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Abstract

Cardiac injury remains a major cause of morbidity and mortality worldwide. Despite significant 

advances, a full understanding of why the heart fails to fully recover function after acute injury, 

and why progressive heart failure frequently ensues, remains elusive. No therapeutics, short of 

heart transplantation, have emerged to reliably halt or reverse the inexorable progression of heart 

failure in the majority of patients once it has become clinically evident. To date, most 

pharmacologic interventions have focused on modifying hemodynamics (reducing afterload, 

controlling blood pressure and blood volume) or on modifying cardiac myocyte function. 

However, important contributions of the immune system to normal cardiac function and the 

response to injury have recently emerged as exciting areas of investigation. Therapeutic 

interventions aimed at harnessing the power of immune cells hold promise for new treatment 

avenues for cardiac disease. Here, we review the immune response to heart injury, its contribution 

to cardiac fibrosis, and the potential of immune modifying therapies to affect cardiac repair.
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Introduction

The body responds to various cardiac injuries via complex acute and chronic adaptive 

processes to maintain pump function. Central to this process is inflammation and immune 

cell signaling. For example, in the setting of acute ischemic injury, immune-mediated 

activation of cardiac fibrosis is necessary to avoid catastrophic myocardial rupture. 

Activation of resident interstitial fibroblasts and recruitment of those derived from the 

epicardium result in scar formation that maintains chamber integrity. However, in many 

cases, the initially beneficial fibroblast response becomes mal-adaptive, resulting in excess 

extracellular matrix (ECM). This over-accumulation of ECM both stiffens the myocardium 

and negatively alters the cardiomyocyte niche resulting in progressive deterioration of 

*Address correspondence to: Jonathan A. Epstein, 602 South Tower, PCAM, 3400 Civic Center Blvd., Philadelphia, PA 19104 USA, 
215-898-8731, epsteinj@upenn.edu. 

Disclosures
JAE and HA are scientific founders, but not financially vested in Teefib Bio, a biotech company devoted to evaluating the use of anti-
fibrotic engineered immune cells in non-oncologic diseases. JAE reports research funding from Calico Life Sciences to develop novel 
anti-senescent CAR T cells.

HHS Public Access
Author manuscript
Circ Res. Author manuscript; available in PMC 2022 May 28.

Published in final edited form as:
Circ Res. 2021 May 28; 128(11): 1766–1779. doi:10.1161/CIRCRESAHA.121.318005.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



cardiac function. While fibroblast activation has been well studied, the multifaceted role of 

immune signaling and its effects on acute and chronic fibrosis have only recently gained 

widespread traction in the cardiovascular research community. The emerging understanding 

is poised to revolutionize the treatment of myocardial diseases through targeted immune 

modulators. Furthermore, advances in T cell engineering offer exciting future directions for 

development of novel therapeutics.

Immune response to cardiac injury

The immune response to cardiac injury is complex (see figure 1) and remains only partially 

understood. Differences in the types of injury, host and environmental factors all modulate 

the immune response. The potent sterile inflammation of the injured heart depends on a 

multitude of signals. Damage associated molecular patterns (DAMPs) released by dying 

cells, the cytosolic DNA sensing pathway (cGAS-STING), and cardiomyocyte NLRP3 

inflammasome (activated through CaMKIIδ) are each responsible for initiating the pro-

inflammatory environment during myocardial injury.1–5 Furthermore, the many different cell 

types that make up the immune system interact with one another and with resident cardiac 

fibroblasts, endothelial and myocardial cells. Some examples of the beneficial and injurious 

immune cell sub-type responses to injury are summarized below.

One of the first immune cell types to respond to injury is tissue-resident macrophages. These 

self-renewing cells are established early in the embryonic myocardium from the yolk sac 

and fetal liver.6 Macrophages are critical for myocardial development, including the proper 

formation of the cardiac lymphatic system and they facilitate proper electrical conduction.
7–9 Recently, a fascinating role for macrophages has been described in the maintenance of 

cardiac energy homeostasis, mediated by disposal of spent/defective mitochondria that are 

extruded by cardiac myocytes and engulfed by resident macrophages.10 This process utilizes 

components of the autophagy pathway and is enhanced in times of myocardial stress. 

Depletion of cardiac macrophages disrupts this process and results in activation of the 

inflammasome and cardiac dysfunction.10 This observation may help to explain the long-

appreciated role of autophagy in metabolic dysfunction in heart failure.11

In the setting of injury, activated fibroblasts (discussed below), cardiomyocytes, and various 

other immune cells release cytokines to polarize existing macrophages and chemokines to 

recruit additional monocytes from the circulation.8,12,13 Tissue-resident CCR2− 

macrophages are activated and proliferate.14 These cells seem to serve several key 

protective/reparative roles in the post-injury heart, including promoting neo-vascularization.
6,8,12–14 In contrast, the potent inflammatory signaling environment (including IL-1β) setup 

by numerous cell types recruits many infiltrating immune cells from the circulation.15 

