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Antiretroviral therapy effectively controls human immunodeficiency virus (HIV) replication but it is unable to fully eradicate the 
HIV reservoir and treatment must be life-long. Progress toward a strategy for HIV remission will require overcoming key hurdles 
to fill gaps in our understanding of HIV persistence, but the identification of individuals who have attained sterilizing or functional 
HIV cure show that such a goal is achievable. In this review, we first outline challenges in targeting the HIV reservoir, including 
difficulties identifying HIV-infected cells, ongoing work elucidating the complex intracellular environment that contribute to HIV 
latency, and barriers to reactivating and clearing the HIV reservoir. We then review reported cases of HIV sterilizing cure and ex-
plore natural models of HIV remission and the promise that such HIV spontaneous and posttreatment controllers may hold in our 
search for a broadly-applicable strategy for the millions of patients living with HIV.
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The introduction of combination antiretroviral therapy (ART) 
has turned human immunodeficiency virus (HIV) infection 
into a chronic, manageable disease. People with HIV (PWH) 
can enjoy a near-normal life expectancy if treated at an earlier 
stage with life-long ART and durable viral suppression [1]. 
However, ART is not curative and once interrupted, viral re-
bound occurs in nearly all patients [2, 3]. This is largely due 
to the establishment of a latent HIV reservoir in multiple ana-
tomic compartments [4]. Unfortunately, this reservoir is not ef-
fectively eliminated by either ART or the immune response. For 
example, despite long-term suppressive ART, HIV decay can 
be divided by different phases, and the rate of decay has been 
found to level off in the setting of prolonged ART [5, 6]. 

Attempts to alter the decay of the HIV reservoir by ART in-
tensification have largely been disappointing [7, 8], and together, 
these results raise a series of fundamental questions that remain 
unanswered about HIV persistence, including what fuels HIV 
persistence despite durable HIV viral suppression and how the 
HIV reservoir evades eradication by the host immune response. 
Understanding these questions will be paramount to our efforts 
to accelerate the development of novel strategies for HIV remis-
sion. In this review, we will first discuss the challenges of HIV 
persistence despite ART, with a focus on recent literature about 
virological and immunological mechanisms, and how they in-
teract to promote HIV persistence. Then we will review the 
promise of HIV remission based on a number of reported cases.

PART I: THE CHALLENGE OF IDENTIFYING AND 
ERADICATING HIV-INFECTED CELLS

Rarity and Inaccessibility of HIV-Infected Cells 

The identification and study of HIV-infected cells is challenging. 
First, CD4+ T cells harboring integrated intact proviruses are 
rare. Early studies have shown that only 0.03–3 infectious unit 
per million of HIV latent reservoir can be isolated from chron-
ically infected participants receiving suppressive ART, measured 
by quantitative viral outgrowth assay (QVOA), which has histor-
ically been regarded as the reference standard for identifying the 
frequency of the inducible HIV reservoir [4, 9]. Using polymerase 
chain reaction–based methods, however, the pool of CD4+ T cells 
harboring HIV DNA is far greater, ranging from an estimate of 2 
to >1000 cells per 1 million CD4+ T cells [10]. This discrepancy 
was partially reconciled by the discovery that the vast majority of 
HIV proviruses are defective [11]. In PWH who initiated treat-
ment either during the early or chronic phases of infection, >90% 
of HIV proviral genomes are defective, including deletions, inver-
sions, hypermutations, and other defects (Figure 1A) [11]. 

