview boosting classifier 

was trained on TMA2 and tested on the validation datasets, including TMA3, TMA4, and 

TMA5 (Table 2). The classifier achieved an AUC of 0.98 (95% CI: 0.97–0.99). Moreover, 

we compared the performance of the multiview boosting classification to that of single-view 

boosting classifications. The same boosting scheme was adopted to train and validate the 

single-view boosting classifiers. An individual boosting classifier was constructed using the 

morphological features from each view. The AUCs of the single-view classifications were: 

0.95 (95% CI: 0.93–0.97) for view1, 0.96 (95% CI: 0.94–0.97) for view2, 0.95 (95% CI: 

0.93–0.97) for view3, 0.95 (95% CI: 0.94–0.970) for view4, and 0.96 (95% CI: 0.94–0.97 

for view5 (Table 1). A single-view boosting classification on the entire feature set 

(concatenating 5 views) was also constructed and examined, and an AUC of 0.96 (95% CI: 

0.95–0.98) was obtained. The AUC of the multiview boosting classification was 

significantly larger than that of the single-view classifications (p-value < 0.01) (Table 2).

To ensure the robustness of the multiview boosting cancer detection, we performed the 

following experiments. Using each of the validation datasets (TMA3, TMA4, and TMA5), 
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we trained a separate multiview boosting classifier and tested on the rest of the datasets 

including TMA2. For examples, a multiview boosting classifier was trained on TMA3 and 

tested on TMA2, TMA4, and TMA5. Trained on TMA3, TMA4, and TMA5, these 

experiments resulted in an AUC of 0.97 (95% CI: 0.96–0.98), 0.98 (95% CI: 0.96–0.99), and 

0.97 (95% CI: 0.96–0.98), respectively. No significant difference was found in comparison 

to the above experiment where TMA2 was used as the training dataset (0.98 AUC; 95% CI: 

0.97–0.99). Moreover, for each experiment, single-view boosting classifiers were 

constructed and compared to the multiview boosting classifier. For all the three experiments, 

statistically significant differences between the multiview boosting classification and single-

view boosting classifications were found (p-value < 0.05).

Further, the classification result of the multiview boosting method was compared to standard 

machine learning algorithms – SVM and random forests. Similar to the above single-view 

boosting classifications, SVM with a radial basis kernel using all features and random 

forests with 20 trees and random selection of n features (n: number of features) were 

trained and tested using the morphological features per view and the combined feature set of 

5 views. The multiview boosting classification outperformed SVM (≤ 0.97 AUC) and 

random forests (≤ 0.96 AUC) classifications (Table 3). The performance of the multiview 

boosting classification significantly differed from that of both SVM and random forests 

classifications (p-value < 0.05).

The importance of the morphological features was examined by measuring the fraction of 

boosting iterations that used each of the features (Fig. 6). Lumen features were, in general, 

more frequently selected than epithelial nucleus features. This is consistent with a previous 

report [16]. The best-5 features included two lumen features (convex hull ratio and 

symmetric index of a lumen boundary), one epithelial nucleus feature (shape context), and 

two relational features (distance from a lumen to its closest epithelial nucleus and number of 

epithelial nuclei assigned to a lumen). That is, the shape of a lumen, nuclei distribution, and 

relation between lumens and epithelial nuclei are most informative in distinguishing cancers 

from benign tissue samples.

The computational performance of our method was evaluated. The method was implemented 

in MATLAB and performed on a PC with 3.4 GHz processor and 8GB of RAM. The spatial 

dimension of a tissue specimen sample is ~5000 × 5000 pixels on average. It requires 3143 s 

to process and classify a single tissue specimen image. Notably, the tissue segmentation step 

takes > 90% of the entire running time. This is because tissue segmentation is performed per 

pixel basis. A substantial reduction in computation cost would be possible via a 

parallelization of the process. The cancer detection by the multiview boosting takes a 

minimal amount of time ( < 1 s), i.e., no extra computation burden in comparison to other 

machine learning algorithms. The summary of the computational performance of our 

method is available in Table 4.

4. Discussions

This study has focused on examining the ability of the multiview boosting algorithm to 

improve the automated cancer detection. The experimental results suggest that the multiview 
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boosting approach could utilize tissue morphology from multiple views to identify prostate 

cancers and outperform the standard machine learning algorithms.

Several multi-resolution approaches have been proposed to detect and characterize cancers. 