Infiltrating CCR2+ monocytes mature into macrophages and may outnumber those arising 

from tissue-resident cells.8 Pro-inflammatory Ly6chigh macrophages produce a potent 

cocktail of cytokines including (but not limited to) IL-1β, IL-6, and TNFα.8,16 Historically, 

the polarization of macrophages has been referred to as M1-like (detrimental) and M2-like 

(reparative) phenotypes without consideration of their tissue source. Using this terminology, 

the incoming CCR2+ macrophages are thought to mainly polarize into the M1-like 

phenotype, especially in the early phases of injury-response. Once there, pro-inflammatory 
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macrophages secrete many cytokines and play apoptotic, cytolytic and proteolytic roles.8,13 

The timing and ratio between these two phenotypes of macrophages is critical.17 Tipping the 

balance towards M2-like macrophages is sufficient to stimulate heart repair and improve 

function following injury in animal models.8,18,19 Further breakdown of the individual 

contributions of subgroups of macrophages in cardiac disease is the subject of intense 

research.20 Similarly, the mechanism underlying atherosclerotic disease is heavily dependent 

on infiltration of clonal monocytes.21 Clonal hematopoiesis of indeterminant potential 

(CHIP) has also been implicated in ischemic heart failure.22 Further refinement of our 

understanding of macrophage subtypes responding to various myocardial injuries, along 

with the development of interventions capable of targeting specific subtypes, may provide 

attractive therapeutic avenues for development.

Alongside the recruitment of monocytes, the inflammatory environment of the injured heart 

also attracts significant neutrophil infiltrates. Neutrophils participate in various aspects of 

myocardial injury response. These include amplifying damaging pro-inflammatory signals, 

production of reactive-oxygen species, and secretion of proteolytic enzymes to remodel the 

ECM.23–25 However, experimental depletion of all neutrophils before cardiac injury 

negatively impacts the ability of the heart to recover.26 Mechanistically, neutrophils promote 

cardiac recovery by polarizing macrophages towards a reparative phenotype.26 Neutrophil 

recruitment and participation in the post-infarct heart have recently been comprehensively 

reviewed by Daseke, et al.27 Targeting subsets of pro-inflammatory neutrophils might 

therefore offer opportunities for therapy.

Eosinophils are also recruited to the injured heart. Increased levels of circulating eosinophils 

have been associated with risk of coronary artery disease and, in rare examples, excessive 

myocardial infiltration can result in eosinophilic myocarditis.28 However, recent research 

also suggests a protective role for eosinophils in the heart following acute cardiac injury. 

Depletion of eosinophils exacerbates cardiac dysfunction and fibrosis after infarction.29,30 

Eosinophil-specific IL-4 and mEar1 expression has been demonstrated to block H2O2 and 

hypoxia induced cardiomyocyte death and dampen fibroblast activation.30 The full role of 

eosinophils in the injured myocardium remains to be elucidated.

Tissue-resident mast cells proliferate in response to numerous cardiac injuries. Degranulated 

mast cells release many pro-inflammatory signaling molecules (including TNF-α and 

histamines) and proteases (including chymase, renin, and tryptase) involved in fibroblast 

activation.31,32 Mast cells are mainly pro-fibrotic in the injured heart and interestingly, this 

negative impact is somewhat abrogated in the presence of estrogen.33 In contrast, natural 

killer cells appear to play multiple, complex roles to protect the injured myocardium. 

Natural killer cells limit damaging innate immune cell infiltration and activity through 

restraining chemokine production as well as secreting INF-γ, perforin and other anti-

inflammatory chemokines.34 Additionally, natural killer cells have been shown to directly 

inhibit activated fibroblasts from over-producing collagen, limit cardiomyocyte apoptosis 

and stimulate neovascularization.35,36

The adaptive immune system is also integral to the pro-inflammatory environment of the 

injured heart. It plays multifaceted roles following acute myocardial infarction that have 
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only recently begun to be fully elucidated.37 In chronic pressure-overload, dendritic cells 

(professional antigen-presenting cells) accumulate potent γ-ketoaldyhydes, which activate a 

pro-inflammatory program of reactive oxygen species, IL-1β, IL-6, and IL-23 secretion.38 

Dendritic cells also increase expression of T cell co-stimulatory proteins. Ultimately, 

dendritic cells in the hypertensive heart serve to promote T cell proliferation (especially 

CD8+ subsets) and promote polarization into a pro-inflammatory phenotype.38–40 Isolated 

dendritic cells from hypertensive mice transplanted into naïve mice prime the recipient 

towards the ill-effects of high blood pressure.38 Post-myocardial infarction, cross-priming 

dendritic cells are partially responsible for sustained myocardial injury and decreased left 

ventricular function.39 On the other hand, there is some evidence that injection of dendritic 

cells primed in injured hearts helps to coordinate a beneficial, pro-reparative myocardium 

through coordination of regulatory T cells and shifting macrophage polarization to the M2-

like phenotype.41 More work is required to dissect and understand the potentially beneficial 

and deleterious functions of dendritic cells in the injured heart.

