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Abstract

The novel coronavirus (SARS-CoV-2) has rapidly developed into a global epidemic. To con-
trol its spread, countries have implemented non-pharmaceutical interventions (NPIs), such
as school closures, bans of small gatherings, or even stay-at-home orders. Here we study
the effectiveness of seven NPlIs in reducing the number of new infections, which was
inferred from the reported cases of COVID-19 using a semi-mechanistic Bayesian hierarchi-
cal model. Based on data from the first epidemic wave of n=20 countries (i.e., the United
States, Canada, Australia, the EU-15 countries, Norway, and Switzerland), we estimate the
relative reduction in the number of new infections attributed to each NPI. Among the NPIs
considered, bans of large gatherings were most effective, followed by venue and school clo-
sures, whereas stay-at-home orders and work-from-home orders were least effective. With
this retrospective cross-country analysis, we provide estimates regarding the effectiveness
of different NPIs during the first epidemic wave.

1 Introduction

The novel coronavirus (SARS-CoV-2) has developed into a global epidemic. Efforts to control
the spread of SARS-CoV-2 focused on non-pharmaceutical interventions (NPIs). These repre-
sent public health-policy measures that were intended to diminish transmission rates and, to
this end, aimed at reducing person-to-person contacts via so-called social distancing [1].
Examples include school closures, venue closures, or stay-at-home orders.

Early studies on the population-level effects of NPIs analyzed their effectiveness mostly
within a single country [2-9]. Thereby, NPIs were often packaged into bundles and their com-
bined effectiveness was assessed and confirmed. By combining data from multiple countries, a
couple of studies have attempted to compare the effectiveness of individual NPIs [10-15];
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however, the evidence from these studies regarding which NPIs were particularly effective is
still inconclusive.

Here we contribute further evidence on the combined and individual effectiveness of NPIs.
Using a semi-mechanistic Bayesian hierarchical model, we estimated the effects of NPIs on the
number of new infections across n = 20 Western countries during the first epidemic wave: the
United States, Canada, Australia, the EU-15 countries (Austria, Belgium, Denmark, Finland,
France, Germany, Greece, Ireland, Italy, Luxembourg, the Netherlands, Portugal, Spain, Swe-
den, and the United Kingdom), Norway, and Switzerland. This amounts to ~ 3.3 million
reported cases of coronavirus disease 2019 (COVID-19) and covers a population of ~ 0.8 bil-
lion people.

2 Methods
2.1 Data

Reported SARS-CoV-2 cases for each country between February and May 2020 were obtained
from the Johns Hopkins Coronavirus Resource Center, which was developed for real-time
tracking of reported cases of COVID-19 and directly aggregates cases recorded by local
authorities in order to overcome time delays from alternative reporting bodies [16]. Hence,
these numbers are supposed to account for all COVID-19 cases identified on a specific day.

Data on NPIs were collected by our research team. Their implementation dates were sys-
tematically obtained from government resources and news outlets before the NPIs were being
classified into seven categories, based on definitions applicable across our sample of countries
(Table 1): (1) bans of large gatherings, (2) school closures, (3) venue closures (e.g., shops, bars,
restaurants, and venues for other recreational activities), (4) bans of small gatherings, (5) bor-
der closures, (6) stay-at-home orders prohibiting public movements without valid reason, and
(7) work-from-home orders. Note that stay-at-home orders always implied bans of gatherings
and venue closures, and bans of large gatherings implied bans of small gatherings. That is, for
instance, if a country implemented a ban of small gatherings without yet having implemented
a ban of large gatherings, then the implementation date for the ban of small and the ban of
large gatherings is the same.

The implementation date of an NPT refers to the first day a measure went into action. The
implementation dates were thoroughly checked to ensure correctness and consistency across
countries. Overall, eight authors were involved in collecting, categorizing, and checking the
data. Furthermore, local residents and/or native speakers were recruited from some countries

Table 1. List of non-pharmaceutical interventions (NPIs).