A second hurdle to identifying HIV-infected cells is that the 
HIV proviral genome is often transcriptionally quiescent. Using 
a single-cell analysis technique, Wiegand and colleagues [12] 
found that only an average of 7% of HIV proviruses expressed 
HIV RNA, with a similar level between defective and intact 
provirus. In lymph nodes (LNs) and intestinal lymphoid tissue 
(LT), which is estimated to harbor >90% of the HIV-infected 
CD4+ T cells in tissue (Figure 1B), only an estimated 0.2% of 
HIV DNA+ CD4+ cells expressed HIV RNA [13]. This, com-
bined with the limited sensitivity of QVOA, has led to the esti-
mate that the amount of proviruses that are genomically intact 
and capable of making replication-competent virus is likely to 
be ≥60-fold higher than estimates based on QVOA [14]. 
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A third hurdle to the study of the HIV reservoir is that al-
most all of the HIV reservoir is located in difficult-to-sample 
anatomic regions, hindering our ability to fully quantify and 
characterize the anatomic compartments that harbor HIV-
infected cells. While most HIV reservoir studies use periph-
eral blood-derived samples, there have been conflicting data 
on whether there is compartmentalization or evolution of HIV 
within certain tissues that is not reflected within the peripheral 
blood [15–17]. In a nonhuman primate model, Estes [13] and 
colleagues used in situ hybridization to show that >99% of cells 
expressing simian immunodeficiency virus or simian-human 
immunodeficiency virus viral RNA (vRNA) reside in LNs and 
LTs, including within the intestines, spleen, and lungs. Despite 
suppressive ART, the frequency of vRNA+ cells decreased only 
≥2-fold in intestine or spleen compared with a 2-log10 reduc-
tion in LNs; correspondingly, intracellular ART levels in these 
LTs are lower than peripheral blood mononuclear cell ART 
levels. Similarly, in LNs and intestinal LTs samples from chroni-
cally HIV-infected participants, >2–6 years of suppressive ART 
was associated with an almost 3-log10 reduction in viral DNA 
(vDNA)+ cells in LNs but no significant decrease in vDNA+ cells 
in the intestinal LTs [13]. 

These findings from nonhuman primates and PWH indicate 
that ART alone cannot fully eradicate vRNA+ and vDNA+ cells 
in LTs. The importance of tissue reservoirs has also been dem-
onstrated in treatment interruption studies, which have dem-
onstrated the presence of multifocal origins of viral reactivation 
within tissue compartments after ART discontinuation [18] 
and shown that rebounding virus in plasma may originate from 
multiple tissue compartments [19].

Determining the Mechanisms Underlying HIV Latency and Reactivation 

Understanding the pathways surrounding HIV latency and re-
activation could accelerate progress for HIV latency reversal. 
There is evidence that HIV latency is established through a 
complex set of pathways [20], including epigenetic modifica-
tions that reduce histone acetylation [21], enhance histone/
promoter methylation [22], and deplete transcriptional factors 
[23]. There is also evidence that the host chromosomal loca-
tion of HIV integration may confer a deeper state of proviral 
latency [24] and that blocks in HIV transcriptional elongation 
and completion may also play a role in viral latency [25]. 

Assays like the QVOA use compounds including phytohe-
magglutinin to reverse proviral latency by inducing CD4+ T-cell 
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Figure 1. Challenge of identifying and reactivating human immunodeficiency virus (HIV)–infected cells. A, CD4+ T cells harboring HIV proviral DNA are rare among the total 
CD4+ T-cell population; most of the proviral DNA is defective, and only <10% is intact. B, HIV-infected cells are mostly located in difficult-to-study anatomic sites, including 
lymph nodes, intestinal lymphoid tissue, and spleen. C, Multiple potential mechanisms contribute to HIV latency, including epigenetic modifications, depletion of transcrip-
tional factors, and integration in dense regions of the chromosome. Even the most potent CD4+ T-cell–activating agents (eg, phytohemagglutinin [PHA]) are only able to acti-
vate a small proportion of CD4+ T cells harboring intact HIV proviruses, and the underlying mechanisms remain elusive. D, HIV achieves sequence diversity very early during 
infection; sequences obtained from different cell and anatomic compartments demonstrate substantial diversity as shown in this example phylogenetic analysis of intact HIV 
proviral sequences from 1 participant. Figures were generated with BioRender.com.
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activation and subsequently HIV provirus transcription [26]. 
However, even with maximal cellular activation in vitro, only a 
subset of proviruses can be induced during each round of immune 
stimulation (Figure  1C) [27]. This is despite the fact that intact 
noninduced HIV proviruses have the potential to be induced in 
vivo, because they harbor no lethal mutations, and most of them 
are integrated in transcriptionally active area with little cytosines 
followed by guanine residues (CpG) methylation [14]. With fur-
ther modeling, these findings suggest that the “true” latent reservoir 
might be approximately 60-fold larger than what phytohemagglu-
tinin stimulation QVOA can estimate [14]. Additional studies are 
needed to explore these findings and to determine the optimal la-
tency pathways to target in the design of novel therapeutics.

