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SUMMARY

Forward genetic screens across hundreds of cancer cell lines have started to define the genetic 

dependencies of proliferating human cells and how these vary by genotype and lineage. Most 

screens, however, have been carried out in culture media that poorly reflect metabolite availability 

in human blood. Here, we performed CRISPR-based screens in traditional versus human plasma-

like medium (HPLM). Sets of conditionally essential genes in human cancer cell lines span several 

cellular processes and vary with both natural cell-intrinsic diversity and the combination of basal 

and serum components that comprise typical media. Notably, we traced the causes for each of 
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three conditional CRISPR phenotypes to the availability of metabolites uniquely defined in HPLM 

versus conventional media. Our findings reveal the profound impact of medium composition on 

gene essentiality in human cells, and also suggest general strategies for using genetic screens in 

HPLM to uncover new cancer vulnerabilities and gene-nutrient interactions.

Graphical Abstract

eTOC Blurb

Most forward genetic screens in human cells are performed in vitro using media with little 

relevance to human physiology. Rossiter et al. reveal the profound impact of medium composition 

on gene essentiality by performing CRISPR screens of human cancer cells in conventional versus 

human plasma-like medium (HPLM).

INTRODUCTION

Loss-of-function forward genetic screens have been used to characterize protein function, 

map gene interaction networks, and define regulators of either drug or toxin resistance 

(Birsoy et al., 2015; Gilbert et al., 2014; Han et al., 2017; Kanarek et al., 2018; Kory et al., 

2018; Shalem et al., 2014; Wang et al., 2014, 2017). There is also interest in leveraging such 

screens to identify genes required for cell proliferation, as these may suggest targetable 

liabilities in human cancers (Tsherniak et al., 2017). Nonetheless, it is also appreciated that 

fitness genes can be context-dependent and that gene essentiality is a quantitative property 
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(Rancati et al., 2018). Pooled loss-of-function screens based on either RNAi or CRISPR 

have been used in human cancer cell lines not only to define a set of core essential genes, but 

also to identify cell-essential genes that depend on either genotype or lineage (Behan et al., 

2019; Cheung et al., 2011; Hart et al., 2015, 2017; McDonald et al., 2017; Meyers et al., 

2017; Tzelepis et al., 2016; Wang et al., 2015).

Environmental factors contribute to cell physiology and can affect drug efficacy (Faubert et 

al., 2020; Kaymak et al., 2020; Lyssiotis and Kimmelman, 2017; Muir and Vander Heiden, 

2018). Further, recent in vitro studies have shown that cell-essential genes can vary with 

either oxygen tension or culture in 3D spheroids versus 2D monolayers (Han et al., 2020; 

Jain et al., 2020). However, there has been little investigation into how the composition of 

cell culture media influences gene essentiality. Moreover, in vitro screens of human cells 

have been performed in traditional media that poorly reflect metabolite availability in human 

blood. (Ackermann and Tardito, 2019; Cantor, 2019). Progress has been made in using direct 

in vivo CRISPR screens to identify genetic drivers in animals, but such approaches have 

limitations as well. Mouse models recapitulate aspects of tumorigenesis and provide certain 

environmental factors that are typically more difficult to mimic in vitro, but in vivo screens 

are by limited by throughput, control, cost, and time (Chow and Chen, 2018; Winters et al., 

2018). Notably, there are also a number of differences in the metabolic composition of 

mouse versus human blood that may influence the physiology of human cells growing in 

mice (Cantor et al., 2017).

Previously, we developed a new culture medium (human plasma-like medium; HPLM) that 

contains over 60 polar metabolites and salt ions at concentrations that represent average 

values in adult human plasma (Cantor et al., 2017). Studies in human cancer cell lines and 

normal human T cells demonstrated that culture in HPLM versus standard media has 

widespread effects on cell metabolism and could be used to reveal new insights into 

metabolic regulation and drug sensitivity (Cantor et al., 2017; Leney-Greene et al., 2020). 

By performing CRISPR screens in HPLM versus conventional media, it should be possible 

to identify genes differentially required for cells growing in metabolic conditions with 

greater relevance to human physiology. This conditional essentiality paradigm has been 

illustrated in various microorganisms, such that certain genes become critical for growth 

only in media that represent specific laboratory or natural environments (Hillenmeyer et al., 

2008; Nichols et al., 2010; Qian et al., 2012; Sassetti et al., 2001).