NPI Definition
Ban of large Ban of public or private gatherings involving more than 50 people
gatherings

School closure Closure of schools (for primary schools)

Venue closure Full-day closure of venues (i.e., the closure of some or all walk-in non-essential businesses

like bars and restaurants, shops, and recreational facilities)
Border closure Closure of national borders for individuals

Ban of small
gatherings

Ban of public or private gatherings involving less than 50 people

Stay-at-home order | Prohibition of movement without valid reason (e.g., restricting mobility except to/from

work, local supermarkets, and pharmacies)

Work-from-home
order

Mandatory order to work from home (i.e., mostly related to office workers) if it is not
essential to continue working at the workplace (as is mostly the case for, e.g., factories,
laboratories, supermarkets, and pharmacies)

https://doi.org/10.1371/journal.pone.0252827.t001
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in order to verify our encoding in cases where the interpretation of legal terms was ambiguous
or where it was difficult to distinguish, for instance, whether an NPI was enforced or recom-
mended. Sources and details on data collection for NPIs are provided in Section 8 in S1
Appendix.

Our selection of Western countries defined a sample that followed a similar and compara-
ble overall strategy in controlling the COVID-19 outbreak. On the one hand, the national (and
subnational) strategies consisted of similar NPIs, which we can expect to work in a similar
manner, despite cultural and organisational differences between countries. On the other hand,
the national (and subnational) strategies differed in the choice, timing, and sequencing of
NPIs. Taken together, the setting of this study resembles that of a natural experiment, which
allows us to learn about the effects of different NPIs. However, in countries with a federal
structure, the timing of NPIs may differ between regions (e.g., states or territories). In coun-
tries with such regional variation, NPI data was collected at the regional level and, similar to
Hsiang et al. [14], we took into account the cumulative share of the country’s population that
is affected by an NPL Fig 1 summarizes our NPI data by comparing choice, timing and
sequencing of NPIs across countries after considering regional variation within countries.

2.2 Model summary

In this section, we provide a short description of our model. A detailed description, including
all modeling and prior choices is given in Section 1 in S1 Appendix.

Fig 2 provides a visual summary of our model structure. Our model links two unobserved
quantities (i.e., the daily number of contagious subjects and the daily number of new infec-
tions) to an observed quantity (i.e., the number of reported new cases). The links consist of
three components: (1) a regression type model relating the number of new infections to the
number of contagious subjects, the country-specific daily transmission rate, and the presence
of active measures; (2) a link between the number of new infections to the number of reported
new cases; and (3) a link between the number of new infections and the number of contagious
subjects.

The fundamental part of the first component is a model for the expected number y of new
infections Iy in country j at day . In the absence of any measure, this would be u'* = C, 9,
where Cj, are the number of contagious subjects and 6; is the country-specific daily transmis-
sion rate. In the presence of NPIs, we multiply this with the reduction due to avoided infec-
tions, resulting in

M

,ulﬁ = Cjt 5]' ) H(l - amjt)’ (1)
m=1
where a,,;; denotes the fraction of avoided infections due to NPIm =1, ..., M in country j at

day . In case NPI m is implemented and fully effective, a,, is set equal to the value 6,,,. How-
ever, an NPI may not be fully effective in a country due to regional differences or because it
may take a few days until subjects respond to the new measures. Hence, the general structure

of a,,;; is
B
am/'t = szpr]f(Tmr][)ﬂ (2)
r=1
where p,; is region’s r = 1, . . ., R; proportion of the total population in country j, where T,,,,;;

denotes the number of days since the implementation of NPI m in region r of country j at time
t (such that T,,,,;; = 1 denotes the first day at which a reduction in the number of new infections
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Fig 1. Timing of NPIs by country. (A) Number of new cases per 100,000 (rolling 7-day mean) when NPIs were first implemented across countries. For
countries with regional variation in the implementation of NPIs, the number of new cases was averaged across regions. (B) Timeline of the
implementation of NPIs. The horizontal lines show the time period in which NPIs were implemented within each country’s regions. For most
countries, there was no regional variation and the NPIs were implemented at one day across the entire country.