Both B and T lymphocytes also play important roles in cardiac homeostasis and response to 

injury. For example, mice lacking PD-1 (essential for B cell differentiation) spontaneously 

develop dilated cardiomyopathy with increased levels of cardiomyocyte-specific IgG 

autoantibodies.42 Interestingly, patients with end-stage heart failure can often harbor 

multiple anti-cardiomyocyte antibodies as recently reviewed in detail by García-Rivas, et al.
43 In the setting of acute decompensation and ischemia-reperfusion, B cells are responsible 

for production of potent apoptotic signals and autoantibody-activation of the complement 

cascade.43,44 B cell depletion in hypertensive mice results in lower fibrotic burden.45 

Furthermore, B cells in the injured heart signal to CD4+ T cells through MHC-II and to 

monocytes.43,46 This interplay is dependent on the IL-1 pathway and MyD88, with MyD88 

knockout mice lacking the robust fibrosis seen in induced myocarditis in wild-type animals.
47 IL-10, produced primarily by B cells, has emerged as a critical anti-inflammatory 

(protective) cytokine that targets the potent NF-κB/STAT3 signaling pathway, which can be 

augmented through blockade of T cell costimulation.48,49

Certain infiltrating T cells are protective in the injured myocardium. Subsets of CD4+ non-

specific effector T (Teff) cells have been shown to protect against post-inflammatory fibrosis 

in an experimental model of myocarditis.50 The authors suggest multiple potential 

mechanisms for protective effects of non-specific Teff cells. Essentially, if the balance shifts 

away from antigen-specific Teff cells to heart non-specific Teff cells, the levels of pro-

inflammatory cytokines such as IL-17A are reduced and fibrosis is limited.50 Separately, our 

lab previously elucidated an immune-based cardioprotective mechanism through which the 

epicardium recruits CD4+ T regulatory (Treg) cells in a Hippo/INF-γ –dependent process.51 

Furthermore, Foxp3+ Treg cells have been shown to stimulate recovery of both injured 

skeletal and heart muscle.52–54 Accumulating Treg and certain MYHCA-specific T helper 

cells have multiple roles, driving pro-reparative phenotypes.52

Many classes of pro-inflammatory T cells infiltrate the injured myocardium in response to 

dendritic cell activation and chemotactic signals. Activated fibroblasts, macrophages, 

endothelial cells, and cardiomyocytes produce additional chemotactic signals attracting T 

cells (through CXCR3 and endothelial ICAM-1), including the NLRP3 inflammasome, 
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CCL2 ligand, GM-CSF, IL-6 and CXCL1/9/10, amongst others.55–57 Once in the 

myocardium, activated macrophages also contribute to the stimulation of T cells.8 Pro-

inflammatory CD8+ T cells, activated by dendritic cells, produce potent cytokines including 

IL-17, IFN-γ, and TNFα.38,39,58 CD8+ T cells are required for M1-like macrophage 

infiltration and pro-inflammatory cytokine and chemokine secretion.58 In addition to 

cytotoxic T cells, certain CD4+ T cells also exhibit damaging effects in the injured heart and 

are required for the progression of pressure-overload injury into heart failure.56,59–61 

Adoptive transfer of splenic T cells from heart failure mice was sufficient to induce heart 

failure in naïve recipient mice.59 T cell infiltrates have pleotropic effects on virtually every 

cell type in the injured myocardium. One main role is the direct activation of cardiac 

fibroblasts and the induction of fibrosis.62 The rapid, pro-inflammatory response of CD4+ 

and CD8+ T cells may be beneficial in the acute phase of injury to enhance scar formation 

but may be maladaptive in the long term.

The development of myocardial fibrosis

The multi-faceted immune response to injury impacts many aspects of cardiac function. 

Among these, regulation of cardiac fibrosis is particularly important in both acute and 

chronic settings.63,64 Tissue-resident fibroblasts differentiate from multiple sources early 

during cardiogenesis and are a self-sustaining population.65 At homeostasis, these cardiac 

fibroblasts are primarily responsible for the secretion and maintenance of the extracellular 

matrix. After an injury, resident fibroblasts activate, alter gene expression programs 

(including pro-inflammatory cytokine production), proliferate and accelerate matrix 

production.66–70 Additionally, in the setting of myocardial infarction, activated fibroblasts 

are recruited from the epicardium through a process of epithelial-mesenchymal 

transformation and migration into underlying regions of damaged myocardium.51,71,72 In the 

setting of pressure-overload, fibroblasts are also activated in the vessel wall leading to peri-

arteriolar fibrosis that can impair vascular function.73 Fibroblast activation occurs in 

response to multiple cytokines such as transforming growth factor beta (TGFβ), which is 

produced by a variety of cells including immune cells and active when liberated from its 

latent form in the matrix.74–77 TGFβ signaling is mainly propagated within fibroblasts 

through phosphorylation of SMAD2/3 which complexes with SMAD4 to directly regulate 

transcription.75,78–81 Additional signaling cues are received from the local inflammatory 

environment and spread through multiple signaling pathways including WNT, MEK/ERK, 

and JNK.82 Recently, autocrine interleukin-11 has also been implicated in fibroblast 

activation.83 The extracellular matrix (ECM) produced by activated fibroblasts maintains 

tissue integrity, limiting cardiac dilatation and rupture.84,85 However, in chronic injury the 

resulting fibrosis contributes negatively to myocardial health.