Here, we perform CRISPR/Cas9 genetic screens to investigate how medium composition 

affects gene essentiality in human blood cancer cell lines. Analysis of these data reveals that 

sets of conditionally essential genes span several biological processes, and further, can vary 

both with cell-intrinsic factors and the combination of synthetic and serum components that 

comprise typical culture media. Follow-up work traces conditional loss-of-function 

phenotypes for glutamic-pyruvic transaminase 2 (GPT2), the mitochondrial pyruvate carrier 

(MPC), and glutaminase (GLS) to metabolites uniquely defined in HPLM versus 

conventional media. By applying strategies that we describe, it should be possible to identify 

new targetable liabilities, gene-nutrient interactions, and genetic drivers in human cells.
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RESULTS AND DISCUSSION

Genome-wide CRISPR screens reveal conditionally essential genes

Forward genetic screens in human cancer cell lines have been used to define a set of core 

essential genes (CEGs) and to identify genetic dependencies that vary with cell-intrinsic 

diversity (Figure 1A) (Hart et al., 2015, 2017; Tsherniak et al., 2017; Wang et al., 2015, 

2017). However, in vitro genetic screens have been performed in complete media that 

consist of a basal medium with little relevance to the biochemical conditions in human 

blood, and a fetal bovine serum (FBS) supplement that further provides an undefined 

cocktail of additional components (Cantor, 2019). This point is well-illustrated by cataloging 

the growth conditions used across more than 800 CRISPR screens from the DepMap project, 

of which 76% were carried out using one of two basal media (RPMI 1640, DMEM), and 

82% in media that contained 10% FBS (Figure 1B) (Dempster et al., 2019; Meyers et al., 

2017).

We previously developed HPLM, a physiologic medium designed to more closely reflect the 

metabolic composition of human plasma (Cantor et al., 2017). To establish a complete 

HPLM-based medium, we add a 10% dialyzed FBS supplement (HPLM+dS) that provides 

various growth factors, hormones, and trace elements required to support cell proliferation, 

but minimizes the contribution of undefined polar metabolites. Since RPMI 1640 (herein 

RPMI) has historically been the medium of choice for culturing human blood cells, we also 

created two RPMI-based reference media that each contain physiologic glucose (5 mM) but 

are supplemented with 10% FBS that is either untreated (RPMI+S) or dialyzed (RPMI+dS).

To test the hypothesis that proliferating human cells harbor medium-essential genes, we used 

a genome-wide single guide (sg)RNA library (Wang et al., 2015, 2017) to perform CRISPR-

based screens in the K562 chronic myeloid leukemia (CML) cell line. Following lentiviral 

infection and antibiotic selection in RPMI+S, cells were split and passaged in either RPMI
+dS or HPLM+dS –thus ensuring that causes of conditional phenotypes be restricted to 

defined medium components (Figure 1C). Screens were passaged at the same frequency and 

cells doubled at near indistinguishable rates between the two conditions (Table S1). For each 

gene, we calculated a gene score as the average log2-fold change in the abundance of all 

sgRNAs targeting the gene after 13 population doublings. By defining the medians for sets 

of nontargeting sgRNAs and CEGs as 0 and -1, respectively, we then scaled all gene scores 

(Figure S1A) (Hart et al., 2017). Of note, both screen datasets could discriminate CEGs 

from a distinct reference set of nonessential genes (Figure S1B) (Hart et al., 2014), and also 

contained a comparable number of essential genes (defined as probability of dependency > 

0.5), which were enriched for roles in fundamental cellular processes as expected (Figure 

S1C) (Dempster et al., 1977, 2019).