https://doi.org/10.1371/journal.pone.0252827.9001

could be expected), and where f(T,,,;,) is a time-delayed response function, which is specified
such that the response to an NPI increases from zero on day T,,,,;; = 0 to one on day T, = 3
(Fig 3A), reflecting our expectation that NPIs typically require a few days until they are fully
effective. The choice for the time-delayed response is varied as part of the sensitivity analysis.
The effect of an NPI when fully implemented is equal to 6,,,. Within our Bayesian frame-
work, a mixture prior was used to model the effect 6,,,. The prior consists of a half-normal
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Fig 2. Visual summary of the model structure. (1) the number of new infections is modelled as a function of the number of contagious
subjects, the country-specific daily transmission rate, and the reductions from active NPIs; (2) the observed number of new cases is a
weighted sum of the number of new infections in the previous days; and (3) the number of contagious subjects is a weighted sum of the
number of new infections in the previous days.

https://doi.org/10.1371/journal.pone.0252827.9002

distribution for negative effects and a uniform distribution for positive effects (Fig 3B). This
prior allows for small increases in the number of new infections with a probability of 10%,
while being uninformative about positive effects leading to reductions in the number of new

infections.

In the second component, the expected number of new cases is calculated as a weighted
sum of the number of new infections in the previous days. The weights reflect the distribution
of the time from infection to reporting, and this distribution is estimated from the data assum-
ing a log-normal distribution. Informative priors are used for the parameters of the log-normal

B
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Fig 3. Modeling choices for the effects of NPIs. (A) Time-delayed response function as a first-order spline. (B) Prior for the effects of NPIs 6,,.

https://doi.org/10.1371/journal.pone.0252827.9003

PLOS ONE | https://doi.org/10.1371/journal.pone.0252827  June 2, 2021

5/16


https://doi.org/10.1371/journal.pone.0252827.g002
https://doi.org/10.1371/journal.pone.0252827.g003
https://doi.org/10.1371/journal.pone.0252827

PLOS ONE

Estimating the effects of non-pharmaceutical interventions on the number of new infections with COVID-19

distribution, reflecting prior knowledge. These priors are derived by decomposing the time
from infection to reporting into the incubation period and the reporting delay, thereby using a
meta-analysis [17] and estimates from multiple studies (in particular [18]) to obtain prior
information about the distributions. The observed number of new cases is then modeled as a
negative binomial distribution with the specified mean, allowing for overdispersion. Note that
this part of the overall model was only applied after the day when a country reached 100
reported cumulative cases (called the modeling phase), in order to avoid modeling of highly
irregular case numbers in the very early stages of the epidemic when most countries still had to
set up their reporting practices. At the preceding days (called non-modeling phase), only the
other two components of the model were used (i.e., the number of new infections and conta-
gious subjects).

In the third component, the number of contagious subjects is calculated as a weighted sum
of the number of new infections in the previous days. The weights reflect the probability of
being contagious on a specific day after being infected and can be determined from the genera-
tion time distribution. This distribution is assumed to be known and our choice is based on an
estimate by a recent study using data on the exposure for both the index and secondary case
[19].

2.3 Simulation-based study

Highly parametrized models may raise concerns regarding the identifiability of individual
model parameters. It is thus recommended to check if the true parameters can be recovered
from the model using fake data simulation [20]. We performed such a simulation-based
study, thereby demonstrating that it is possible to recover the true effect of NPIs within

the uncertainty implied by the fitted posterior distribution of our model (Section 3 in S1
Appendix).

