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Abstract

Background: The recent development of metagenomic sequencing makes it possible to 

massively sequence microbial genomes including viral genomes without the need for laboratory 

culture. Existing reference-based and gene homology-based methods are not efficient in 

identifying unknown viruses or short viral sequences from metagenomic data.

Methods: Here we developed a reference-free and alignment-free machine learning method, 

DeepVirFinder, for identifying viral sequences in metagenomic data using deep learning.

Results: Trained based on sequences from viral RefSeq discovered before May 2015, and 

evaluated on those discovered after that date, DeepVirFinder outperformed the state-of-the-art 

method VirFinder at all contig lengths, achieving AUROC 0.93, 0.95, 0.97, and 0.98 for 300, 500, 

1000, and 3000 bp sequences respectively. Enlarging the training data with additional millions of 

purified viral sequences from metavirome samples further improved the accuracy for identifying 

virus groups that are under-represented. Applying DeepVirFinder to real human gut metagenomic 

samples, we identified 51,138 viral sequences belonging to 175 bins in patients with colorectal 
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carcinoma (CRC). Ten bins were found associated with the cancer status, suggesting viruses may 

play important roles in CRC.

Conclusions: Powered by deep learning and high throughput sequencing metagenomic data, 

DeepVirFinder significantly improved the accuracy of viral identification and will assist the study 

of viruses in the era of metagenomics.

Author summary:

We developed a reference-free and alignment-free machine learning method, DeepVirFinder, for 

identifying viral sequences in metagenomics using deep learning. Sequences from viral and 

prokaryotic genomes are used for training the model. The neural network is composed by a 

convolutional layer, a max pooling layer, two dense layers to generate the prediction score 

between 0 and 1. DeepVirFinder outperformed the state-of-the-art method VirFinder at all contig 

lengths, achieving AUROC 0.93, 0.95, and 0.97 for 300, 500, and 1000 bp sequences respectively, 

and it will greatly assist the study of viruses in the era of metagenomics.
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INTRODUCTION

Viruses infecting microbes have great impact on both human health and ecosystems, but 

studies of the effect of those types of viruses on their host communities as well as on public 

health are in their earliest stages. It has only recently become possible to identify viruses in 

large metagenomic datasets using next-generation sequencing (NGS) technologies coupled 

with computational advances. Unlike traditional methods of isolating viruses through 

laboratory cultures, metagenomic sequencing technology effectively sequences all types of 

genetic materials in a microbial community regardless of their cultivability, making it 

possible to exhibit the true viral diversity of a sample. Studies using metagenomic 

sequencing to study viruses in the human gut have revealed important associations between 

viruses and human diseases, such as inflammatory bowel disease (IBD) [1], severe acute 

malnutrition (SAM) [2], and type II diabetes [3].

Identifying viral sequences from metagenomic samples is the first crucial step for all 

downstream analyses for viruses. A few methods have been developed to tackle the virus 

identification problem in metagenomic samples [4–6]. Besides those methods, tools for 

metaviromic or metagenomic composition analysis that characterizes the taxonomy of 

sequences in a sample [7–13] can also be used for identifying viral sequences, although they 

are not designed for this purpose. Before the metagenomic era, several tools for identifying 

proviruses from within prokaryotic genomes were developed [14–17]. While identifying 

proviruses in prokaryotic genomes is a different problem than identifying viral sequences in 

metagenomics, provirus finding tools laid the groundwork for virus identification 

approaches in metagenomic era. In general, all the above methods characterize viruses using 

features from the following three major aspects:(1) sequence alignment-based metrics for 

comparing query sequences with virus refernece genomes, (2) gene homology-based metrics 
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for comparing genes in query sequences and viral gene database, and (3) alignmnet-free k-

mer based metrics that use genomic signatures for virus prediction.

For sequence alignment-based methods, the tools, Metavir [7] and ViromeScan [8], classify 

viral metagenomics reads based on sequence alignment and homology searches against 

known viral reference genomes. Kraken[10], Centrifuge [11], and MetaPhlAn [12], which 

were designed mainly for bacteria composition analysis though, can rapidly map reads to 

known viral reference genomes. However, the current virus genome database are markedly 

biased towards certain types whose hosts are cultivable in the lab. The current virus 

references are far from being a complete representation of the whole viral diversity. It is 

estimated that only about 15% of viruses in human gut have similarity to known viruses in 

the database [18].

Gene homology-based methods, VIROME [9], DIAMOND [13], VirSorter [4], JGI Earth 

Virome Pipeline[19], MARVEL [6], and most provirus finding tools, Prophinder [15], 

Phage-Finder [14], PhiSpy [16], and PHASTER [17], determine viral sequences mainly by 

comparing genes in the query sequence against viral gene databases, and see if there is 

enough evidence showing the query sequences carries viral proteins. Since some mutations 

in nucleotide sequences are not appearing in the amino acide sequences, comparing 

sequences at the amino acid level instead of at the nucleotide level improves prediction 

stability given the high mutation rate in viral genomes. In addition, VIROME, VirSorter, and 

JGI Earth Virome Pipeline enlarged the viral gene database by adding viral genes from 

metavirome datasets to detect unknown viruses. Metavirome is viruslike particle (VLP)-

derived metagenomes where cellular organisms like bacteria are filtered out physcially 

before sequencing and mostly viruses are sequenced. The gene-based methods normally 

require query sequences to contain complete genes, so they are not able to predict sequences 

from non-coding regions. VirSorter in particular requires query sequences to have at least 

three genes to make predictions. Since metagenomics reads and the majority of 

metagenomically assembled sequences (also called contigs) are only hundred base pairs 

long, the method however fails to recall the majority of metagenomic viral sequences.