We then standardized differential gene scores between the two screens. By setting a Z-score 

cutoff of 2, we identified 525 HPLM-essential (negative) and 427 RPMI-essential (positive) 

and genes, which collectively, were not enriched for the targets of a metabolism-focused 

sgRNA library reported elsewhere (Figure 1D) (Birsoy et al., 2015). Pathway-enrichment 

analysis revealed that medium-essential hit genes were instead enriched for many Gene 

Ontology (GO) biological processes (Figure 1E and Table S2).
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Next, to ask if differences in gene expression induced by HPLM+dS versus RPMI+dS might 

explain our identification of medium-essential hits, we performed RNA-seq in K562 cells 

following culture in each condition. However, we found that relative expression showed no 

correlation with differential dependency among the hit genes, indicating that a proxy used to 

differentiate CEGs could not similarly discriminate for conditional essentiality (Figure 1F 

and Table S2) (Wang et al., 2015).

Medium-essential genes are involved in diverse biological processes

We then designed a focused sgRNA library targeting 394 medium-essential candidate hits 

(212 negative; 182 positive) and 257 hit-related genes (e.g., shared pathway or family), and 

used it to profile 4 human blood cancer lines (K562, NOMO1, MOLM13, and SUDHL4) in 

HPLM+dS and RPMI+dS (Figures 2A and S2A; Tables S3 and S4). Passaging frequencies 

were identical to those in our genome-wide screens, and population doubling rates between 

conditions were again comparable (Table S3). Since our focused library contained a subset 

of nontargeting sgRNAs and others that targeted a fraction of CEGs, we could analogously 

scale all gene scores (Table S3). Importantly, we also observed a minimal effect on our 

genome-wide screen datasets if gene scores were instead scaled by using these smaller 

sgRNA subsets. (Figure S2B and Table S1). Replicate secondary screens in K562 cells were 

well-correlated, and among the screens in our cell line panel, showed the highest correlation 

with our genome-wide screen datasets (Figure S2C and S2D). Therefore, we combined data 

from the two replicates to establish pooled datasets and differential dependencies, which 

were highly correlated with those from our genome-wide screens – indicating that 

conditional phenotypes could be largely recapitulated by using our focused library (Figures 

2B and S2E).

Next, to identify the medium-essential hits in K562 cells likely to be most robust, we tested 

the significance of each differential dependency from our pooled datasets. By setting a 

standard score cutoff of 1, we identified 149 medium-essential hits (71 negative; 78 positive) 

at a 0.1 false discovery rate (FDR) (Figure 2C). Given the targeting bias of our focused 

library, we chose this cutoff to maintain selection for differential gene scores that met the 

medium-essential threshold set for our genome-wide screens. Consistent with the pathway 

enrichment analysis above, these hits have roles in several cellular processes.

Despite the normalized glucose availability between conditions, genes encoding enzymes 

that catalyze initial steps in glycolysis (HK2, GPI, and PFKP) were HPLM-essential, while 

others that catalyze successive reactions in one-carbon metabolism (SHMT2, MTHFD2, and 

MTHFD1L) were RPMI-essential – perhaps given the HPLM-specific availability of 

formate (Figure 2D). We also uncovered hits that have roles in gene expression, including a 

heterodimer with histone methyltransferase activity (ASH2L and RBBP5) and a 

transcription factor involved in the response to nutrient restriction (ATF4) (Figure 2E) (Cao 

et al., 2010; Wortel et al., 2017). Interestingly, while translation initiation factor 1 (EIF1) 
scored as HPLM-essential, we found that several members of the translation initiation factor 

3 complex were instead RPMI-essential (Figure 2F).

Our analysis also revealed hit genes that encode transporters of metabolites (SLC25A1, 
SLC25A11, and SLC7A1), small ions (SLC25A37 and SLC20A1), and unidentified 
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substrates (SLC25A46) (Figure 2G). We could also uncover hits involved in post-

translational modifications, including lipoylation, the covalent attachment of lipoamide to 

proteins; and UFMylation, a system that attaches UFM1 to proteins (Figure 2H) (Komatsu et 

al., 2004; Solmonson and DeBerardinis, 2018; Wang et al., 2017). Other medium-essential 

genes have roles in protein catabolism, including components of the ClpXP complex (CLPX 
and CLPP) and of E3 ubiquitin-protein ligase complexes (KCTD10 and FBXW11); as well 

as in RNA processing (YBEY, LSM1, and PAPD5), apoptosis (BCL2L1, PARL, and 

GHITM), and mTOR signaling (FLCN and FNIP1). (Figures 2I, 2J, and 2K).