2.4 Parameter estimation

Choices of priors not mentioned so far are weakly informative, following general recommen-
dations in Bayesian modeling [21]. All model parameters are estimated with a semi-mechanis-
tic Bayesian hierarchical model. Specifically, Markov chain Monte Carlo (MCMC) sampling is
used as implemented by the Hamiltonian Monte Carlo algorithm with the No-U-Turn Sam-
pler (NUTS) from the probabilistic programming language Stan, version 2.19.2 [22]. Each
model is estimated with 4 Markov chains and 2,000 iterations of which the first 1,000 iterations
are discarded as part of the warm-up. Estimation power is evaluated via the ratio of the effec-
tive sample size (71 /N), and convergence of the Markov chains is assessed with the Gelman-
Rubin convergence diagnostic (R). Further checks pertain to the detection of influential obser-
vations and correlations between the parameters of interest. If not stated otherwise, we report
posterior means and credible intervals (CrIs) based on the 2.5% and 97.5% quantile of the pos-
terior samples. Detailed estimation results and model diagnostics are provided in Section 5 in
S1 Appendix.

The sensitivity of the results to the following modeling choices was investigated: start and
end of the modeling phase, time-delayed response function, prior distribution for the effect of
an NPI 0,,,, prior choices for the time from infection to reporting and for the generation time.
Furthermore, the sensitivity of the results with respect to exclusion of individual countries was
assessed with a leave-one-country-out analysis. Finally, a comparison to a similar study that
was recently published [11] is presented.
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2.5 Data and code availability

We collected data from publicly available data sources (Johns Hopkins Coronavirus Resource
Center [16] for epidemiological data; news reports and government resources for policy mea-
sures). All the public health information that we used is documented in the main text, the
extended data, and supplementary tables. A preprocessed data file together with reproducible
code is available from https://github.com/nbanho/npi_effectiveness_first_wave.

3 Results
3.1 Estimated effects of NPIs

Using data from the first epidemic wave, we estimated the relative reduction in the number of
new infections for each NPI (Fig 4A). Bans of large gatherings were associated with the highest
reduction in the number of new infections (37%; 95% CrI 21% to 50%). The reduction was
lower for venue closures (18%; 95% CrI —4% to 40%) and school closures (17%; 95% CrI —2%
to 36%), followed by border closures (10%; 95% CrI —2% to 21%) and bans of small gatherings
(9%; 95% CrI —4% to 23%). Stay-at-home orders (4%; 95% CrI —6% to 17%) and work-from-
home orders (1%; 95% CrI —8% to 12%) appeared to be the least effective among the NPIs con-
sidered in this analysis.

The estimates for the individual effects suggest a particular strong effect of bans of large
gatherings. This result is further supported by analyzing the posterior ranking of the effects
(Fig 4B), which indicates that we could be at least 98% sure that bans of large gatherings were
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Fig 4. Estimated effects of NPIs. (A) Reduction in new infections (posterior mean as dots with 80% and 95% credible interval as thick and thin lines,
respectively). (B) Ranking of the effects of NPIs from highest (1) to lowest (7) (posterior frequency distribution). (C) Frequency of at least m positive
effects (posterior frequency distribution). (D) Frequency of at least m effects greater than 10% (posterior frequency distribution).

https://doi.org/10.1371/journal.pone.0252827.9004
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among the two most effective NPIs. Conversely, we could be at least 76% sure that work-from-
home orders were among the two least effective NPIs.

All NPIs together lead to an estimated relative reduction in the number of new infections
by 67% (95% Crl 64% to 71%). The combined effectiveness of NPIs was also analyzed (Fig 4A-
4D). Thereby, we could be at least 97% sure that there are five NPIs, which each lead to a
reduction in the number of new infections. Regarding the magnitude of the effects, we could
be at least 91% sure that there are three NPIs, which each lead to a reduction in the number of
new infections of more than 10%.