Recently we developed a program, VirFinder, to identify viral sequences using a machine 

learning method based on k-mer frequency features [5]. VirFinder automatically learned k-

mer patterns that are enriched or depleted in viruses, and built a powerful classifier to predict 

viral sequences. Since VirFinder characterizes sequences using k-mer frequencies, it can 

predict contigs from both coding and non-coding regions. Moreover, VirFinder does not 

depend on gene finding and homology-based searches so that it can predict short viral 

contigs that contain few or even only partial genes. VirFinder recalls 78-, 2.4-, 1.8-, and 1.2-

times more viral contigs of 1, 3, 5, and 10 kb, respectively, than the gene-based method 

VirSorter, at the same false positive rates. The success of VirFinder demonstrates that the k-

mer based machine learning method is more powerful than traditional gene-based methods 

for short contigs (≤10k).

Deep learning is one type of advanced machine learning algorithms that uses deep artificial 

neural networks to learn features from the input and predict the output. Deep learning 

techniques have been successfully used to solve various problems in computational biology, 
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such as predicting protein binding specificity using deep learning [20–23], predicting the 

effect of non-coding variants [24,25], predicting chromatin accessibility [26], calling genetic 

variants from millions of short reads in NGS samples [27], predicting methylation 

quantitative trait loci [28], identifying evolutionary conserved sequences [29], and 

identifying enhancers and promoters[30] and their interactions [31]. Yue et al. [32] gave a 

detailed review of deep learning applications in genomics. Significant improvements have 

been achieved for the above problems by deep learning methods over traditional methods, 

especially when training was driven by sufficient data. Given the importance of virus 

recognition problem and the urgency of utilizing the existing massive amount of 

metagenomic data, it is crucial to develop a powerful deep learning method for accurately 

identifying viruses in metagenomics.

In this study we developed a novel method, DeepVirFinder, to identify viral sequences from 

metagenomic data using deep learning techniques. DeepVirFinder designed convolutional 

neural networks (ConvNets) to automatically learn viral genomic signatures, and 

simultaneously built a predictive model based on those genomic signatures to predict if a 

sequence is from a viral genome. Trained with a large number of sequences, DeepVirFinder 

outperformed the previous state-of-the-art method VirFinder at all contig lengths. 

DeepVirFinder achieved AUROCs of 0.95, 0.97, and 0.98 for 500, 1000 and 3000 bp viral 

sequences respectively. For short sequences, decent prediction accuracy was obtained 

(AUROC 0.93 for 300 bp), suggesting DeepVirFinder can be directly applied to raw 

sequencing reads. To further elevate the prediction accuracy for sequences from under-

represented viral groups, we enlarged the training data tremendously by adding millions of 

unknown viral sequences in metavirome datasets. As a case study, we applied 

DeepVirFinder to identify viruses in gut microbial communities for patients with CRC. Ten 

virus bins associated with the cancer status were discovered, suggesting potential roles that 

viruses play in human disease.

RESULTS

DeepVirFinder: viral sequences prediction using convolutional neural networks

We developed a powerful deep learning model for predicting viral sequences using 

convolutinoal neural networks. Our model takes DNA sequences as input, without using any 

pre-defined features such as k-mers as before [5], and simultaneously learns features that are 

useful for virus prediction. The model consists of a convolutional layer, a max pooling layer, 

a fully connected layer, and several dropout layers, and outputs a prediction score between 0 

to 1 for a binary classification between virus and prokaryote (Fig. 1). See Section of 

“Predicting viral sequences using convolutional neural networks” for the details of the 

model. Considering DNA sequences are double stranded, and the prediction should be 

identical for either the forward strand or the backward strand, we apply the same network to 

both the original sequence and its reverse complement, and define the final prediction score 

as the average of the predictions from both sequences.

The model was trained and evaluated using a curated large dataset containing hundred 

thousands viral sequences and prokaryotic sequences. We downloaded 2,314 reference 

genomes (also known as RefSeq) of viruses infecting prokaryotes (bacteria and archaea) 
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from National Center for Biotechnology Information (NCBI). The dataset was partitioned 

into three parts based on the dates when the genomes were discovered. We used the genomes 

discovered before January 2014 for training, those between January 2014 and May 2015 for 

validation, and those after May 2015 for test. The partitioning of the dataset not only avoids 

the overlaps between the training, validation, and test datasets, but also helps to evaluate the 

methods ability for predicting future new viruses based on the previously discovered viruses. 

The viral genomes are fragmented into nonoverlapping short sequences to mimic the real 

metagenomic contigs. The virus dataset is paired with the same number of prokaryotic 

sequences, fragmented from 38,234 RefSeq and partitioned by the exact same dates. See 

Section of “Viruses and prokaryotic genomes used for training, validation and testing” for 

details. To further enlarge the dataset for training, we collected a large number of 

metavirome samples which contain mostly viral sequences including many uncultivated 

viruses. After carefully filtering out of the possible contamination of prokaryotic DNA in the 

samples, we added up to 1.3 million sequences to training. See Section of “Collection of 

metavirome datasets” for details.

The model was trained using training dataset, and optimal hyperparameters were selected 

based on the performance of the model on validation dataset. The area under the receiver 

operating characteristic curve (AUROC) was used as the metric for performance evaluation. 