Lastly, we also identified hit genes that lack a GO process annotation, such as CCDC58 and 

members of the ER membrane protein complex (EMC1 and EMC2) (Figure 2L). While the 

causes for most conditional phenotypes uncovered by our analysis are not immediately 

apparent, these results reveal that basal medium composition has a strong impact on gene 

essentiality.

Conditional gene essentiality can be influenced by natural cell-intrinsic diversity

Next, we sought to ask how conditional gene essentiality might differ between cell lines. 

Overall, the sets of hit genes in the four cell lines showed variable degrees of overlap (Figure 

2M). For example, ATP-citrate lyase (ACLY) was a positive hit in each cell line – since 

ACLY generates acetyl-CoA from citrate, we reason that this could be linked to the HPLM-

specific availability of acetate, an alternative substrate for cellular acetyl-CoA synthesis 

(Figure 2N) (Zhao et al., 2016). By contrast, the cytosolic NAD kinase (NADK) was a 

negative hit in all four cell lines, though the underlying gene-nutrient interaction is unknown 

(Figure 2O).

Other hits were shared among only three cell lines, including components of the pyruvate 

dehydrogenase complex E1 subunit (PDHA and PDHB) (Figure 2P). Additionally, four of 

the six genes that encode enzymes in the de novo purine biosynthesis pathway were RPMI-

essential – perhaps given that only HPLM provides hypoxanthine, a salvage substrate for 

purine biosynthesis (Figure S2F). Differences in hypoxanthine uptake might perhaps explain 

why these hits were not shared by the K562 line. Interestingly, we also identified genes 

involved in cobalamin/methionine metabolism (MTR, MTRR, and MMACHC) that scored 

as RPMI-essential in K562 cells, but as HPLM-essential in the remaining cell lines, thus 

demonstrating that the specific condition in which a gene is medium-essential can also 

depend on cell-intrinsic factors (Figure S2G). This analysis also revealed conditional hits 

shared between only two cell lines, including the mitochondrial folate transporter 

(SLC25A32) (Figure 2Q), and several others specific to a single cell line (Figure S2H).

Together, these results support the notion that gene essentiality is dictated by an interplay of 

cell-intrinsic and environmental factors (Rancati et al., 2018), suggesting that CRISPR 

screens performed in HPLM across broader cancer cell line panels could reveal new context-

dependent genetic liabilities.

Identification of a gene-nutrient interaction between GPT2 and alanine

Despite the variability between conditional gene essentiality profiles above, GPT2 was the 

top scoring RPMI-essential hit in all four cell lines (Figure 3A). Interestingly, GPT2 is 
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annotated as essential in < 1% of the over 700 cancer cell lines screened in DepMap (Figure 

S3A). GPT2 encodes one of two human enzymes that catalyze the reversible conversion of 

pyruvate and glutamate to alanine and α-ketoglutarate (αKG), but that differ in their 

subcellular localization (GPT1, cytosolic; GPT2, mitochondrial) (Figure 3B). GPT2 deletion 

strongly impaired cell growth only in RPMI+dS, whereas GPT1 deletion had little effect on 

growth in either medium (Figures S3B and S3C). Consistent with this, GPT1 is annotated as 

essential in a similarly negligible fraction of cell lines from DepMap (Figure S3D). Notably, 

RNA-seq data of nearly 1,300 human cancer lines indicates a near absolute selection for the 

expression of GPT2 versus GPT1 (Figure S3E) (Ghandi et al., 2019). We confirmed this 

phenotype at the protein level in our cell line panel, and also found that GPT2 expression in 

K562 cells was unaffected by culture in HPLM+dS relative to either RPMI-based medium 

(Figures 3C and 3D).

To investigate the conditional phenotype for loss of GPT2, we engineered GPT2-knockout 

K562 clonal cells, which showed the same lack of detectable GPT1 as control cells 

transduced with an AAVS1-targeting sgRNA (Figure 3E) (Wang et al., 2015). By using 

short-term growth assays, we then confirmed that GPT2 deletion caused a marked growth 

defect specific to culture in RPMI+dS (Figure 3F). Importantly, the expression of a sgRNA-

resistant GPT2 cDNA rescued this defect, while transducing cells with the same construct 

lacking a cDNA did not.