3.2 Sensitivity analysis

Sensitivity of our results was assessed with respect to small variations in the start and end of
the study period, alternative choices for the time-delayed response function, the prior distribu-
tion for the effects of NPIs, the prior distribution for the delay distributions, and a leave-one-
country-out analysis (Fig 5). Overall, our results were only slightly sensitive to alternative
modeling and prior choices, particularly when deriving conclusions about the ranking of the
effects. The leave-one-out analysis for the countries in our sample indicated some sensitivity
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https://doi.org/10.1371/journal.pone.0252827.9006

with respect to the exclusion of Australia, Sweden, and Switzerland. This sensitivity was further
investigated and subsequent analysis indicated that data from these countries are particularly
informative for the effect of school closures and bans of large gatherings.

3.3 Estimated number of new infections and cases over time

The model fit was assessed by comparing the expected number of new cases based on our
model to the observed number of new cases (Fig 6). Here an acceptable degree of agreement is
observed for Australia, Germany, Sweden, the UK, and all other countries (figures for all other
countries are listed in Section 7 in S1 Appendix). In addition, the posterior distribution for the
number of new infections is depicted, illustrating how NPIs lead to a reduction in new infec-
tions, which later implies a reduction in new cases.

PLOS ONE | https://doi.org/10.1371/journal.pone.0252827  June 2, 2021 9/16


https://doi.org/10.1371/journal.pone.0252827.g006
https://doi.org/10.1371/journal.pone.0252827

PLOS ONE

Estimating the effects of non-pharmaceutical interventions on the number of new infections with COVID-19

3.4 Comparison with a similar study

Recently, an analysis similar to our was published by Brauner et al. [11]. In the following, we
present a brief comparison. Brauner et al. used the same data source to generate country-spe-
cific case numbers per day, but included 30 countries only partially overlapping with our selec-
tion. The authors used similar sources to collect data on NPIs but classified some NPIs
differently. The modeling approach was very similar, except for avoiding to take the number
of contagious subjects explicitly into account and considering both the number of reported
cases and reported deaths as outcomes. The authors included country-specific NPI effects
(although not explicitly analyzed), while we took into account the share of the country’s total
population being affected by NPIs and a time-delayed response to their implementation. The
authors used similar priors for the distribution of the time from infection to reporting and for
the generation time distribution, but, in contrast to our work, Brauner et al. estimated the lat-
ter explicitly from data as part of fitting the model.

To facilitate a comparison of the results between the modeling approach by Brauner et al.
and our approach, we reanalyzed their data using our model. The estimated effects from our
model were generally smaller but the overall ranking of the effects was very similar when fitted
to the data by Brauner et al. (T'able 2A). When applying both models to our data, the overall
ranking is still similar but with small differences in the estimates for some NPIs, in particular a
higher estimate for the effect of school closures and a lower estimate for the effect of bans of
small gatherings as compared to the model by Brauner et al. (Table 2C). In contrast to that,
when comparing the results from our model on different datasets (our data and the data from
Brauner et al.), there was only a similarity in the overall pattern (Table 2C). For instance, we
found similar strong effects for bans of large gatherings and school closures as well as weak
effects for stay-at-home orders, but the effect of venue closures is stronger and the effect of
work-from-home orders weaker in our data. In addition, the larger set of countries in the data
from Brauner et al. was associated with smaller credible intervals for the estimates.

4 Discussion
4.1 Estimated NPI effects

We performed a cross-country analysis based on n = 20 countries in order to assess the effec-
tiveness of seven NPIs during the first epidemic wave. Our findings suggest that some NPIs,
particularly in combination, lead to a strong reduction in the number of new infections.
Among the NPIs considered, bans of large gatherings were most effective in reducing the
number of new infections across countries. Bans of large gatherings are targeted towards large
gatherings of people and may thus prevent so-called “superspreader events”, which have been
shown to account for a substantial fraction of the total number of infections [23-25]. Many
superspreading events originated in points-of-interest such as bars and restaurants [26], which
aligns with our finding of a sizeable reduction from venue closures.