AUROC provides a quantitative measure for predictive performance, with higher values 

indicating higher prediction power. Once the optimal hyperparameters were detemined, the 

final model was trained using all sequences in both training and validation dataset, and 

evaluated on the final test dataset which was never touched during training. Our model was 

compared with the other method using the same trainig, validation, and test datasets, to 

ensure a fair comparison.

Determining the optimal model for DeepVirFinder

We implemented a series of training and validation experiments to search for the optimal 

paramter setting for the model of DeepVirFinder. In convolutional neural networks, two 

critical hyperparameters, the length of motifs (or filters) and the number of motifs, 

determine the complexity of the model. To find the best parameter settings, we trained the 

model with different combinations of the two parameters using the training data, and 

evaluated the model performance using AUROC on the validation dataset. We studied the 

motif length ranging from 4 to 18 and the number of motifs from 100, 500, 1000, and 1500. 

We observed that as motif length increased from 4 to 8, the validation AUROC increased 

rapidly. The highest AUROC achieved when the motif length was around 10, and the value 

kept in the same level as the motif length further increased (Supplementary Fig. S1A, red 

curves). For example, for the model trained with 500 bp sequences, when fixing the model 

having 1000 motifs, the validation AUROC increased from 0.7747 to0.9464 as motif length 

increased from 4 to 8, and achieved the highest value of 0.9496 when motif length is10. This 

trend was similar for all other sequence sizes and numbers of motifs. Thus, we set the motif 

length as 10 in the final model. Note that the optimal k-mer length is 8 in VirFinder, a 

similar value as the motif length chosen here.
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We next studied the effect of the number of motifs on the model performance by fixing the 

motif length as 10 and increasing the number of motifs from 100 to 1,500. The validation 

AUROC gradually increased with the number of motifs (Supplementary Fig. S1B). For 

example, for the 500 bp model, the validation AUROC was 0.8990, 0.9402, 0.9497, and 

0.9500 for models using 100, 500, 1000, and 1,500 motifs, respectively. The number of 

neurons in the dense layer had a similar effect on the model performance. Considering the 

model simplicity and the computational intensity, we chose to use 1,000 motifs in the 

convolutional layer and 1,000 neurons in the dense layer in the final model.

The model was trained based on stochastic gradient descent and back-propagation. Training 

for more epochs produced a higher training accuracy but it could also cause overfitting. We 

observed the validation AUROC increased quickly in the first 20 epochs and was stabilized 

after 30 epochs (Supplementary Fig. S1C). Thus we train the final model for 30 epochs.

Comparing models across different sequence lengths, we observed that longer sequences had 

higher prediction accuracies. For example, the models with 1000 motifs of 10 bp and trained 

using 30 epochs had the validation AUROCs of 0.8635, 0.9210, 0.9496, 0.9668, and 0.9784 

for 150, 300, 500, 1000, and 3000 bp sequences, respectively. Longer sequences contain 

more information and thus are easier to make predictions. The low AUROC for the model of 

150 bp sequences was due to the inherent difficulty of predicting very short sequences.

Once the parameters were determined, we trained the model using all sequences before May 

2015 (training plus validation datasets). We evaluated model performance on sequences after 

May 2015, independent from all the training, validaton and parameter tuning process, to 

obtain an unbiased evaluation of model performance.

DeepVirFinder outperforms VirFinder at all sequence lengths

We compared the newly developed model DeepVirFinder with the previous state-of-the-art 

method VirFinder [5]. To make a fair comparison, both methods were trained using the 

sequences before May 2015 and assessed on data after May 2015. DeepVirFinder 

outperformed VirFinder at all sequence lengths, where the ROC curves for DeepVirFinder 

were always above those for VirFinder (Fig. 2A and Supplementary Table S1). The 

improvement in AUROC was more remarkable for short sequences of length < 1000 bp. For 

example, DeepVirFinder had AUROC of 0.8766, 0.9272, and 0.9494 for 150, 300, and 500 

bp sequences, respectively, while the corresponding scores for VirFinder were 0.8101, 

0.8771, and 0.9163, reflecting 8.2%, 5.7%, and 3.6% increase, respectively. For 1000 bp 

sequences, DeepVirFinder improved the AUROC from 0.9471 to 0.9735 (2.8% increase), 

and for sequence of size 3000 bp, the increase from 0.977 to 0.9847 was minimal but still 

significant (p-value for one-sided t-test, 5.896e–16). DeepVirFinder can predict sequences as 

short as 300 bp with a decent accuracy (AUROC 0.9272). With this increased prediction 

power, DeepVirFinder can be used to predict viral sequences directly at the read level in 

metagenomic samples without assembly.

Predicting sequences of various lengths

We trained the deep learning models using fixed length sequences of 150 bp, 300 bp, 500 bp, 

1000 bp and 3000 bp independently, while real metagenomic samples may contain 
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sequences of varible lengths, especially for samples whose reads are assembled into contigs. 

Given a query sequence, a natural question is which model we should use for prediction. We 

evaluated the performance of different trained models for predicting sequences of variable 

lengths. In particular, we predicted 150 bp sequences after May 2015 using models trained 

by 150 bp, 300 bp, 500 bp, 1000 bp, and 3000 bp sequences before May 2015, respectively. 

The highest AUROC was achieved when using the model trained by 150 bp sequences (Fig. 

2B). Similarly, using the model trained by 300 bp sequences had the best performance for 

predicting 300 bp sequences, and the same conclusion holds for 500 and 1000 bp sequences. 