The previous methods typically analyze tissues at multiple resolutions, i.e., learn a 

classification model per resolution, and combine the classification models/results via a 

coarse-to-fine strategy [13,31,26,32] or aggregation/averaging scheme [45,46]. The 

procedures are mainly pre-determined by heuristics whereas pathologists implicitly integrate 

the information from multiple resolutions (or views) and make diagnostic decisions. The 

multiview boosting approach does not explicitly determine how to combine the tissue 

information or classification results from differing views, but rather automatically and 

interactively integrates them.

The multiview boosting approach outperformed the single-view boosting approaches, in 

particular, the single-view approach of concatenating the entire 5 views. This demonstrates 

that the multiview boosting approach does not simply merge information from differing 

views but is capable of optimizing the use of the different information in a synergistic 

manner. Moreover, no significant difference was found in choosing different training and test 

dataset, i.e., the performance of the multiview boosting approach was not dataset dependent.

Multimodal imaging/data approaches may take advantage of the multiview boosting 

approach; for instance, combining microscopy imaging with chemical imaging [16,11], 

radiology imaging [47], or genomic data [48–50]. Multimodal imaging/data approaches of- 

ten extract a set of features from each modality, simply combine the feature sets together, 

and construct a classification model. The multiview boosting algorithm could facilitate the 

effective and efficient fusion of the differing imaging/data modalities as well as the reliable 

and accurate cancer diagnosis.

There are several limitations to our study. First, the presented multiview boosting approach 

only identifies cancer tissue specimen samples. The extended study is desirable to assess the 

capability of the multiview boosting approach to provide Gleason grade of tissue specimens. 

Second, the morphological features were computed from a w × w rectangular window of 4 

different sizes (w = 100, 300, 500, 700 μm) and a whole tissue sample. The choice of the 

size and number of the window is still arbitrary. Optimizing these factors could provide an 

improved cancer detection. Third, we only utilized morphological features of lumens and 

epithelial nuclei in this study. Morphological features of glands and stroma have been 

proposed to characterize cancers [51,12,52]. Also, other types of image features, e.g., texture 

features, can be incorporated to our approach. Last, our method was developed and 

evaluated on TMAs that were prepared at one institute. The efficacy of our approach on 

whole slide prostate specimen images has not been examined. A validation study, including 

multi-institute datasets and whole slide specimen images, could further ensure the reliability 

and validity of our approach.
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5. Conclusion

In this study, we have demonstrated a multiview boosting approach for prostate cancer 

diagnosis. The experimental results are sufficiently promising to warrant prospective 

validation in the clinics and to be extended to more complex pathological models. The 

proposed method obtains tissue characteristics from multiple resolutions and cooperatively 

combines them to automatically identify cancers with high accuracy. We anticipate that the 

application of the multiview boosting approach will augment the accuracy, robustness, and 

utility of digital pathology tools by facilitating the multi-resolution process or analysis of 

tissues as well as the integration of information from various imaging technologies, leading 

to improved cancer pathology.

Acknowledgements

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea 
government (MSIP) (No. 2016R1C1B2012433).

References

[1]. Siegel RL, Miller KD, Jemal A, Cancer statistics, 2016, CA Cancer J. Clin. 66 (2016) 7–30. 
[PubMed: 26742998] 

[2]. Gleason DF, Classification of prostatic carcinomas, Cancer Chemother Rep. 50 (1966) 125–128. 
[PubMed: 5948714] 

[3]. Cintra ML, Billis A, Histologic grading of prostatic adenocarcinoma: intraobserver reproducibility 
of the Mostofi, Gleason and Bocking grading systems, Int. Urol. Nephrol. 23 (1991) 449–454. 
[PubMed: 1938244] 

[4]. Ozdamar SO, Sarikaya S, Yildiz L, Atilla MK, Kandemir B, Yildiz S, Intraob- server and 
interobserver reproducibility of WHO and Gleason histologic grading systems in prostatic 
adenocarcinomas, Int. Urol. Nephrol. 28 (1996) 73–77. [PubMed: 8738623] 

[5]. Egevad L, Ahmad AS, Algaba F, Berney DM, Boccon-Gibod L, Comperat E, Evans AJ, Griffiths 
D, Grobholz R, Kristiansen G, Langner C, Lopez-Beltran A, Montironi R, Moss S, Oliveira P, 
Vainer B, Varma M, Camparo P, Standardization of Gleason grading among 337 European 
pathologists, Histopathology 62 (2013) 247–256. [PubMed: 23240715] 

[6]. Madabhushi A, Lee G, Image analysis and machine learning in digital pathology: challenges and 
opportunities, Med. Image Anal. 33 (2016) 170–175. [PubMed: 27423409] 

[7]. Kwak JT, Reddy R, Sinha S, Bhargava R, Analysis of variance in spectroscopic imaging data from 
human tissues, Anal. Chem. 84 (2012) 1063–1069. [PubMed: 22148458] 

[8]. Pantanowitz L, Digital images and the future of digital pathology, J. Pathol. Inform. 1 (2010).