The effectiveness of school closures in transmission control is subject to debate [27, 28].
Although children are less susceptible to the virus than adults, it is less clear how children and
adults compare regarding their infectiousness [29]. Early findings suggested that school clo-
sures were only marginally effective in transmission control [30]. Our results provide contrary
evidence, in line with recent findings from other population-based studies [11, 13, 15, 31, 32].
However, note that our findings relate to the closure of primary schools, which often coincided
with the closure of secondary schools and universities. The study by Brauner et al. differenti-
ated between NPIs for the closure of schools and the closure of universities, but could after-
wards not disentangle the estimated effects [11]. Thus, it is subject to further investigation
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Table 2. Comparison of modeling and data with results from Brauner et al. [11]. (A) Estimated effects by model and data from Brauner et al. (posterior mean in%, 95%
prediction interval (Prl) and rank) and by our model and data from Brauner et al. (posterior mean in%, 95% credible interval and rank). Note that, in these analyses, we
report cumulative effects for bans of small gatherings and businesses closed as in Brauner et al. (B) Estimated effects on our data by the model from Brauner et al. (posterior
mean in%, 95% prediction interval (PrI) and rank) and by our model (posterior mean in%, 95% credible interval, and rank). (C) Estimated effects by our model on our
data (posterior mean in%, 95% credible interval, and rank) and by our model and data from Brauner et al. (posterior mean in%, 95% credible interval, and rank). Similar
NPIs were matched but their definitions are not exactly the same. Note that in applying our model to the data by Brauner at al., we report the cumulative effect of “Gather-
ings <1000” and “Gatherings <100” when referring to our ban of small gatherings.

(A) Data by Brauner et al. but different modeling.

Model and data by Brauner et al Our model and data by Brauner et al

Mean (PrI) Rank Mean (CrI) Rank
Gatherings <1000 23 (0—40) 5 17 (5—28) 5
Gatherings <100 34 (12—42) 3 24 (11—36) 2
Gatherings <10 42 (17—60) 1 32 (17—47) 1
Schools and universities closed 38 (16—54) 2 23 (12—34) 3
Some businesses closed 18 (- 8—40) 6 5(-5—17) 7
Most businesses closed 27 (- 3—49) 4 18 (5—30) 4
Stay-at-home order 13 (- 5—31) 7 12 (5—18) 6
(B) Our data but different modeling.

Model by Brauner et al and our data Our model and our data

Mean (PrI) Rank Mean (Crl) Rank
Ban of large gatherings 48 (26—63) 1 37 (21—50) 1
Venue closure 30 (0—57) 2 18 (4—40) 2
School closure 7 (13—31) 4 17 (2—36) 3
Border closure 6 (—-12—26) 5 10 (2—21) 4
Ban of small gatherings 15 (- 6—38) 3 9 (- 4—23) 5
Stay-at-home order 5(-13—24) 7 4(6—17) 6
‘Work-from-home order 6 (-12—27) 6 1(8—12) 7

(C) Our model but different data.

Our NPI NPI by Brauner et al. Our model and our data Our model and data by Brauner
etal.

Mean (CrI) Rank Mean (CrI) Rank
Ban of large gatherings Gatherings <1000 + Gatherings <100 37 (21—50) 1 24 (11—36) 1
Venue closure Some businesses closed 18 (- 4—40) 2 5(-5—17) 6
School closure Schools and universities closed 17 (- 2—36) 3 23 (12—34) 2
Border closure 10 (- 2—21) 4
Ban of small gatherings Gatherings <10 9 (- 4—23) 5 9(2—19)
Stay-at-home order Stay-at-home order 4(-6—17) 6 12 (5—18) 4
Work-from-home order Most businesses closed 1(-8—12) 7 12 (2—22) 3

https://doi.org/10.1371/journal.pone.0252827.t1002

whether the closure of primary schools is less effective than the closure of secondary schools

and universities [29].