Reactivating latent HIV provirus is challenging, and HIV-
expressing cells may not be adequately cleared by the host 
immune response. There has been significant interest in ways 
to reactivate latent provirus [28, 29], potentially coupled with 
strategies to induce immune-mediated killing of reactivated 
cells in a strategy known as “kick and kill” [30, 31]. However, 
several early phase clinical trials with only administration of la-
tency reversal agents (LRAs) and suppressive ART in the hope 
that preexisting HIV-specific immunity performs the killing 
have only reported moderate effects of “kick” and no clear evi-
dence of reservoir elimination [32–37]. 

How can we explain the discrepancy between the in vivo and 
ex vivo studies? First, LRA administration alone is not sufficient 
to eliminate HIV reservoir. Huang and colleagues [38] used an 
ex vivo resting CD4+ T-cell model to show that cells harboring 
replication-competent HIV may be more resistant to CD8-
mediated killing after exposure to LRAs. It is possible that HIV-
specific cytotoxic T lymphocytes (CTLs) are diverted by CD4+ 
T cells harboring defective provirus; these CD4+ T cells with de-
fective proviruses represent the majority of HIV-infected CD4+ 
T-cell populations [11], can still express HIV RNA, and can be 
recognized by HIV-specific CTLs [39]. 

In addition, different CD4+ T-cell subpopulations respond to 
LRAs differently. Noticeably, CD4+ T memory stem cells, a rare 
cell type that harbors a disproportionately high level of induc-
ible HIV proviruses [40], is very resistant to LRA reactivation 
[41], which could contribute to the persistence of replication-
competent reservoir despite “kick and kill.” Furthermore, sev-
eral classes of currently studied LRA can potentially inhibit 
natural killer cells [42] and HIV-specific CTL function [43], 
thus jeopardizing the effector cells’ ability to eliminate the re-
activated HIV reservoir. Thus, improved strategies are needed 
for both HIV latency reversal and the elimination of these 
reactivated cells. New classes of LRAs (eg, programmed cell 
death 1 protein blockade [44] and noncanonical NF-κB acti-
vation [45]) and reservoir clearance strategies (eg, convertible 
chimeric antigen receptor T cells [46]) are on the horizon, but 
further in vitro and clinical data are needed to evaluate their 
efficacy and safety profiles.

HIV Sequence Diversity and Immune Escape as Barriers to Achieving HIV 

Remission

The rapidity of HIV diversification and adaptation to the host 
immune response represent another challenge to viral eradica-
tion (Figure 1D) [47–49]. Strategies to stimulate the host im-
mune response is a cornerstone of current strategies toward 
HIV remission. However, Deng and colleagues [50] have shown 
that unless ART is started early, the vast majority of HIV pro-
viruses already harbor CTL escape mutations that is likely to 
adversely affect the host immune clearance of HIV-infected 
cells even after successful viral reactivation. In addition, HIV 
proviral sequence diversity could represent significant barriers 
to other HIV gene or protein-targeted interventions. 

A 2019 study using long-acting slow-effective release an-
tiviral therapy and clustered regularly interspaced short pal-
indromic repeats (CRISPR)–CRISPR associated protein 9 
(Cas9) targeting multiple segments of HIV genome resulted 
in depletion of the HIV reservoir and HIV remission in a 
subset of animals after ART interruption [51]. However, there 
was no assessment of proviral diversity in this study, which 
was likely limited as the humanized mice were treated with 
ART during acute infection. Although the target specificity 
of CRISPR-mediated DNA modification limits off-target ef-
fects, this may also hinder its ability to excise a diverse pro-
viral reservoir, especially in individuals receiving long-term 
treatment and with relatively diverse reservoirs [52]. 

As shown in prior studies, intrapatient sequence diversity cre-
ates a barrier to efficient CRISPR-Cas9 induced cleavage [53]. 
Furthermore, previous in vitro studies demonstrated that HIV 
was capable of escaping CRISPR-Cas9 induced excision [54, 55]. 
Similarly, HIV sequence diversity also hampers antibody-based 
therapy. VRC01, a broadly neutralizing antibody, was shown 
to delay viral rebound after analytical treatment interruption; 
however, preexisting resistance mutations against VRC01 were 
detected and contributed to early viral rebound [56]. To over-
come this barrier, triple, or even quadruple broadly neutralizing 
antibody combinations are likely needed [57].