[9]. Mulrane L, Rexhepaj E, Penney S, Callanan JJ, Gallagher WM, Automated image analysis in 
histopathology: a valuable tool in medical diagnostics, Expert Rev. Mol. Diagn. 8 (2008) 707–
725. [PubMed: 18999923] 

[10]. Gurcan MN, Boucheron LE, Can A, Madabhushi A, Rajpoot NM, Yener B, Histopathological 
image analysis: a review, IEEE Rev. Biomed. Eng. 2 (2009) 147–171. [PubMed: 20671804] 

[11]. Kwak JT, Hewitt SM, Kajdacsy-Balla AA, Sinha S, Bhargava R, Automated prostate tissue 
referencing for cancer detection and diagnosis, BMC Bioinform. 17 (2016) 227.

[12]. Beck AH, Sangoi AR, Leung S, Marinelli RJ, Nielsen TO, van de Vijver MJ, West RB, van de 
Rijn M, Koller D, Systematic analysis of breast cancer morphology uncovers stromal features 
associated with survival, Sci. Transl. Med. 3 (2011) 108ra113.

[13]. Kong J, Sertel O, Shimada H, Boyer KL, Saltz JH, Gurcan MN, Computer-aided evaluation of 
neuroblastoma on whole-slide histology images: classifying grade of neuroblastic differentiation, 
Pattern Recogn. 42 (2009) 1080–1092.

Kwak and Hewitt Page 12

Comput Methods Programs Biomed. Author manuscript; available in PMC 2021 June 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



[14]. Kalkan H, Nap M, Duin RP, Loog M, Automated colorectal cancer diagnosis for whole-slice 
histopathology, Med. Image Comput. Comput. Assist. Interv. 15 (2012) 550–557. [PubMed: 
23286174] 

[15]. Tabesh A, Teverovskiy M, Pang HY, Kumar VP, Verbel D, Kotsianti A, Saidi O, Multifeature 
prostate cancer diagnosis and Gleason grading of histological images, IEEE Trans. Med. Imaging 
26 (2007) 1366–1378. [PubMed: 17948727] 

[16]. Kwak JT, Hewitt SM, Sinha S, Bhargava R, Multimodal microscopy for auto- mated histologic 
analysis of prostate cancer, BMC Cancer 11 (2011) 62. [PubMed: 21303560] 

[17]. Gorelick L, Veksler O, Gaed M, Gomez JA, Moussa M, Bauman G, Fenster A, Ward AD, 
Prostate histopathology: learning tissue component histograms for cancer detection and 
classification, IEEE Trans. Med. Imaging 32 (2013) 1804–1818. [PubMed: 23739794] 

[18]. Smith Y, Zajicek G, Werman M, Pizov G, Sherman Y, Similarity measurement method for the 
classification of architecturally differentiated images, Comput. Biomed. Res. 32 (1999) 1–12. 
[PubMed: 10066352] 

[19]. Jafari-Khouzani K, Soltanian-Zadeh H, Multiwavelet grading of pathological images of prostate, 
IEEE Trans. Biomed. Eng. 50 (2003) 697–704. [PubMed: 12814236] 

[20]. DiFranco M, O’Hurley G, Kay E, Watson W, Cunningham P, Automated gleason scoring of 
prostatic histopathology slides using multi-channel co-occurrence texture features, in: 
Proceedings of International Workshop on Microscopic Image Analysis with Applications in 
Biology (MIAAB’08), 2008.

[21]. Huang PW, Lee CH, Automatic classification for pathological prostate images based on fractal 
analysis, IEEE Trans. Med. Imaging 28 (2009) 1037–1050. [PubMed: 19164082] 

[22]. Gertych A, Ing N, Ma ZX, Fuchs TJ, Salman S, Mohanty S, Bhele S, Velasquez-Vacca A, Amin 
MB, Knudsen BS, Machine learning approaches to analyze histological images of tissues from 
radical prostatectomies, Comput. Med. Imag. Grap. 46 (2015) 197–208.