A small effect was estimated for stay-at-home orders. This seems to contradict findings
about the high effectiveness of the lockdown from Flaxman et al. [12]. However, one should
consider that their definition of a lockdown encompasses multiple NPIs that we differentiated
(e.g., bans of small gatherings, venue closures, and stay-at-home orders). Taken together, our
estimated “lockdown effect” would therefore also be large. Finally, although our findings sug-
gest that work-from-home orders were not effective, it should be considered that our defini-
tion of a work-from-home order referred to a mandatory order to work from home for non-

essential business activities, while many countries only issued recommendations.

PLOS ONE | https://doi.org/10.1371/journal.pone.0252827  June 2, 2021

11/16


https://doi.org/10.1371/journal.pone.0252827.t002
https://doi.org/10.1371/journal.pone.0252827

PLOS ONE

Estimating the effects of non-pharmaceutical interventions on the number of new infections with COVID-19

4.2 Methodological aspects

Flaxman et al. [12] were the first who attempted to link NPIs to observed cases or deaths using
a semi-mechanistic Bayesian hierarchical model. Both the study by Brauner et al. [11] and our
study can be seen as extensions of this approach, thereby making use in particular of data from
more countries. This also implies the possibility of refined modeling. For instance, Flaxman

et al. makes explicit assumptions on the distribution of the time from infection-to-case confir-
mation, which is estimated from data in the study of Brauner et al. and our study. Further-
more, modeling of the NPI effects was refined by considering country-specific effects in
Brauner et al. and by taking into account regional variation in the implementation of NPIs in
our study. We discuss methodological aspects in comparison to Flaxman et al. and Brauner

et al. in more detail in Section 2 in S1 Appendix.

4.3 Insights from a comparison with a similar study

With the data on reported cases and deaths gathered by the John Hopkins University and data
on NPIs gathered by government and news websites, there is a unique source for analyzing the
impact of health policy measures on the course of the COVID-19 pandemic. However, there
are many degrees of freedom with respect to preprocessing the available data, constructing a
model, and making prior assumptions and choices. To understand the influence of these data
and modeling choices on the results, it is desirable that different research groups analyse the
same data in different ways. A very recent publication by Brauner et al. [11] gave us the possi-
bility to perform a first check of this type. The check indicated that the choice of countries and
definition of NPIs has a larger influence on the estimated effects than the detailed choices in
modeling. A re-analysis of the original study by Flaxman et al. could also demonstrate sensitiv-
ity of the results with respect to specific choices of the definition of NPIs, but also found sensi-
tivity to specific modeling choices [33].

4.4 Limitations

Our analysis is subject to limitations. First, our modeling assumptions do not allow for (ran-
dom) variation in the effect of NPIs across countries and assume a fixed effect. Brauner et al.
[11] demonstrated that, in principle, it is feasible to allow for country-specific variation in the
effects. However, the specific parametrization chosen in our model (i.e., to take into account
regional variation in the implementation of NPIs via the population share) made it challenging
to incorporate random variation of the NPI effect 0,, across countries. Brauner et al observed
in the sensitivity analysis of their study that assuming a fixed effect does not alter the main con-
clusions that they discussed regarding the effectiveness of NPIs.

Second, any approach of explaining changes in the observed number of cases solely by spe-
cific NPIs makes the implicit assumption that these changes were not the result of some other
factors. For instance, it is possible that additional measures or an increasing general awareness
encouraged social distancing and hence lead to less infections. If this is the case, such effects
will erroneously be assigned to the NPIs and possibly overstate their overall impact.