For sequences of length >1000, there was no obvious difference between models. Therefore, 

we decided to use the model trained by 150 bp sequences for predicting any sequences < 

300 bp. Similarily, we used the model trained by 300 bp sequences for predicting sequences 

of the length 300–500 bp, the model trained by 500 bp sequences for predicting 500–1000 

bp sequences, and the 1000 bp model to predict sequences >1000 bp.

Model robustness to mutations

Considering viruses have a higher mutation rate than bacteria, we tested the model’s 

robustness to genetic mutations. This also served as a test of the sensitivity of the models to 

sequencing errors. For the sequences in the test set, we randomly introduced mutations by 

replacing the original letter at each position by another different letter with equal probability 

at the rate of 0.001, 0.01, and 0.1. We compared the AUROC for predicting the mutated 

sequences with that for the original sequences with no mutations. We observed that the 

AUROC scores dropped less than 0.06% at 0.001 mutation rate, 0.66% at 0.01 mutation rate, 

and 7.96% at 0.1 mutation rate (Fig. 2C). Thus, our models are not sensitive to either the 

typical viral mutation rate of ≤0.001 as suggested in the previous study [33] or the 

sequencing error rate of 0.001 by Illumina Platform [34].

Enlarging the training dataset by adding millions of metavirome contigs

Though a large number of training sequences were obtained from viral RefSeq, the existing 

RefSeq database represents mostly cultivated viruses. To represent a more diverse viral 

population and to couple the deep learning algorithm with even larger dataset, viral 

sequences from metavirome datasets were added to the training. We collected a large set of 

metavirome samples from several large-scaled metagenomic sequencing projects, and we 

carefully selected the samples that had high quality to reduce the possibility of 

contamination of prokaryotic DNA. Reads from those samples were assembled and the 

resulting millions of viral contigs were used to generate more viral sequences for training. 

See Section of “Collection of metavirome datasets” for details. The model trained using the 

enlarged dataset was evaluated using the test sequences from RefSeq after May 2015, and 

compared with the original model trained based only on RefSeq.

We investigated the AUROC for predicting viruses from different host phyla. The new 

model trained using the enlarged dataset had significantly higher AUROC scores for the 

viral groups that are under-represented in the RefSeq database, compared with the original 

model with all p-values for one-sided t-test < 2.2e–16 (Fig. 3A). For example, only 2.08% 

viruses in RefSeq infect Bacteroidetes, and because of the low representation, the original 

model trained using only RefSeq had a relatively low AUROC of 0.8287 for predicting 
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viruses infecting Bacteroidetes, even though Bacteroidetes is of the two dominant phyla in 

human gut. After adding the metavirome contigs, the AUROC was improved to0.9591. 

Similarly, the new model improved the AUROC from 0.8272 to 0.8952 for viruses infecting 

Crenarchaeota, and from 0.9714 to 0.9847 for viruses infecting Cyanobacteria, which only 

represent 2.23% and 4.39% of the viruses in RefSeq database, respectively. The above 

results were for 500 bp contigs, and the conclusion holds for other sequence lengths (data 

not shown). The results also confirmed the distribution of viruses in RefSeq database is 

different from that in the real environment, possibly due to the fact that most viruses in 

RefSeq were obtained by the procedure of cultivation and isolation in the lab so that the 

viruses in RefSeq database are greatly biased towards the limited cultivable viruses against 

those uncultivable majority. Thus, adding viral sequences from metavirome dataset 

effectively corrected the sampling bias, and improved the prediction accuracy for the viruses 

under-represented in the RefSeq.

We also noticed that the viruses infecting Proteobacteria and Actinobacteria, the two most 

abundant virus types taking up to 63% in RefSeq, had decreased AUROCs when predicting 

using the model trained with the enlarged dataset. Due to the decrease in AUROC for the 

two major viral groups, the overall AUROC was also slightly decreased for the new model 

(Fig. 3B). Note that we tested the model based on sequences from RefSeq after May 2015. 

This may disfavor the evaluation of the model trained using the enlarged dataset, because the 

model was trained using RefSeq plus metavirome dataset while the distribution of the test 

data was shifted towards only RefSeq. Though metavirome samples represent viruses closer 

to the real virus distribution, considering that the test data needs to be clean and those 

metavirome-derived viral sequences may contain unavoidable contamination, we did not use 

metavirome-derived viral sequences to test the model. We expect the model trained with the 

enlarged dataset will have better performance if the testing data was from the true viral 

distribution. Overall, we suggest to use the model trained with the enlarged data to predict 

viruses from under-represented groups, and use the original model if the viruses are mainly 

from the common groups in RefSeq.

Evaluation of DeepVirFinder on simulated metagenomic contigs of variable lengths

To test the performance of DeepVirFinder on predicting viral contigs in metagenomics data, 

we simulated several metagenomics samples based on the abundance profile of a real human 

gut metagenomic sample, and evaluated performance of DeepVirFinder on identifying viral 

contigs in the simulated metagenomic samples. Considering the viral fraction differs based 

on the experimental exampling strategy, we simulted three metagenomic samples with the 

viral fractions of 10%, 50% and 90%, while keeping the relative abundance within virus and 

host groups the same. The simulated contig was of variable length between hundreds of base 

pairs to thousands of base pairs, with the majority ranging between 300–000 bp. We used the 

model trained with RefSeq to predict contigs of different lengths.