[23]. Monaco JP, Tomaszewski JE, Feldman MD, Hagemann I, Moradi M, Mousavi P, Boag A, 
Davidson C, Abolmaesumi P, Madabhushi A, High-throughput detection of prostate cancer in 
histological sections using probabilistic pairwise Markov models, Med. Image Anal. 14 (2010) 
617–629. [PubMed: 20493759] 

[24]. Nguyen K, Sarkar A, Jain AK, Prostate cancer grading: use of graph cut and spatial arrangement 
of nuclei, IEEE Trans. Med. Imaging 33 (2014) 2254–2270. [PubMed: 25029379] 

[25]. Doyle S, Feldman MD, Shih N, Tomaszewski J, Madabhushi A, Cascaded dis- crimination of 
normal, abnormal, and confounder classes in histopathology: gleason grading of prostate cancer, 
BMC Bioinform. 13 (2012) 282.

[26]. Doyle S, Feldman M, Tomaszewski J, Madabhushi A, A boosted bayesian multiresolution 
classifier for prostate cancer detection from digitized needle biopsies, IEEE Trans. Biomed. Eng. 
59 (2012) 1205–1218. [PubMed: 20570758] 

[27]. Doyle S, Madabhushi A, Feldman M, Tomaszeweski J, A boosting cascade for automated 
detection of prostate cancer from digitized histology, in: International Conference on Medical 
Image Computing and Computer-Assisted Intervention, 4191, Springer Berlin Heidelberg, 2006, 
pp. 504–511.

[28]. Xu J, Luo XF, Wang GH, Gilmore H, Madabhushi A, A deep convolutional neural network for 
segmenting and classifying epithelial and stromal regions in histopathological images, 
Neurocomputing 191 (2016) 214–223. [PubMed: 28154470] 

[29]. Litjens G, Sanchez CI, Timofeeva N, Hermsen M, Nagtegaal I, Kovacs I, Hulsbergen-van de Kaa 
C, Bult P, van Ginneken B, van der Laak J, Deep learning as a tool for increased accuracy and 
efficiency of histopathological diagnosis, Sci Rep. 6 (2016). [PubMed: 28442741] 

[30]. Doyle S, Rodriguez C, Madabhushi A, Tomaszeweski J, Feldman M, Detecting prostatic 
adenocarcinoma from digitized histology using a multi-scale hierarchical classification approach, 
in: 2006 28th Annual International Conference of the IEEE Engineering in Medicine and Biology 
Society, 1–15, 2006, pp. 5558–5561.

[31]. Roullier V, Lezoray O, Ta VT, Elmoataz A, Multi-resolution graph-based analysis of 
histopathological whole slide images: application to mitotic cell extraction and visualization, 
Comput. Med. Imag. Grap. 35 (2011) 603–615.

Kwak and Hewitt Page 13

Comput Methods Programs Biomed. Author manuscript; available in PMC 2021 June 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



[32]. Barker J, Hoogi A, Depeursinge A, Rubin DL, Automated classification of brain tumor type in 
whole-slide digital pathology images using local representative tiles, Med. Image Anal. 30 (2016) 
60–71. [PubMed: 26854941] 

[33]. Blum A, Mitchell T, Combining labeled and unlabeled data with co-training, in: Proceedings of 
the Eleventh Annual Conference on Computational Learning Theory, ACM, 1998, pp. 92–100.

[34]. Wozniak M, Jackowski K, Some remarks on chosen methods of classifier fusion based on 
weighted voting, in: Corchado E, Wu X, Oja E, Herrero Á, Baruque B (Eds.), Hybrid Artificial 
Intelligence Systems: 4th International Conference, HAIS 2009, Salamanca, Spain, June 10–12, 
2009. Proceedings, Springer Berlin Heidelberg, Berlin, Heidelberg, 2009, pp. 541–548.

[35]. Zhang D, Wang F, Zhang C, Li T, Multi-view local learning, AAAI (2008) 752–757.

[36]. Peng J, Barbu C, Seetharaman G, Fan W, Wu X, Palaniappan K, Shareboost: boosting for multi-
view learning with performance guarantees, in: Joint European Conference on Machine Learning 
and Knowledge Discovery in Databases, Springer, 2011, pp. 597–612.