Myocardial fibrosis has been associated with poor clinical outcomes and negatively impacts 

heart physiology both directly and indirectly.86–89 First, the excess ECM directly alters the 

compliance of the heart muscle. The stiffness associated with myocardial fibrosis places 

increase workload on the cardiomyocytes, fueling their dysfunction and decreasing both 

diastolic and systolic function.63,64,89,90 Furthermore, excess collagen networks have been 

linked to electrical conduction defects and arrhythmias.91 Perivascular fibrosis has been 

associated with impaired coronary blood flow and microvessel rarefication contributing to 
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latent myocardial hypoxia.73 Finally, both activated fibroblasts and the composition of the 

ECM signal to infiltrating immune cells.87,92 For example, the extracellular matrix protein 

tenascin-c has been shown to accelerate macrophage recruitment and to activate a pro -

inflammatory/-fibrotic (M1-like) transcriptome.93 Interestingly, another neonatal 

extracellular matrix protein, agrin, can stimulate murine cardiac regeneration.94

Fibroblast activation is less homogenous than was originally appreciated. Revolutions in 

single cell and single nuclei RNA sequencing have uncovered many seemingly unique 

fibroblast populations before and after injury with distinct transcriptome signatures.20,95–98 

The lineage relationship between these subsets and their physiologic importance remains to 

be fully elucidated. Further evidence for different subsets of fibroblasts contributing to 

disease pathology comes from recent research in rheumatoid arthritis. Croft et al., identified 

two subpopulations of fibroblasts in injured joints.99 The first group of fibroblasts (marked 

by FAP+/Thy1− expression) were responsible primarily for bone and cartilage-degradation, 

while a second population of FAP+/Thy1+ fibroblasts contributed to joint inflammation.99 

This example suggests that further refinement in our understanding of distinct sub-classes of 

activated fibroblasts in the heart may reveal distinct roles in cardiac pathology and inform 

targeted therapeutics.

Immune modulators as cardiac therapies

The potential for immune modulation to impact the heart has been appreciated for decades, 

and clinicians have long recognized that acute infection and associated immune activation 

can negatively impact cardiac function.100–102 Recently, the role of immune modulation in 

atherosclerosis has been clearly demonstrated, as reviewed elsewhere.21,103 Broad 

immunosuppression in acute ischemic heart failure through the administration of 

corticosteroids or nonsteroidal anti-inflammatory drugs (NSAIDS) is contraindicated and 

can lead to an increased incidence of cardiac rupture, and their use in chronic forms of heart 

failure has generally produced either no or a negative effect.104–106 Similarly, broad immune 

suppression through colchicine administration has also failed to demonstrate any benefit in 

multiple heart diseases and is often contraindicated.107–109 The challenge is to identify 

targeted immune-modulators that can specifically affect components of the immune 

response to favor recovery after injury and/or diminish adverse remodeling.

Evidence to support the potential for immune modulation in heart failure has emerged, 

surprisingly, from studies focused on the mechanism of potential benefit observed in some 

cardiac stem cell studies. Despite decades of work, cardiac stem cells remain elusive, yet 

improvement in cardiac function is sometimes observed after delivery of various cell types 

to the injured heart. The delivered cells generally do not survive, engraft, or differentiate into 

functional myocytes. Instead, they seem to stimulate an inflammatory response through 

activated macrophages that can result in enhanced cardiac function, at least temporarily.110 

In seminal work, Vagnozzi, et al. showed that following ischemia-reperfusion injury, a 

myocardial injection of freeze-thaw killed cells resulted in equal improvement in function to 

injection of live putative stem cells.110 More importantly, a local injection of zymosan (a 

potent stimulator of the innate immune system) was also sufficient to produce functional 

improvements.110 This effect was due to recruitment of CCR2+ and CX3CR1+ (M2-like) 

Rurik et al. Page 6

Circ Res. Author manuscript; available in PMC 2022 May 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



macrophages which are beneficial following injury.110 The authors described endothelial 

cell, but not cardiomyocyte, proliferation and beneficial extracellular matrix remodeling. 

Thus, agents that augment M2-like macrophages may prove beneficial.