In general, AUROC scores increased as the contig length increases, having the same trend as 

in Fig. 2. For example, the AUROC scores for contigs of length < 300 bp, 300–500 bp, 500–

1000 bp, and >1000 bp were about 0.8317, 0.8767, 0.8966, and 0.9451 on average. When 

predicting contigs of length across multiple intervals, AUROCs were 0.8829 for all contigs, 

Ren et al. Page 8

Quant Biol. Author manuscript; available in PMC 2021 June 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



0.8952 for contigs >300 bp, and 0.9129 for contigs >500 bp (Fig. 4B). Thus, in the real data 

application, we are able to predict contigs >300 bp in order to achieve the overall AUROC 

around 0.90.

Different viral fraction does not markedly affect AUROC, since the true positive rate and the 

false positive rate are defined based on the relative proportions within the viral group and the 

host group independently. As a complementary method to AUROC, we considered the 

metric of the area under the precision-recall curves (AUPRC) which is more sensitive when 

assessing the effect of viral fraction on the prediction accuracy. For example, the AUPRC for 

contigs of length >500 bp is0.9296 for the sample with 90% viral fraction, and are0.8638 

and 0.6437 for samples with 50% and 10% viral fractions, respectively (Fig. 4C). We also 

observed that AUPRC had large variations for the sample with 10% viral fraction, compared 

to that for the sample with 50% and 90% viral fractions. This may be caused by the fact of a 

small number of viruses in the 10% viral fraction sample.

Case study: identifying viruses in the gut microbiome associated with CRC

CRC is among the top second most frequently diagnosed cancer in women and the third in 

men as of 2012 [35,36]. Several studies have shown the effect of human gut bacteria on 

CRC [37–40], but the association between gut viruses and CRC has not been investigated. 

As viruses play important roles in controlling host population and altering host metabolism, 

it is of significance to investigate the gut viruses in patients with CRC. To showcase the use 

of DeepVirFinder in real applications, we used DeepVirFinder to identify viruses in the gut 

microbiome, and assessed the association between virus and the disease status.

We collected 114 metagenomic samples in a previous study [40]. After spliting the dataset 

into training and test, the metagenomic samples in the training set were cross-assembled, 

resulting in 1,335,046 contigs of length greater than 500 bp. DeepVirFinder identified 

51,138 viral contigs and the false discovery rate was controlled at the rate 0.01. Those 

contigs were then grouped into 175 contig bins based on their k-mer similarity and 

abundance correlation using the software COCACOLA [41]. See Section of “Viral analysis 

of human gut metagenomics from patients with colorectal cancer” for details of the analysis. 

Using the average reads per kilobase per million mapped reads (RPKM) as the feature for 

each bin and the disease status as the response variable, we built a logistic Lasso regression 

classifier to predict cancer status based on the viral abundance. The AUROC score was 

0.7557, and 10 viral bins selected by the Lasso classifier were associated with the CRC 

status (Supplementary Table S2). Six of the bins had positive coefficients (high abundance in 

CRC) and four bins had negative coefficients (low abundance in CRC).

Comparing the sequences in the bins to RefSeq database, six bins had similar sequences to 

known viruses. Most of the viruses infect bacteria (called phages), while we also noticed one 

endogenous virus infecting human cells. Eukaryotic viruses can potentially share similar 

motifs with prokaryotic viruses, since we previously observed a decent predictive accuracy 

of VirFinder for predicting eukaryotic viruses (data not shown). In addition, Bin7, with a 

negative coefficient––0.0193 in the regression model, contains sequences similar to 

crAssphage. This is consistent with the fact that crAssphage is a highly abundant virus in 

healthy guts[42]. The remaining four bins with no similarity to RefSeq viruses are possibly 
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new viruses. We also searched the proteins in contigs against Pfam database [43]. On 

average 65.68% of contigs contained proteins, demonstrating DeepVirFinder’s ability of 

identifying virus sequences from non-coding regions over the other gene homology-based 

method. Seven of the 10 bins contained phage associated proteins, such as tail, capsid, 

integrase, connector, holin, and portal, indicating those bins were trully from viruses. In 

addition, all bins except Bin188 had proteins with domains of unknown function (DUF). 

This also indicates those bins were most likely to be viruses because viral proteins are less 

characterized than bacteria in Pfam database [4], and this was in fact a criterion used for 

viral prediction in Roux et al. [4].

DISCUSSION AND CONCLUSIONS

Prokaryotic viruses are the most abundant biological entities on earth. They play crucial 

roles in regulating microbial communities, but our knowledge of prokaryotic viruses has 

been limited by available experiment techniques and the computational methods for a long 

time. Identification of viral sequences is not trivial due to viruses’ high mutation rates and 

incomplete reference database, and the existing methods could not achieve high recall rates 

for short viral sequences.

We developed a novel method, DeepVirFinder, to identify viral sequences in metagenomic 

data. To the best of our knowledge, it is the first deep learning based program for identifying 

viral sequences from metagenomic data. Powered by the deep learning techniques, and 

trained with a large number of viral sequences, DeepVirFinder outperformed VirFinder at all 

contig lengths. Enlarging the training data with millions of additional viral sequences from 

environmental samples futher improved the prediction accuracy for under-represented viral 

groups. The improvements are remarkable for healthcare researchers, since the false 

predictions may cause serious consequence. We demonstrated the usefulness of the method 

by a case study where we applied DeepVirFinder to the real human gut metagenomic 

samples and discovered a group of key viruses associated with CRC, which can motivate 

futher investigation of viruses’ roles in human disease.