[37]. Kwak JT, Xu S, Pinto PA, Turkbey B, Bernardo M, Choyke PL, Wood BJ, A multiview boosting 
approach to tissue segmentation, in: Proc SPIE, 2014, p. 9041.

[38]. Koco S, Capponi C, A boosting approach to multiview classification with cooperation, in: Joint 
European Conference on Machine Learning and Knowledge Discovery in Databases, 6912, 
Springer Berlin Heidelberg, 2011, pp. 209–228.

[39]. Ojala T, Pietikainen M, Maenpaa T, Multiresolution gray-scale and rotation invariant texture 
classification with local binary patterns, IEEE Trans. Pattern Anal. 24 (2002) 971–987.

[40]. Guo ZH, Li Q, You J, Zhang D, Liu WH, Local directional derivative pattern for rotation 
invariant texture classification, Neural Comput. Appl. 21 (2012) 1893–1904.

[41]. Belongie S, Malik J, Puzicha J, Shape context: a new descriptor for shape matching and object 
recognition, NIPS (2000) 3.

[42]. Higuchi T, Approach to an irregular time-series on the basis of the fractal theory, Physica D 31 
(1988) 277–283.

[43]. Chang CC, Lin CJ, LIBSVM: a library for support vector machines, ACM Trans. Intel Syst. Tec 
2 (2011).

[44]. Robin X, Turck N, Hainard A, Tiberti N, Lisacek F, Sanchez JC, Muller M, pROC: an open-
source package for R and S plus to analyze and compare ROC curves, BMC Bioinform. 12 
(2011).

[45]. Basavanhally A, Ganesan S, Feldman M, Shih N, Mies C, Tomaszewski J, Madabhushi A, Multi-
field-of-view framework for distinguishing tumor grade in ER plus breast cancer from entire 
histopathology slides, IEEE Trans. Biomed Eng. 60 (2013) 2089–2099. [PubMed: 23392336] 

[46]. Sharma H, Zerbe N, Heim D, Wienert S, Behrens H-M, Hellwich O, Hufnagl P, A multi-
resolution approach for combining visual information using nuclei segmentation and 
classification in histopathological images, VISAPP 3 (2015) 37–46.

[47]. Kwak JT, Sankineni S, Xu S, Turkbey B, Choyke PL, Pinto PA, Merino M, Wood BJ, Correlation 
of magnetic resonance imaging with digital histopathology in prostate, Int. J. Comput. Ass. Rad. 
11 (2016) 657–666.

[48]. Madabhushi A, Agner S, Basavanhally A, Doyle S, Lee G, Computer-aided prognosis: predicting 
patient and disease outcome via quantitative fusion of multi-scale, multi-modal data, Comput. 
Med. Imag. Grap. 35 (2011) 506–514.

[49]. Cooper LAD, Kong J, Gutman DA, Wang FS, Gao JJ, Appin C, Cholleti S, Pan T, Sharma A, 
Scarpace L, Mikkelsen T, Kurc T, Moreno CS, Brat DJ, Saltz JH, Integrated morphologic 
analysis for the identification and characterization of disease subtypes, J. Am. Med. Inform. 
Assn. 19 (2012) 317–323.

[50]. Kong J, Cooper LAD, Wang FS, Gao JJ, Teodoro G, Scarpace L, Mikkelsen T, Schniederjan MJ, 
Moreno CS, Saltz JH, Brat DJ, Machine-based morphologic analysis of glioblastoma using 
whole-slide pathology images uncovers clinically relevant molecular correlates, PLoS One 8 
(2013).

[51]. Doyle S, Hwang M, Shah K, Madabhushi A, Feldman M, Tomaszeweski J, Automated grading of 
prostate cancer using architectural and textural image features, Biomedical imaging: from nano 

Kwak and Hewitt Page 14

Comput Methods Programs Biomed. Author manuscript; available in PMC 2021 June 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



to macro, 2007, in: ISBI 2007. 4th IEEE international symposium on, IEEE, 2007, pp. 1284–
1287.

[52]. Chen JM, Qu AP, Wang LW, Yuan JP, Yang F, Xiang QM, Maskey N, Yang GF, Liu J, Li Y, New 
breast cancer prognostic factors identified by computer-aided image analysis of HE stained 
histopathology images, Sci Rep. 5 (2015).