Targeted disruption of the complement cascade following myocardial infarction was 

hypothesized to tip the balance towards myocardial recovery. Early evidence of monoclonal 

antibodies blocking C5 cleavage were encouraging in animal models.111,112 However, 

clinically similar antibodies (pexelizumab) have yet to demonstrate beneficial effect above 

standard percutaneous coronary reperfusion therapy following reperfusion injury associated 

with myocardial infarction.113 While clinical trials failed to show clear benefit of targeted 

interference of the complement cascade, the approach may still hold promise.114

One of the first cytokines targeted in heart failure was TNFα.115 This potent inflammatory 

cytokine was identified as a circulating biomarker, clinically correlated with heart failure 

severity.116 Research laboratories were quick to follow up this observation with animal 

model experimentation. It was found that administration of exogenous TNFα was sufficient 

to induce progressive left ventricular dysfunction.117 Further, animals co-infused with TNFα 
and its antagonist partially reversed the induced left ventricular dysfunction.117 Based on 

these observations and others, several clinical trials were conducted to test safety and 

efficacy in humans of anti-TNFα therapy. Unfortunately, while intravenous etanercept 

infusions were well tolerated, RENEWAL analysis of the RECOVER and RENAISSANCE 

clinical trials revealed that TNFα blockade did not yield beneficial reductions in morbidity 

and mortality.118 Despite these initial unsuccessful clinical trials, the original concept of 

therapeutically modulating the post-injury immune system remains attractive.119

Another cytokine that has been tested in heart failure is C-X-C motif chemokine ligand 12 

(CXCL12; also known as stromal cell-derived factor 1 or SDF-1). Studies in animal models 

suggested potential benefit, perhaps via recruitment of monocytes or other cells through a 

CXCR4 dependent mechanism.120 Unfortunately, a phase II clinical trial in patients with 

heart failure with reduced ejection fraction (EF<40%) determined that transcatheter 

endomyocardial delivery of CXCL12 provided no cardiac functional improvements 

detectable at four months.121 Further refinement in dosing, delivery and timing of cytokine-

based therapeutics may beget clinical benefit.

Targeted disruption of the fibroblast activation induced by immune cells after injury has also 

been considered as a potential therapeutic approach. In this regard, inhibition of the TGFβ 
receptor kinase pathway has received particular attention.122,123 Experiments in animals 

have yielded conflicting results, with some finding cardiac benefits and others worrisome 

increases to mortality and left ventricular dysfunction.122,124–127 In systemic sclerosis, 

disruption of the TGFβ pathway was not successful at controlling fibrosis and may have 

even been responsible for adverse events (although sample size was small).128 In contrast, 

TGFβ blockade with perfenidone has demonstrated benefits in fibrosis-based interstitial lung 

diseases.129,130 At least one clinical trial of anti-TGFβ blockade in heart failure patients has 

been initiated.131 While we await these results, developing more targeted approaches may 

yield beneficial results.65 Partial evidence for this comes from studies in mice with 
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cardiomyocyte-specific TGFβ receptor inactivation, which favors cardiac recovery through 

an immune-modulatory mechanism.132

Targeted or engineered immune-based therapeutics

Recent efforts have begun to focus on the use of biomaterials, biologics and targeted cell and 

gene therapy to modify specific components of the immune response to cardiac injury (see 
Figure 2).133 For example, targeted inhibition of the coagulation cascade (factor Xa, but not 

IIa) has demonstrated beneficial cardiac remodeling following injury by dampening harmful 

inflammation.134 Clever chemical engineering has resulting in graphene oxide complexes 

functionalized with IL-4, that appear to coax cardiac macrophages from M1-like to M2-like 

pro-reparative phenotype and limit damaging inflammation when injected into post-

myocardial infarction hearts.135 Several other macrophage modulating molecules are in 

various stages of development in non-cardiovascular injuries that may be worth evaluating in 

heart injury models.136 These include lipoxin A4 and resolvin D1, which were shown to 

improve resolution following implanted biomaterial scaffolds through an M2-like 

macrophage mechanism.137 Many other naturally derived biomaterials have been shown to 

scavenge radical oxygen species and can be loaded with other anti-inflammatory molecules 

to further alter the microenvironment.136 It may be possible to target lipid nanoparticles 

loaded with mRNA or other agents to specific immune cell types, taking advantage of 

therapeutic platforms developed and validated as part of the COVID-19 vaccination efforts.

Immune-modulating exosomes and miRNAs may hold potential for enhancing repair 

following cardiac injury. Exosomes are naturally-occurring small extracellular vesicles filled 

with a variety of biological molecules, which may offer avenues for immune modulation in 

cardiac injury.138 Advances in engineered exosomes offers the potential for unique cardiac 

delivery vehicles of immune-modulating therapeutics such as miRNAs. Multiple miRNAs 

including miR-155, miR-146a, miR-181b, miR-208, miR-29b and others are under 

investigation for promoting heart repair through immune modulation, with several in current 

clinical trials.139

Blocking specific cytokines offers a potential avenue for therapy. Interleukin 1β (IL-1β) is a 

pleotropic cytokine with various inflammatory functions in the injured heart, mainly 

augmenting injury. Systemic blockade of IL-1 signaling is typically achieved with either a 

competitive inhibitor of the receptor (canakinumab) or blocking antibodies against IL-1β 
(anakinra).105 This approach has shown modest beneficial effect in animal models of 