As more RefSeq and environmental metavirome samples for training are generated, we 

expect DeepVirFinder will keep increasing its power to identify viruses in metagenomic 

data. Though the usage of metavirome dataset for training requires careful quality control for 

bacterial sequences contaminations, fully utilizing metavirome datasets for training will help 

to further improve the prediction accuracy especially for under-represented and unknown 

viruses.

With the ability of accurately predicting viral sequences as short as read length, our tool can 

potentially be used to improve assembly pipelines for viral genomes. Individual reads could 

be classified as virus and then do assembly on those reads to help simplify the complexity in 

assembly and reduce computing resources, and hopefully improve assembly accuracy. 

Alternatively, viral contigs can be predicted from millions of assembled contigs, and the 

reads mapping to those viral contigs can be pulled out and re-assemble. Evaluation and 

comparison of the two approaches for assembling viral genomes is of our interest in the 

future.
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Deep learning models is designed for end-to-end solutions with no need for feature 

engineering. It is believed that features can be automatically learned through large number 

of training examples. Because of the our limited understanding of viral genomes, deep 

learning model can fit better and achieve higher accuracy than other pre-defined feature-

based machine learning models, such as k-mer frequencies logistic regression [5], and gene-

based random forest model [6,44]. On the other hand, it will be interesting to compare the 

motifs learned from the deep learning model with the real biological motifs, though it is not 

trivial to collect a database of viral motifs.

The high prediction accuracies of VirFinder and DeepVirFinder suggest the two groups, 

viruses and prokaryotic hosts, possess distinguishing k-mer or more general motif patterns. 

On the other hand, previous studies showed that virus and their infecting hosts share kmer 

similarity and utilized this phenomenon to predict hosts of viruses based on genomic 

sequences [18,45,46]. This phenomenon is likely due to the evolutionary pressure on viruses 

to adopt similar codons used by their hosts since they are dependent on host machinery for 

replication [47–50]. The two seemly contradictive observations are not mutually exclusive, 

because viruses can share higher similarity with each other than that with their hosts so that 

k-mer or more general motif features can be used for both viral sequence identification and 

virus-host predictions effectively.

DeepVirFinder is designed for identifying prokaryotic viruses in metagenomics which is a 

mixture of genomes from prokaryotic cells and prokaryotic viruses. We note that some 

metagenomic samples may contain contamination of sequences from host eukaryotic 

genomes such as human genome [51]. Users who have the concerns of eukaryotic 

contaimination should first filter out eukaryotic host sequences by mapping the reads to host 

reference genomes before applying Deep-VirFinder, as DeepVirFinder may potentially 

misidentify those eukaryotic sequences as viral, since eukaryotic sequences were not 

included in our training dataset. For more complicated cases where host reference genomes 

are not available, computational methods for detecting sequence contamination is of our 

interest in the future. In fact this problem is closely related to a general problem of out-of-

distribution detection for AI safety [52]. Various methods based on discriminative models or 

generative models have been developed for this purpose [53–60] and worth our future 

investigation.

Overall, DeepVirFinder markedly improves the accuracy for identifying viruses in 

metagenomic data, and it will assist the study of viruses in various environments.

MATERIALS AND METHODS

Viruses and prokaryotic genomes used for training, validation and testing

We collected 2,314 RefSeq of viruses infecting prokaryotes (bacteria and archaea) from 

NCBI (https://www.ncbi.nlm.nih.gov/genome/browse). The dataset was partitioned into 

three parts based on the dates when the genomes were discovered. We used the genomes 

discovered before January 2014 for training, those between January 2014 and May 2015 for 

validation, and those after May 2015 for testing. The partitioning of the dataset not only 

avoids the overlaps between the training, validation, and test datasets, but also helps to 
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evaluate the methods ability for predicting future new viruses based on the previously 

discovered viruses. We previously used the data before May 2015 in Ren et al. [5]. For this 

study, we updated the dataset to include new viruses after May 2015 and it was natural to 

use them as the test data.

Since sequences in real metagenomics data are of various lengths ranging from hundreds to 

thousands of base pairs, we fragmented the genomes into nonoverlapping sequences of 

different sizes, L = 150, 300, 500, 1000, and 3000 bp. We then built models for sequences of 

each size, respectively. In particular, the models for 150 and 300 bp were designed for the 

next generation sequencing technology, which commonly generates sequences of those fixed 

lengths. Table 1 shows the numbers of sequences in different sizes that were used for 

training, validation, and test. The dataset is paired with the same number of prokaryotic 

sequences, fragmented from 38,234 RefSeq and partitioned by the exact same dates.

Predicting viral sequences using convolutional neural networks

We used deep learning techniques and developed a powerful framework for predicting viral 

sequences. Given a query sequence, the framework outputs a score between 0 and 1, with a 

larger score indicating a higher possibility of being a viral sequence. Previously k-mer 

frequencies were used as features to a machine learning model that distinguishes viral 

sequences from prokaryotes [55]. The success of the method confirmed that viruses and their 

prokaryotic hosts have different preferences in k-mer usage. Those k-mers can be easily 

generalized as motifs, which are commonly represented using position weight matrices 

(PWM) of size 4 by k where each column specifies the probabilities of having A/C/G/T at a 

position. We expected that using motifs as the model features could increase the model 

flexibility and would improve prediction accuracy. Thus, we designed a deep learning 

methods using ConvNets, where the filters in ConvNets are able to capture sequence 

patterns. The filters are represented in the form of weight matrices of size 4 by k, where k is 

the filter length. This representation is similar to PWM. The generalization from k-mers to 

ConvNets provides a more general model and potentially gives better prediction accuracy.