To determine why GPT2 deletion impaired cell growth in RPMI+dS, we first considered the 

relative availability of each GPT reaction component, reasoning that the de novo synthesis of 

one or more may become cell-essential under a limiting condition. While glutamate levels 

between the two media are comparable, HPLM contains the three remaining components at 

concentrations at least 5- (αKG), 15- (pyruvate), and 200-fold (alanine) greater than those 

measured in RPMI+dS (Figure 3G). Recent studies in human cancer cells have highlighted a 

role for GPT2 in facilitating glutamine anaplerosis via the production of αKG (Hao et al., 

2016; Kim et al., 2019; Smith et al., 2016; Weinberg et al., 2010); and further, others have 

reported that GPTs can serve to fuel the TCA cycle in certain cancers by catabolizing 

alanine to pyruvate (Parker et al., 2020; Sousa et al., 2016). Therefore, we considered 

whether the differential availability of either αKG or pyruvate could explain the RPMI-

essential phenotype of GPT2. Among the stocks of HPLM components that we create is one 

containing αKG, pyruvate, and eight additional water-soluble acids (WSAs) (Figure S3F 

and Table S5). Interestingly, addition of this WSAs stock to RPMI+dS could not boost the 

growth of GPT2-knockout cells, and neither could that of cell-permeable dimethyl αKG 

(DM-αKG) at concentrations up to 40-fold greater than that of HPLM-defined αKG (Figure 

S3G). We then considered the relative availability of alanine which, despite being the second 

most abundant amino acid in human blood, is not a component of either RPMI or DMEM. 

When we supplemented RPMI+dS with physiologic alanine (430 μM), we observed a full 

rescue of the growth defect and, in addition, found that removing alanine from HPLM+dS 

could impair the relative growth of GPT2-knockout cells (Figure 3H).

We then reasoned that GPT2-catalyzed alanine production would require GPT2 having 

access to the necessary substrates. The mitochondrial pyruvate carrier (MPC) is an obligate 

heterodimer (MPC1 and MPC2) that transports pyruvate into the mitochondrial matrix 

Rossiter et al. Page 7

Cell Metab. Author manuscript; available in PMC 2022 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(Bricker et al., 2012; Herzig et al., 2012). Consistent with our rationale, both MPC1 and 

MPC2 were RPMI-essential hits in all four cell lines (Figure 3I). To confirm this, we 

engineered MPC2-knockout K562 clonal cells which, as anticipated, showed a growth defect 

specific to culture in RPMI+dS that could be similarly rescued by the addition of physiologic 

alanine (Figures 3J and 3K).

Next, to determine the fraction of cellular alanine contributed by GPT2-mediated de novo 

synthesis, we compared 13C-labeling patterns of pyruvate and alanine following 24 hr 

culture of GPT2-knockout and control K562 cells in RPMI+dS containing [U-13C]-glucose 

(Figure 3L). We found that GPT2 deletion had almost no impact on the fraction of pyruvate 

labeled with three 13C (M+3) but decreased that of M+3-alanine to a near negligible level 

(Figure 3M). These results are consistent with prior work that reported reductions in 

fractional labeling of alanine downstream of glucose/pyruvate in either Gpt2-null mouse 

embryonic fibroblasts or in human cells treated with an MPC inhibitor (Ouyang et al., 2016; 

Vacanti et al., 2014; Yang et al., 2014). When we analogously performed glucose tracing in 

RPMI+dS containing 430 μM alanine, we observed only minor effects on the labeling 

patterns above, indicating that GPT2-catalyzed formation of alanine (and αKG) is not 

necessarily dictated by alanine availability alone (Figure 3N).

Together, these results reveal that conditional CRISPR phenotypes for GPT2 and MPC1/2 
can be traced to alanine, one of three GPT reaction components uniquely defined in HPLM 

versus RPMI. By comparing gene essentiality profiles in HPLM+dS versus RPMI+dS, we 

found that GPT2 and the MPC each serve roles in an alanine-dependent cell-essential 

process under conditions of relative alanine limitation.