PART II: THE PROMISE OF HIV REMISSION

Defining the Characteristics of an HIV Cure 

There are 2 fundamental approaches to an HIV cure: steril-
izing and functional cures. Sterilizing cure is defined as the 
state in which no replication-competent virus can be detected 
after treatment interruption. The cases of sterilizing cures rep-
resent some of the greatest success stories in the field but are 
challenging to replicate and to develop into a broadly applicable 
therapeutic option. Functional cure, also known as sustained 
HIV remission, refers to the ability of the patient to maintain 
viral control despite potentially low levels of detectable virus 
in the blood and tissues. In the development of broadly appli-
cable therapeutics, the induction of sustained HIV remission 
represents a more realistic goal, as has already been described 
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for HIV spontaneous (or elite) controllers and posttreatment 
controllers.

Success and Failures of Sterilizing Cure Approaches

The field has already identified at least 2 cases of apparent ster-
ilizing cures. These include the “Berlin patient” [58] and the 
“London patient” [59, 60]. Both individuals underwent hema-
topoietic stem cell transplantation (HSCT) with donor cells 
harboring homozygous CCR5Δ32/Δ32 deletions. Apparent 
sterilizing cures were achieved despite important differences 
between the 2 patients, including the type of cancer and varying 
intensity of the conditioning regimens. Furthermore, at the 
2019 Conference on Retroviruses and Opportunistic Infections, 
Björn-Erik et al [61] reported on a third possible case of steril-
izing cure. The “Dusseldorf patient” is a 49-year-old man who 
received underwent HSCT, receiving cells from a CCR5Δ32/
Δ32 donor in February 2013 because of acute myeloid leukemia. 
Repeated laboratory testing has not detected any remaining 
HIV reservoir, and ART was stopped in November 2018 with 
no evidence of HIV rebound to date [61].

These cases have elicited a great deal of hope for the HIV com-
munity and provided momentum to this scientific field. However, 
such an approach cannot be broadly applied to the general popu-
lation of PWH, given the morbidity and mortality risk associated 
with stem cell transplants [62–65]. Furthermore, the identification 
of suitable CCR5Δ32/Δ32 donors can be challenging but appears 
to be a vital component to achieving a sterilizing cure. This is dem-
onstrated by the report of the 2 “Boston patients,” both of whom 
underwent HSCT with donor cells harboring wild-type, functional 
CCR5. HSCT was associated with dramatic reductions in the size 
of the HIV reservoir, but eventual viral rebound occurred 12 and 
32 weeks after discontinuation of ART [66]. There have also been 
reports of incomplete viral eradication and viral escape in the set-
ting of HSCT with homozygous CCR5Δ32 donor cells [66–70].

Spontaneous Controllers as Possible Goal of HIV Remission?

Spontaneous controllers (SCs) are relatively rare patients with 
HIV who can maintain low or even undetectable levels of HIV 
RNA without needing to start ART. There is a wide range of 

definitions for this group of participants [71–73], but they are 
often classified as either elite controllers, if they can maintain 
viral loads below the limit of detection for commercial viral 
load assays, or viremic controllers, if they have low levels of de-
tectable viremia. Host immunity appears to play a decisive and 
prime role in controlling HIV viral replication. They have been 
found to harbor a robust and polyfunctional HIV-specific T-cell 
response both in the peripheral blood [74, 75] and within tissue 
[76]. The importance of CTL-mediated viral suppression is 
supported by the enrichment of certain protective HLA alleles, 
such as HLA-B*27 and B*57 [77, 78]. It has been found that 
CTL targeting of highly networked epitopes can identify SCs, 
even for those without the usual protective HLA alleles [79].