We call our method DeepVirFinder. The model consists of a convolutional layer, a max 

pooling layer, a fully connected layer, and several dropout layers (Fig. 1). A DNA sequence 

of length L, X = X1… Xl… XL, Xl∈{A,C,G,T}, is first encoded using the one-hot encoding 

method, resulting in a 4 × L matrix Z(1) = Z1
(1)…Zl

(1)…ZL
(1), Zl

(1) =

[1, 0, 0, 0],  if Xl = A
[0, 1, 0, 0],  if Xl = C
[0, 0, 1, 0],  if Xl = G
[0, 0, 0, 1],  if Xl = T

. 

Ambiguous nucleotide “N” is encoded as a vector of 1
4 , 1

4 , 1
4 , 1

4
T
. The encoded DNA 

sequences are fed into a convolutional layer with the rectifier activation, where the 

convolutional layer contains M motifs of length K. The m-th motif can be represented using 

a matrix of size 4 × K, Um, with tunable coefficients Um, i, k, i=1, …, 4, k= 1, …, K. Each 

motif scans the sequence Z(1) from the beginning to the end, obtaining a series of the motif 

intensities. Motif intensity is computed as the cross-correlation between subsequences of 

length K in Z(1) and each motif. The resulting motif intensities for all M motifs can be 
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represneted using a vector Z(2) of size M × (L – K + 1), where 

Zm, l
(2) = ∑i = 1

4 ∑k = 1
K Zi, l + k − 1

(2) Um, i, k. A rectified linear unit (ReLU) is applied for each 

motif, resulting a matrix Z(3) of the same size as Z(2), where Zm, l
(3) = max 0, Zm, l

(2) − dm . A 

max pooling layer reduces the dimension by keeping only the highest intensity for each 

motif, resulting in an M × 1 matrix Z(4), where Zm
(4) = max Zm, 1

(3) , …, Zm, (L − K + 1)
(3) .

The output is then fed into a dense layer containing N fully connected neurons with weight 

vector Wn and bias bn for the n-th neuron. The resulting output matrix is of dimension N × 

1, Z(5), where Zn
(5) = bn + ∑m = 1

M W n, mZm
(4). Another ReLu is applied for each neuron, 

resulting Zn
(6) = max 0, Zn − en . The output is finally summarized using a dense layer with 

sigmoid function to generate a prediction score ranging from 0 to 1, i.e., Z(6)= σ(z), where 

z = q + ∑n = 1
N V nZn

(5), σ(z) = 1
1 + exp−z  is the sigmoid function.

In summary, the input sequence X in fed into the neural networks, and the resulting output 

score Y is

Y (X) = σ Dense Dense Pool Conv Encode X .

Since the DNA sequence is double stranded, and the contigs in real data can come from both 

strands, the prediction score should be identical for either the forward strand or the 

backward strand. Thus, we apply the same network to the reverse complement of the 

original sequence, and the final prediction score is the average of the predictions from the 

original and the reverse complement sequences. That is, Y final  =
Y XF + Y XR

2 . Similar 

techniques were used in Quang et al. and Wang et al. [22,23].

The objective function is to minimize the binary cross-entropy loss between the predicted 

score Yfinal and the true labels (0 for prokaryotic sequences, and 1 for virus sequences). The 

training dataset is iteratively fed into the model in batches of size 150. One iteration of 

finishing feding batches of the whole training dataset is called one epoch. The parameters in 

the neural networks were updated through back-propagation using Adam optimization 

algorithm for stochastic gradient descent with learning rate 0.001 [61]. Dropout 

regularization of rate0.1 are applied after the max pooling layer, and after the fully 

connected layer, to reduce overfitting in neural networks by randomly dropping out a few 

dimensions.

This convolutional neural network has three critical hyper parameters, the length of motifs 

(or filters), the number of motifs, and the number of epochs for training. The first two 

determine the complexity of the model, and the third one controls the balance between 

overfitting and underfitting. To find the best parameter settings, we trained the model with 

different combinations of the three parameters using the data before January 2014, and 

evaluated the model performance using AUROC on the validation dataset. We studied the 

motif length ranging from 4 to 18, the number of motifs from 100, 500, 1000 to 1500, and 

the number of epochs up to 60.
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Collection of metavirome datasets

To achieve high prediction accuracy, a deep learning algorithm needs a large amount of 

training data. Though a large number of training sequences were obtained from RefSeq, 

there is a potential to enlarge the training dataset by including viral sequences from 

metavirome sequencing data. Metavirome sequencing targets at sequencing mainly viruses 

by removing prokaryotic cells in samples using the physical 0.22 μm filters. Metavirome 

sequencing does not rely on culturing viruses in the lab, so it is able to capture both 

cultivated and uncultivated viruses, representing the true viral diversity. A few studies have 

used this technique to extract viruses and sequenced viral genomes in human gut and ocean 

samples [1,2,62,63]. Normal et al. sequenced virome in the human gut sample from IBD 

patients using Illumina sequencing technology[1]. Reyes et al. studied viruses in fecal 

samples from Malawian twins with Severe Acute Malnutrition (SAM) using Roche 454 

sequencing technology [2]. Minot et al. and Kim et al. investigated virome in healthy human 

gut using Roche 454 [11,62]. For marine virome, the Tara Ocean Virome project collected 

the largest number of virome samples from both surface- and deep-ocean sites over the 

world [63].

We collected the metavirome samples from those studies and aimed to add more viral 

diversity, especially adding viruses not- or under-represented in RefSeq, to the training data. 