GPT2 supports protein synthesis under conditions of relative alanine restriction

To determine the cell-essential demand supported by alanine for cells in RPMI+dS, we first 

performed unbiased metabolite profiling of GPT2-knockout and control K562 cells 

following 24 hr culture in either HPLM+dS or RPMI+dS (Table S6). Of note, among the GPT 

reaction components specific to HPLM versus RPMI, only alanine showed conditional 

abundances in control cells that reflected the differential availability between media (Figure 

S4A). Interestingly, GPT2 deletion had widespread effects on cellular metabolite levels 

following culture in RPMI+dS but not in HPLM+dS (Figure 4A).

By setting a fold-change cutoff of −1.5, we found that GPT2-knockout reduced the levels of 

23 metabolites at 0.1 FDR, including αKG and several others involved in the TCA cycle; but 

not alanine, whose abundance was reduced by an extent half that of αKG. However, whereas 

the expression of our GPT2 cDNA reversed most changes among the TCA cycle-related 

metabolites, culture in RPMI+dS containing 430 μM alanine did not (Figure 4B). GPT2 
deletion also increased the levels of 35 metabolites by at least 1.5-fold at the same FDR – 

among which nearly half were proteinogenic amino acids. However, these changes were 

largely reversed by either GPT2 cDNA expression or physiologic alanine, suggesting that 

they might be more relevant to the GPT2-alanine interaction (Figures 4C and S4B). Given 

that increased cellular amino acid pools (and reduced translation) are a primary consequence 

of amino acid restriction (Bröer and Bröer, 2017), these results suggest that GPT2-knockout 

cells growing in RPMI+dS exhibit a metabolic phenotype consistent with nutrient restriction.
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Next, to ask if GPT2 might support a cell-essential catabolic demand in conditions of 

relative alanine restriction, we compared the 13C-labeling of alanine and pyruvate following 

24 hr culture of GPT2-knockout and control K562 cells in RPMI+dS containing [U-13C]-

alanine (Figure 4D). Differences in fractional M+3-alanine labeling were complementary to 

those from our glucose tracing data as expected, but GPT2 deletion had little effect on the 

otherwise minimal fraction of M+3-pyruvate in control cells (Figure 4E). The fractional 

labeling of downstream metabolites in pyruvate metabolism was negligible as well (Table 

S6). Of note, physiologic alanine could also rescue the growth defect of GPT2-knockout 

cells in RPMI+dS following 24 hr culture, importantly suggesting that metabolite profiling 

and tracing data at this timepoint were biologically relevant to the GPT2-alanine interaction 

(Figure S4C).

Together, our results suggest a model in which alanine supports the non-catabolic cell-

essential process of protein synthesis – a role similarly reported in the context of T-cell 

activation (Figure 4F) (Ron-Harel et al., 2019). Consistent with this model, GPT2 and the 

cytosolic alanyl-tRNA synthetase (AARS) were the top and third strongest RPMI-essential 

hits, respectively, from our genome-wide K562 screens (Figure S4D). This conditional 

phenotype for AARS deletion was recapitulated in secondary K562 screens and further 

identified in two other cell lines (Figure S4E). Notably, AARS is among the reference CEGs 

and its loss indeed caused a strong growth defect in each condition (Figure S4F). To 

reconcile these data, we speculate that from the point of Cas9-mediated AARS cleavage, 

cellular alanine levels above a critical threshold can maintain tRNAAla charging until the 

turnover of residual AARS at rates that likely vary between cell lines.

Human GPTs display markedly different KM values for pyruvate

Next, given the RNA-seq data for GPT1/2 across more than 1,200 human cancer cell lines, 

we considered whether enforced expression of GPT1 could complement the loss of GPT2. 

When we transduced GPT1 cDNA into GPT2-knockout cells, we saw a complete rescue of 

the growth defect in RPMI+dS, indicating that mitochondrial localization of GPT activity 

was not necessary to meet the cell-essential demand for de novo alanine synthesis (Figure 

S4G).

The reverse GPT reaction that instead generates pyruvate and glutamate has long been 

recognized for a key role in hepatic gluconeogenesis (Felig, 1973). RNA-seq data across 

more than 50 human tissues from the GTEx project indicate that GPT1 is indeed most 

abundant in liver and has a restricted distribution profile otherwise, but that GPT2 levels are 

comparable between the liver and several other tissues (Lonsdale et al., 2013) (Figure S4H). 