myocardial infarction.140,141 In clinical trials canakinumab has been well tolerated and 

resulted in avoidance of post-myocardial infarction heart failure and reduction in mortality 

in heart failure patients.142,143 Furthermore, canakinumab has demonstrated beneficial effect 

in atherosclerotic disease.144 The beneficial outcomes observed following IL-1 pathway 

disruption are exciting with the caveat that less targeted IL-1 interference (low-dose 

methotrexate) did not recapitulate the results obtained with canakinumab in atherosclerotic 

events and resulted in increased incidence of negative side effects.145 This trial re-enforces 

that targeted immunotherapeutics are likely to offer more potential benefits than broad 

immune modulators. Interestingly, SGLT2 inhibitors, which have demonstrated benefits in 

heart failure patients, may be operating through IL-1β and/or NLRP3 inflammasome 
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mechanisms, supporting the notion of careful inflammation modulation.146–148 Similarly, 

both interleukin 15 and interleukin 11 blockade are under investigation as a potential 

cytokine targets for cardiac disease.83,149 Interleukin 11 appears to be a central player in the 

immune-fibrosis axis in multiple organs, reinforcing its attractiveness as a potential 

therapeutic target.83,150,151

Certain cytokines have been shown to stimulate repair and may be attractive therapeutics. In 

the injured heart, IL-10 is typically thought of as pro-reparative; however, in other contexts it 

can be pro-inflammatory.152 A recent structural study has elucidated a biased signaling 

mechanism for IL-10, analogous to GPCR/β-arrestin signaling.153 Furthermore, the authors 

demonstrate how engineered variants of IL-10 can strongly skew the intracellular signaling 

response.153 This paradigm of fine-tuning biased receptor signaling through ligand 

optimization, well accepted in the field of GPCR signaling, offers exciting opportunities for 

anti-inflammatory therapeutics.

A recent study identified cardioprotective T regulatory-like cells in the post-myocardial 

infarcted heart. These CD4+ T cells react with myosin heavy chain alpha and accumulate in 

the injured myocardium of both mice and human patients, and appear to be beneficial in 

mice when delivered exogenously before induction of myocardial infarction.52 Related 

Foxp3+ Treg cells have been shown to be beneficial in the injured mouse and rat heart, either 

with an infusion of autologous Treg or a CD28 antibody (which augments the natural 

recruitment of Treg cells).51,54,154 Boosting the recruitment and accumulation of Treg in the 

injured heart as demonstrated in animal models, may be an attractive future direction for 

human therapeutics.

CAR T cells for heart disease

Genetically engineered cytotoxic T cells that have been redirected to recognize a specific 

antigen were developed in the late twentieth century following the success of adoptive 

transfer of T cells to control viral infection.155–160 This was accomplished by expressing a 

chimeric antigen receptor (CAR) on activated CD8+ T cells. The chimeric antigen receptor 

is a combination of a single-chain variable fragment (scFv) against a specific antigen linked 

to intracellular T cell signaling and co-stimulatory molecules (see figure 2 inset). Typically, 

these include at least a CD3-zeta tyrosine phosphorylation activation motif, as well as 4–

1BB and CD28 co-stimulatory signaling domains, though this design has many iterations. 

This all-in-one protein design results in one-step cytotoxicity, induced through antigen 

binding alone, as opposed to T cell receptor (TCR) mediated cytotoxicity which requires 

MHC class I antigen presentation, CD3 recruitment to the TCR, and costimulatory signaling.
161 CAR T cells were quickly adapted to target cancerous cells and have revolutionized the 

treatment of refractory acute lymphoblastic leukemia and diffuse large B-cell lymphoma.
161,162

In the setting of heart failure, it is attractive to consider targeting activated cardiac fibroblasts 

with engineered T cells. This is made possible because activated cardiac fibroblasts are 

sufficiently different from quiescent, homeostatic fibroblasts such that they express unique 

cell surface markers and can therefore be specifically targeted. An early indication that this 

approach might be effective to reverse fibrosis and improve function after injury came from 
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mouse studies in which activated fibroblasts were eliminated by genetic ablation using 

diphtheria toxin in animals engineered to express the diphtheria toxin receptor on activated 

fibroblasts.163 In the setting of pressure-overload injury, heart function was improved and 

fibrotic burden was decreased by removal of activated fibroblasts.163

In order to provide a mechanism to translate these findings to humans, we sought to target 

activated fibroblasts with an engineered T cell. To find a unique molecular marker of 

activated fibroblasts, we utilized transcriptomics to compare healthy human hearts to dilated 

and hypertrophic hearts. Consistent with the literature, we found that both fibroblast 

activation protein alpha (FAP) and periostin were highly upregulated in both disease states 

when compared to healthy hearts.164 In the adult, FAP protein expression is largely 

restricted to activated fibroblasts in various disease states and after injury. It is also 

expressed by proliferative mesenchyme in many forms of cancer.165 Although a secreted 