While the studies of SCs have revealed much about effec-
tive natural immunity against HIV replication and disease 
progression, whether they represent the ideal end point for 
HIV curative strategies remains unclear. First, viral replica-
tion and viral evolution can be detected in SCs [80, 81] and 
loss of viral control and HIV disease progression occurs in 
a subset of them [72]. SCs have also been found to have in-
creased levels of immune activation and chronic inflammation 
[73, 82], which may play a role in the reports that SCs may 
have a higher risk of cardiovascular disease or hospitalization 
in comparison to ART-treated HIV patients [83–85]. The ini-
tiation of ART in SCs is associated with further suppression of 
viral replication and reduction in immune activation and sys-
temic inflammation [71, 86]. Although the discovery of treat-
ment strategies that could induce spontaneous HIV control 
would undoubtedly represent a transformative advance, ques-
tions remain about whether this represents only an interme-
diate step toward a strategy that is not associated with higher 
risk of disease progression or adverse outcomes.

Posttreatment Controllers as Promising Model of HIV Remission

For most PWH, HIV plasma viral load rebounds within a few 
weeks after treatment interruption [3, 87]. However, a rare group 
of patients, termed posttreatment controllers (PTCs), are capable 
of suppressing the virus to low levels for ≥6  months after stop-
ping ART [88, 89]. In 1999, Lisziewicz et  al [90] described an 

Table 1. Comparison of Spontaneous and Posttreatment Controllers

Finding

Description of Evidence

SCs PTCs 

Protective HLA alleles [78, 89] Strong Negative

CD4+ and CD8+ T-cell–mediated immunity [76, 79, 89, 102, 103] Strong Unclear or absent

Innate immune cells, eg, natural killer cells, involvement [104–106] Modest Modest 

Immune activation [89, 107–109] Modest Unclear or absent

Antibody-mediated immunity [110–112] Modest Unclear or absent

High levels of defective provirus [75, 113] Modest Modest 

Association of HIV proviral integration site [114] Strong Unclear or absent

Enhanced with early HIV treatment [88] NA Strong
Abbreviation: HIV, human immunodeficiency virus; NA not applicable; PTCs, posttreatment controllers; SCs, spontaneous controllers. 
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HIV-infected individual who was able to control the infection after 
multiple treatment interruptions. Since then, several observational 
studies and clinical trials have been done on these individuals to de-
fine and determine their characteristics [8, 88, 91–101]. One of the 
first in-depth studies of PTCs was the VISCONTI study of 14 early-
treated PTCs, with median of 89 months of HIV suppression after 
treatment interruption [89]. The largest study to date is the Control 
of HIV after Antiretroviral Medication Pause (CHAMP) study of 67 
PTCs, aggregated from 14 clinical studies from AIDS Clinical Trials 
Group and other North American cohorts [88]. 

A number of factors seem to differentiate PTCs from SCs 
(Table  1). Unlike SCs, PTCs do not appear to be enriched for 
protective HLA alleles [89] and, intriguingly, they may be able 
to control viremia without increased immune activation [115]. 
Not only may early ART initiation increase the chances of HIV 
remission in adults [88], there have also been several reports of 
children who started ART during infancy and have subsequently 
exhibited delayed HIV rebound and posttreatment control [116, 
117]. However, even among those treated during the earliest 
phases of HIV infection, posttreatment control can still be chal-
lenging to achieve, as was demonstrated in a Thai study of 8 par-
ticipants who started ART at Fiebig stage I. Despite extremely low 
HIV reservoirs, none were able to achieve HIV remission, and all 
experienced viral rebound within 7 weeks after ART interruption 
[118]. Overall, PTCs seem to represent a promising model for 
HIV remission, but additional studies are needed to define the 
mechanisms of HIV control in these patients.

CONCLUSIONS

To achieve an HIV cure or ART-free remission, it is crucial to 
understand the temporospatial distribution of HIV reservoir 
and the virologic and immunologic mechanisms that sustain 
HIV persistence. As we summarized in this review, there are 
still knowledge gaps in our understanding of the nature of HIV 
reservoir and mechanisms behind HIV persistence. Future re-
search will need to focus on addressing HIV reservoir in tissue 
compartments and in the characterization of HIV-infected cells. 
Elucidating the mechanisms underlying HIV latency and reac-
tivation will be crucial in the development new therapies for 
either the silencing or reduction of the viral reservoir. While the 
Berlin and London patients have provided proof that an HIV 
cure is possible, the identification of HIV PTCs offers a more 
feasible path toward sustained HIV remission. Understanding 
the mechanisms behind their ability to achieve posttreatment 
control underscores not only the challenges that remain, but 
also the promise that a successful strategy for HIV remission 
would have for the millions of PWH worldwide.
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