Therefore, to ask if cellular GPT1 is instead poised toward pyruvate production in alanine-

replete conditions, we performed [U-13C]-alanine tracing in GPT2-knockout cells 

transduced with our GPT1 cDNA. Relative to the labeling patterns that we observed in our 

control cells, the fraction of M+3-pyruvate was increased by just over 1%, whereas that of M

+3-alanine was dramatically reduced by nearly 40% – indicating that a larger fraction of the 

alanine pool was generated de novo, as catalyzed by supraphysiologic GPT1 (Figures S4I 

and S4J). Interestingly, these results suggest that independent of alanine availability, both 

GPTs were poised toward alanine (and αKG) formation in this context.
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Since the two human GPTs share just 67% sequence homology, we then considered that they 

might exhibit different kinetic parameters for the forward GPT reaction. However, there was 

little reported biochemical characterization for these enzymes, and standard GPT assays rely 

on indirect readouts based on coupled activities (Glinghammar et al., 2009; Gubern et al., 

1990; McAllister et al., 2013; Ouyang et al., 2016). To address this, we developed a new 

GPT activity assay, whereby reactions containing recombinant GPT can be evaluated using 

liquid chromatography-mass spectrometry (LC-MS)-based detection of αKG (Figures 4G 

and S4K).

By leveraging this new assay, we found that KM values for glutamate were similar between 

the two GPTs and equivalent to a few-fold less than glutamate levels (~6 mM) in our K562 

control cells (Figure 4H and Table S6). However, the estimated KM for pyruvate displayed 

by GPT1 was more than 40-fold greater relative to that by GPT2 and comparable to pyruvate 

concentrations (~50 μM) in the same control cells (Figure 4I and Table S6). These results 

suggest that if cytosolic versus mitochondrial pyruvate levels are not substantially higher, 

only cellular GPT2 but not GPT1 would be saturated with the substrate. Interestingly, recent 

work in mouse astrocytes reported that such differences in compartmentalized pyruvate were 

relatively minor (Arce-Molina et al., 2020). Of note, given the protein banding patterns that 

we observed for our recombinant GPTs, the kcat values displayed by GPT2 versus GPT1 

may be underestimated, though with no effect otherwise on the estimated KM values (Figure 

S4L). Lastly, we expect that GPT1/2 can be poised for the reverse GPT reaction in the liver 

or other contexts that require cells to accordingly meet distinct metabolic demands.

Identification of a gene-nutrient interaction between GLS and pyruvate

We could also use our data to identify medium-essential genes that encode current targets of 

interest for cancer therapy. For example, GLS was among the top 20 scoring RPMI-essential 

hits in our genome-wide K562 screens (Table S1). This hit was recapitulated in secondary 

K562 screens but shared in only one other cell line, indicating that cell-intrinsic 

heterogeneity can also contribute to GLS essentiality (Figures 5A and S5A). GLS catalyzes 

the hydrolysis of glutamine to glutamate, which is involved in several pathways – including 

as a co-substrate in reactions that mediate its reversible conversion to αKG (Figure 5B) 

(Altman et al., 2016).

Interestingly, recent work indicates that environmental factors can influence cell sensitivity 

to GLS inhibition (Davidson et al., 2016; Le et al., 2012; Muir et al., 2017). Of note, one 

such link was traced to cystine availability (Muir et al., 2017); however, since cystine levels 

in HPLM+dS and RPMI+dS differ by less than 2-fold, we reasoned that an alternative gene-

nutrient interaction might explain the conditional phenotype for loss of GLS suggested by 

our data (Figure S5B). To pursue this, we created GLS-knockout K562 clonal cells which, as 

anticipated, showed a greater growth defect in RPMI+dS than in HPLM+dS (Figure 5C). 

Importantly, the expression of a sgRNA-resistant cDNA largely normalized this relative 

defect across conditions, though did not fully restore growth versus the control cells – likely 

owing to clonal characteristics unrelated to GLS (Figure S5C).

Next, because glutamate concentrations in HPLM and RPMI are comparable as well, we 

systematically tested the growth of GLS-knockout cells in RPMI+dS derivatives containing 
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pools of HPLM-specific components, finding that only the addition of WSAs had a strong 

positive impact (Figures 5D and 5E). Through additional rounds of subdivision, we 

ultimately pinpointed this effect to pyruvate, and further, also found that removing pyruvate 

from HPLM+dS caused a comparable growth defect in these cells (Figures 5F and 5G). 