form of FAP can be identified in the circulation of healthy humans, it does not correlate with 

stromal cell expression or serve as a reliable biomarker.166,167 Importantly, this protein is 

virtually absent in healthy adult tissues.165 FAP CAR T cells have been demonstrated to 

effectively target and reduce FAP+ cancer associated fibroblasts.168 Using a mouse model of 

cardiac fibrosis and heart failure produced by the constant infusion of angiotensin II and 

phenylephrine, we showed that FAP CAR T cells were effective at restoring cardiac function 

and significantly lowering the burden of fibrosis even when the CAR T cells were delivered 

after fibrosis has already accumulated.164 Resorption of previously accumulated ECM is 

likely the result of macrophage, non-targeted fibroblasts and neutrophil activity which 

predominates once the cells producing the excessive matrix are destroyed by the CAR T 

therapy.

One of the advantages of FAP as an antigen target is the ability to visualize expression in 
vivo using imaging probes. Initial FAP-PET (Positron Emission Tomography) probes were 

developed using antibodies and tested extensively in mice.169 Loktev, et al. extended these 

findings by attaching gallium-68 to a synthetic FAP inhibitor and showed that cancer-

associated fibroblasts, which resemble activated cardiac fibroblasts, can be directly imaged 

in both mice and humans.170 These powerful imaging tools have been used successfully to 

image cardiac fibrosis in humans and represent an exciting screening tool for clinical 

evaluation of heart failure patients prior to FAP CAR T intervention and for monitoring of 

therapeutic efficacy.171,172

The use of CAR T cells to target senescent cells is also in development. Senescent cells are 

characterized by permanent cell cycle arrest and secretion of high levels of inflammatory 

molecules producing a senescence-associated secretory phenotype (SASP). Cellular 

senescence has been associated with many age-related disorders including cardiac 

pathologies and arrhythmias.173,174 Clearance of senescent cells may ameliorate the 

decrease in cardiac performance associated with aging and improve recovery following 

injury.175,176 Recently, Amor, et al. described an anti-senescence CAR T cell directed 

against urokinase-type plasminogen activator receptor, a marker of at least some senescent 

cells.177 Following adoptive transfer of anti-senescence CAR T cells, mice with induced 

liver fibrosis or lung adenocarcinoma showed improvement in organ function.177 To our 

knowledge, this approach has not yet been studied in animal models of cardiac disease.
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CAR T cell therapy is associated with important acute toxicities. Infusion of CAR T 

products, including the FDA approved anti-CD19 CAR T cells (tisagenlecleucel and 

axicabtagene ciloleucel) can induce potentially lethal cytokine release syndrome.178,179 

Fortunately this syndrome is typically transient and can be managed with IL-6 blockade 

(tocilizumab) and supportive care.179–181 Anti-CD19 CAR T therapy is also rarely 

associated with neurotoxicity, potentially through unintended, on-target elimination of 

CD19+ mural cells.182 Especially pertinent for this discussion are cases of cardiotoxicity 

following engineered T cell administration potentially due to unforeseen cross-reactivity.
183,184 The binding strength of the individual CAR to the target antigen is also important. In 

animal trials of preliminary FAP CAR constructs, some toxicity was observed, although it is 

mitigated by changing the antibody upon which the CAR was based.168,185 These examples 

highlight the need for restricted target antigen expression limited to the pathologic cells of 

interest, and for further safety studies for potential cardiac CAR T products. In support of 

FAP as a potential target, a recent study found that genetic ablation of FAP does not impair 

cardiac function in healthy animals or result in cardiotoxicity following myocardial 

infarction.186 Furthermore, target-cell specificity can be greatly increased through the use of 

dual-specific engineered T cells. In this approach, two antigens are chosen and the 

intracellular signaling domains are split between the two separate chimeric antigen 

receptors.187 Therefore, the CAR T must engage both antigens before cytolysis occurs. An 

alternative approach is using a bispecific T cell engager (BiTE) to increase specificity and 

reduce unwanted off-target effects.188,189 By refining the target antigen beyond FAP, anti-

fibrotic CAR T cells hold great promise.

Unlike in cancer where curative therapy requires elimination of every cancerous cell, CAR T 

therapy for fibrosis may be effective at restoring function even if only a fraction of the 

disease-causing fibroblasts are destroyed. Dosing can therefore be titrated, and cells can be 

engineered to have only transient activity, eliminating potential long-term toxicities. It is 

critical to tune the quantity, potency, and longevity of the CAR to ensure that the beneficial, 

homeostatic fibroblasts remain within the myocardium to maintain the healthy ECM after 

the excessive fibrosis is reduced. Furthermore, subsequent acute myocardial ischemic events 

require robust fibroblast activation. A transient anti-fibrotic CAR T is therefore required. 