Kwak and Hewitt Page 15

Comput Methods Programs Biomed. Author manuscript; available in PMC 2021 June 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 1. A flowchart of multiview boosting cancer detection.
A cascaded multiview boosting tissue segmentation method is trained and validated using 

TMA1. Using the tissue segmentation, a multiview boosting cancer detection method, 

utilizing tissue morphology, is constructed based on TMA2 and validated using TMA3, 

TMA4, and TMA5.
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Fig. 2. Illustration of cascaded tissue segmentation.
(a) H&E tissue image is segmented into (b) lumen (white), (c) nucleus (grey), and (d) 

epithelium (green). (e) Epithelial nuclei are identified and luminal artifacts are eliminated.
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Fig. 3. Illustration of nuclus segmentation.
(a) H&E tissue image (b) the output of nucleus vs. non-nucleus multiview boosting 

classification (c) the result of thresholding and artifact removal (d) a distance map generated 

by the Euclidean distance transform (e) Individual nuclei are identified by a watershed 

algorithm and marked in color.
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Fig. 4. Morphological feature extraction.
Examples of morphological feature extraction for (a)(b)(c) a lumen and (d)(e)(f) a nucleus. 

(a) Compactness (b) Extent (c) Symmetric index of a lumen boundary (d) Number of 

neighboring epithelial nuclei (e) Shape context (f) Distance fractal dimension.
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Fig. 5. Multiview feature extraction.
(Top) A set of morphological features are computed at multiple scales from a benign (grey 

rectangle) and cancer (black rectangle) tissue sample. Epithelial nuclei features are 

summarized within a window of differing sizes w (w = 100, 300, 500, 700 μm, and a whole 

tissue sample; View1, 2, 3, 4, and Whole) using average (AVG) and standard deviation 

(STD). (Bottom) The AVG and STD of the epithelial nuclei features are presented and 

compared between a benign (grey rectangle) and cancer (black rectangle) tissue sample. 

Color bar represents the intensity of feature values.
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Fig. 6. Importance of morphological features.
The frequency of the morphological features of lumens and epithelial nuclei are shown. The 

frequency represents the fraction of boosting iterations that used each of the morphological 

features.
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Table 1

Details of datasets.

TMA TMA1 TMA2 TMA3 TMA4 TMA5

Benign, (ns) 70 74 70 79 72

Cancer, (ns) 135 89 115 82 86

Total, (ns) 205 163 185 161 158

Gleason Grade TMA1 TMA2 TMA3 TMA4 TMA5

3 + 3 18 0 0 0 0

3 + 4 48 49 36 33 39

4 + 3 20 20 30 18 26

4 + 4 35 10 35 16 13

4 + 5 14 8 14 10 5

5 + 4 0 2 0 5 3

Tissue Type Lumen Epithelium Stroma Nucleus

Training, (np) 56,851 212,104 279,811 72,827

Testing, (np) 63,144 219.235 275,893 83,291

ns and np denote the number of tissue sample cores and the number of pixels, respectively.
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Table 2

Results of cancer detection.

AUC 95% CI p-value

Multiview 0.98 0.97–0.99 –

View1 0.95 0.93–0.97 <1e-4

View2 0.96 0.94–0.97 <1e-4

View3 0.95 0.93–0.97 <1e-3

View4 0.95 0.94–0.97 <1e-3

View5 0.96 0.94–0.97 <1e-3

View1+ 2 + 3 + 4 + 5 0.96 0.95–0.98 <1e-2

AUC and CI represent area under ROC curve and confidence interval, respectively.
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Table 3

Comparison of cancer detection results.

AUC 95% CI p-value

Multiview 0.98 0.97–0.99 –

SVM-View1 0.94 0.92–0.96 <1e-6

SVM-View2 0.95 0.93–0.96 <1e-5

SVM-View3 0.95 0.93–0.97 <1e-5

SVM-View4 0.95 0.93–0.96 <1e-4

SVM-View5 0.97 0.96–0.98 <0.05

SVM-View1 + 2 + 3 + 4 + 5 0.96 0.95–0.97 <1e-3

RF-View1 0.96 0.94–0.98 <1e-2

RF-View2 0.95 0.93–0.97 <1e-3

RF-View3 0.95 0.94–0.97 <1e-4

RF-View4 0.96 0.95–0.97 <1e-2

RF-View5 0.96 0.95–0.98 <1e-2

RF-View1 + 2 + 3 + 4 + 5 0.96 0.94–0.98 <1e-3

SVM and RF denote support vector machine and random forest, respectively. AUC and CI represent area under ROC curve and confidence interval, 
respectively.
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