We were careful in quality control of the samples because it is likely that the sample can be 

contaminated by prokaryotic DNA, since the physical filters may not exclude small sized 

prokaryotic cells. The details of preparation of metavirome data and quality control can be 

found in Supplementary Materials and Supplementary Table S3. Up to 1.3 million of 

sequences were generated from the metavirome data, and they were combined with 

sequences derived from viral RefSeq before May 2015 for training. The same number of 

prokaryotic sequences were paired with the viral sequences in the enlarged dataset for 

training. The new model was evaluated and compared with the original model trained based 

on RefSeq only, using the test sequences from RefSeq after May 2015.

Simulation of metagenomic datasets

To assess the performance of DeepVirFinder trained previously using RefSeq on predicting 

viruses in metagenomic samples, we generated sythetic metagenomic samples based on 

organism abundance profiles derived from a real human gut metagenomic sample (accession 

ID SRR061166, Platform: Illumina). Given a total budget of base pairs in a sample, the 

number of base pairs in contigs sampled from each genome was computed proportionally to 

the abundance profile. For each reference genome, contigs were sampled randomly and 

independently from the genome, where the contig length follows the same distribution as 

that in a real human metagenomics dataset for CRC patients (Fig. 4A), until the number of 

base pairs reaches the total budget. The details can be found in Supplementary Materials.

We constructed metagenomic samples with different viral fractions and evaluated 

DeepVirFinder on each of them. In metagenomic sequencing experiments, there are two 

major types of genome sampling strategies. One is referred to as cellular metagenomes in 

which all the genetic materials, including bacteria, archaea, and viruses, are sampled and 

sequenced. Another type of data is metavirome where cellular organisms like bacteria are 
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filtered out first before sequencing and mostly viruses are sequenced. To mimic the different 

viral fractions in real metagenomic data, the abundance profile was rescaled to make 

samples of three different viral fractions 10%, 50%, and 90%, while keeping the relative 

abundance within viruses and that within hosts the same.

Viral analysis of human gut metagenomics from patients with colorectal cancer

Human gut metagenomics samples from patients with CRC and the control group were 

downloaded from European Nucleotide Archive (ENA) database (see the 

website:www.ebi.ac.uk/ena) with accession number ERP005534. Samples from 53 cancer 

patients and 61 normal individuals were randomly split into 2/3 for training and 1/3 for 

testing. The patient ID and the disease status can be found in the Supplementary Materials. 

The metagenomics samples from training were combined and cross-assembled. To guarantee 

high accuracies in the downstream analysis including virus contig identification and contig 

binning, we filtered contigs smaller than 500 bp. DeepVirFinder was then applied to predict 

viral contigs in the remaining dataset. To control the false discovery rate, the predicted p-

value for each contig was converted to a q-value. The q-value is an estimation of the 

proportion of false prediction if the prediction is made at the level of the corresponding p-

value. Contigs were sorted by q-values from the smallest to the largest, and the contigs 

having q-values < 0.01 were predicted as viruses. The viral contigs predicted by 

DeepVirFinder were then grouped into contig bins, and the abundance of contig bins was 

derived based on the read mapping results. To study the association between the viruses and 

the cancer status, we built a logistic regression classifier with Lasso penalty to predict the 

CRC status based on the bin abundance on training data, and evaluated the perfor mance on 

test data. The details can be found in the Supplementary Materials.

Data and code availability

The software DeepVirFinder is available at the website (github.com/jessieren/

DeepVirFinder). The NCBI accession numbers of the viral and prokaryotic RefSeq, the 

species abundance profile for simulated metagenomic samples, and the sample IDs used for 

identifying viruses in CRC patients can be found at the website (github.com/jessieren/

DeepVirFinder/tree/master/supplementary_tables).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. The deep learning framework of DeepVirFinder.
Sequences from viral genomes and prokaryotic genomes are used for training the model. 

The neural network is composed by a convolutional layer, a max pooling layer, a dense layer 

with ReLU activation function, and a final dense layer with sigmoid function to generate the 

prediction score between 0 and 1. The higher score indicates the more likely a sequence is 

from viral genomes. For each sequence, both forward and its reverse complementary are fed 

into the same neural networks, and the final prediction score is the average of the two 

corresponding prediction scores.
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Figure 2. Comparison of DeepVirFinder with VirFinder and the effect of contig length and 
mutation rates on the performance of DeepVirFinder.
(A) AUROCs for VirFinder and DeepVirFinder when trained on sequences before May 

2015, and tested on sequences after May 2015. See Supplementary Fig. S1 for the exact 

numbers and the standard errors. (B) AUROCs for different combinaions of sequence 

lengths used for training and testing. (C) AUROCs for prediction when adding mutations at 

different rates.

Ren et al. Page 21

Quant Biol. Author manuscript; available in PMC 2021 June 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. Comparison of AUROCs between the model trained using only viral RefSeq, and the 
model trained using the enlarged dataset including millons of sequences from metavirome.
(A) The AUROCs for predicting 500 bp viral sequences from different host phyla. The 

under-represented viruses groups, viruses infecting Crenarcheota, Bacteroidetes (B) the 

overall AUROCs between the two models at different sequence lengths.
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Figure 4. Evaluation of the performance of DeepVirFinder on viral contigs of variable lengths in 
simulated metagenomic samples with various viral fractions.
(A) The distribution of contig length used for simulating metagenomic samples, and the (B) 

AUROC and (C) AUPRC for predicting viral sequences with various viral fractions (10%, 

50% and 90%) for contigs of different lengths.
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