Third, it is challenging to distinguish between the effects of single NPIs due to their concur-
ring introduction in many countries (Table 4 in S1 Appendix). This is reflected by wide
credible intervals and a negative association between effects (Section 5.2 in S1 Appendix), sug-
gesting that the effect of one NPI may be attributed partially to another. Note that the effect of
bans of large gatherings could be estimated with comparably narrower credible intervals than
that of venue and school closures. A reason for this could be that all three measures were
implemented by most countries but bans of large gatherings had on average a greater distance
in implementation to other NPIs as compared to school and venue closures (Table 3 in S1
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Appendix). Despite the difficulty in disentangling the effects of individual NPIs, we were able
to demonstrate that we can be fairly confident with respect to their relative ranking.

Fourth, our analysis is limited by the type of data utilized to define the outcomes. Using the
number of reported cases as outcome implies that reporting practices may have an influence
on the results. In particular, definitions and reporting practices differed between countries and
over time. However, since we modeled the ratio between the number of new cases and the
number of contagious subjects, we can expect that these effects cancel out. The same argument
applies to the challenge that we have to expect a substantial number of undetected cases, with
detection rates varying across countries and over time. In addition, we modelled the number
of reported cases as a random variable, thereby allowing for overdispersion. Moreover, we
took into account that countries had still to develop their reporting practice in the very early
phase of the epidemic by starting the modeling phase after at least 100 cumulative cases were
reported in a country.

Fifth, it is not considered in our analysis that the number of susceptible people in the popu-
lation decreases as the number of people that were already infected increases over time. How-
ever, we think this limitation is not of particular concern during the first epidemic wave. A
study in Spain, which experienced a severe first epidemic wave, showed that prevalence was
only around five percent in the population, indicating that the large majority of the Spanish
population was still susceptible after the first epidemic wave [34]

Sixth, our analysis is limited by the need to classify NPIs in a comparable manner across
countries and to determine dates when NPIs were exactly implemented. There is always some
subjectivity in making corresponding decisions. The comparison of our study with the one by
Brauner et al. suggests that such definitions can be crucial. We provide a detailed description
of our decisions (Section 8 in S1 Appendix).

4.5 Outlook

With the model presented in this paper and that developed by Brauner et al., we may have
reached a first level of maturity. This may be sufficient to justify the use of these models in ana-
lyzing the effects of NPIs. In principle, these models could also be used to study the effect of
lifting NPIs. A natural next step would be to apply these models to data from the second wave,
which is still ongoing. An interesting question would then be whether we can expect similar
effects in the first and the second wave. It is likely that some effects may have changed, as the
situations are not necessarily comparable and experience from the first wave may have helped
in dealing with the second wave.

Of course, there is still room for improvement and refinement of the models. If information
on new cases is also available at a regional level, regional variation in implementing NPIs can
be used as an additional source of information using a two-level hierarchical approach. Fur-
thermore, between-country and regional variation may be linked to certain characteristics
which may help to understand the conditions under which an NPI is most effective. Similarly,
information on cases stratified by patient characteristics may provide new insights. Also the
modeling of the outcome can be improved, e.g., by taking weekday effects into account.

5 Conclusion

Our analysis makes a contribution to the emerging evidence about the effectiveness of different
NPIs in the first epidemic wave. Ideally, such studies could inform public health policy in the
onset of future epidemics, as well as modeling efforts related to later waves. In our study, bans
of large gatherings in particular were identified as an effective measure, whereas little evidence
was found for substantial effects of stay-at-home orders and work-from-home orders. A
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comparison with another study indicates robustness of some conclusions, but also a depen-
dence on the choice of data and definitions.

Supporting information

S1 Appendix. Supplementary material. The supplementary material contains (1) a detailed
description of the method, (2) discussion of methodological aspects in comparison to related
work, (3) description and results from a simulation-based study, (4) further descriptives on the
timing of non-pharmaceutical interventions, (5) detailed estimation results and model checks,
(6) results from the sensitivity analysis, (7) a visual inspection of the model fit, and (8) data on
non-pharmaceutical interventions.
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