Various mechanisms to produce transient CAR T cells have been described, including the 

use of kill switches or required co-activator small molecules.190 Alternatively, CARs can be 

engineered using mRNA rather than lentiviral vectors such that the CAR is no longer 

expressed after the mRNA decays (over the course of several days) or after dilution due to 

cell division.191 The ability to target specific subsets of pathologic fibroblasts in various 

disease states, in the heart and in other organs, may emerge as additional unique cell surface 

markers are identified. Cell therapy for cardiac diseases is an exciting field, still in its 

infancy.

Conclusion

The pathology of myocardial injury and repair is coordinated by a complex web of 

intersecting inflammatory pathways and immune cell types. Our understanding of the 

beneficial and harmful contributions of specific immune cells and cytokines is an exciting 

and emerging field of investigation. Targeted modulation of the immune system as a 
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mechanism to boost myocardial recovery and repair is an important goal of cardio-

immunology. M2-like macrophages, natural killer cells, and regulatory T cells represent 

especially promising targets for therapeutic intervention. Furthermore, the prospect of 

engineering the immune system to reduce both fibrosis and senescence in aging and failing 

hearts offers potential future therapeutic avenues. Other engineered immune cells, such as 

CAR macrophages may also be on the horizon.192 Altogether, targeted manipulation of the 

immune system to benefit the injured heart is an exciting and promising field of active study.
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Nonstandard Abbreviations and Acronyms:

CAR Chimeric antigen receptor

cGAS-STING cyclic GMP-AMP synthase stimulator of interferon genes

CHIP Clonal hematopoiesis of indeterminate potential

COVID-19 Coronavirus disease 2019

CXCL12 C-X-C motif chemokine ligand 12 (previously known as 

stromal cell-derived factor 1 or SDF-1)

DAMPs Damage associated molecular patterns

ECM Extracellular matrix

EF Ejection fraction (%)

FAP Fibroblast activation protein

IL-1 Interleukin 1

M1-like Pro-inflammatory macrophage

M2-like Pro-reparative macrophage

MHC-II Major histocompatibility complex class II

NK Natural killer cell

NLRP3 NLR family pyrin domain containing 3

PET Positron emission tomography

scFv Single-chain variable fragment
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SGLT2 Sodium/glucose cotransporter 2

TCR T cell receptor

Teff Effector T cell

TGFβ Transforming growth factor β

TNFα Tumor necrosis factor

Treg Regulatory T cell
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Figure 1. Immune cell involvement after cardiac injury.
Numerous immune components are involved in the injured myocardium. The main 

components are represented here. Stressed cells initiate inflammatory secretory programs 

through the cytosolic DNA sensing cGAS-STING pathway. Dying cells release damage 

associated patterns (DAMPs) which act as potent signaling molecules. C-reactive protein 

(CRP), IgM, and other circulating factors permeate the injured heart. Tissue-resident 

macrophages proliferate and additional CCR2+ monocytes are recruited from circulation. 

Macrophages polarize between M1-like (inflammatory) and M2-like (reparative) 

phenotypes. Dendritic cells are potent activators of recruited T cells, which are major 

immune infiltrates. CD8+ cytotoxic and several effector T (Teff) cells signal with M1 

macrophages and many other pro-inflammatory pathways. In contrast some Teff and 

regulatory T cells (Treg) infiltrate the heart and stimulate M2-like macrophages, ECM 

remodeling and overall heart repair. B cells produce many chemokines, cytokines, and 

autoantibodies. Natural killer (NK) cells are recruited and play a mainly reparative role. 

Many neutrophils are recruited where they stimulate M1-like macrophages and secrete pro-

inflammatory cytokines. Eosinophils also infiltrate the heart and help stimulate tissue 

recovery. One of the major downstream targets of this inflammatory milieu are cardiac 

fibroblasts. Tissue-resident fibroblasts proliferate and activate and produce detrimental 

fibrosis.

Rurik et al. Page 27

Circ Res. Author manuscript; available in PMC 2022 May 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. Potential immune-modulating targets to promote cardiac repair.
Many immune modulatory targets exist within the complex signaling network in the injured 

myocardium. Chimeric antigen receptor (CAR) constructs include antigen recognition 

domains and intracellular signaling domains, which are engineered into cytotoxic T cells. 

CAR T cells designed against activated fibroblasts and senescent cells both offer exciting 

directions to improve cardiac repair in the failing heart. Shifting the balance of macrophage 

polarization to favor the M2-like, reparative phenotype, may produce beneficial effects. 

Limiting the cytotoxic CD8+ and heart-specific CD4+ T cell infiltrate in favor of boosting 

regulatory (Treg) cells, beneficial subsets of effector T (Teff) cells and natural killer (NK) 

cells have each been shown to benefit cardiac repair. Similarly, shifting the balance to 

eosinophils over neutrophils may benefit recovery. Disrupting B cell pathways offers 

potential benefit. Targeted interleukin blockade (IL-1, IL-11, IL-15, TGFβ, etc.) or 

reparative cytokine (IL-10) administration may limit damage of excessive (or improperly 

timed) inflammation. Lastly, the development of novel chemical materials and biological 

interventions (including miRNAs and exosomes) offer exciting targeted immune modulators.
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