Given that pyruvate is an upstream substrate in metabolic pathways that can generate αKG, 

we considered whether the GLS-pyruvate interaction could be linked to αKG production. 

Interestingly, supraphysiologic DM-αKG rescued the growth defect of GLS-knockout cells 

in RPMI+dS by the same extent as physiologic pyruvate, but other cell-permeable products 

of glutamine catabolism (DM-malate or DM-succinate) did not (Figure 5H). Together, these 

results suggest a model in which αKG synthesis underlies a gene-nutrient interaction 

between GLS and pyruvate, whose uptake in certain breast cancer cells could induce αKG 

production as well (Elia et al., 2019).

Consistent with our model, GLS deletion reduced αKG levels by more than 2-fold versus 

control cells following 24 hr culture in RPMI+dS; and further, the addition of physiologic 

pyruvate moderately increased (~35%) these levels in GLS-knockout cells – though with 

little concomitant effect on relative growth at that timepoint (Figures S5D and S5E). Of note, 

since transducing GLS cDNA into our GLS-knockout cells had a slightly stronger positive 

effect on cell growth than adding either pyruvate or DM-αKG to RPMI+dS, we speculate 

that other aspects of glutamate metabolism could also perhaps contribute to the conditional 

phenotype for GLS deletion. Additionally, given that αKG plays a role in several cellular 

processes, the question of how pyruvate-induced αKG synthesis might specifically improve 

the growth of GLS-knockout cells remains.

Next, we asked if GLS inhibition could recapitulate the conditional CRISPR phenotype for 

GLS. When we treated our control K562 cells with CB-839 – a small-molecule GLS 

inhibitor being tested in human cancer patients (Gross et al., 2014; Luengo et al., 2017) – we 

observed growth defects comparable to those caused by GLS-knockout in RPMI+dS and 

HPLM+dS, which could also be similarly influenced by physiologic pyruvate availability and 

only marginally exacerbated by a 10-fold boost in dosage (Figures 5I, 5J, and 5K). 

Moreover, CB-839 had little impact on the growth of GLS-knockout cells in either HPLM
+dS or pyruvate-supplemented RPMI+dS, offering further evidence of both its on-target 

activity and specificity (Figure 5L). Collectively, these results demonstrate that gene-nutrient 

interactions identified by analysis of conditional gene essentiality profiles can potentially be 

phenocopied as drug-nutrient interactions.

Basal and serum components of culture media influence gene essentiality

To extend our investigation into how culture medium composition affects gene essentiality, 

we considered the frequency of specific basal and serum components used across most 

CRISPR screens from DepMap, and then used our focused library to screen the K562 line in 

6 conditions: (1) RPMI+dS; (2) RPMI+S; (3) DMEM+dS, 5 mM glucose; (4) DMEM+S, 5 

mM glucose; (5) HPLM+dS; and (6) mHPLM+dS, a minimal HPLM-based medium with 

only the following components defined: salts, glucose, vitamins, and amino acids (Figure 

6A, Tables S3 and S5). Interestingly, screens within this set were most highly correlated 

with those in conditions containing the same basal medium (Figure S6A). Of note, screens 
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in RPMI+dS and HPLM+dS served as the replicates to establish our pooled secondary K562 

screen datasets.

Next, we standardized differential gene scores between HPLM+dS and each of the other five 

conditions. Overall, the sets of HPLM-essential (negative) and “versus”-essential (positive) 

genes in the five comparisons showed variable degrees of overlap (Figure 6B). For example, 

ACLY was a positive hit in each case, again likely given that only HPLM contains defined 

acetate (Figure S6B). By contrast, the nucleoside diphosphate kinase NME6 was a negative 

hit in all five cases, though the underlying cause for this is not immediately apparent (Figure 

S6C).

Other hit genes were specific to either non-DMEM (DLD and SFXN1) or DMEM-based 

conditions (NADK2 and NAIF1) (Figure 6C). Additionally, SLC7A1 was a positive hit only 

versus the two RPMI-based media – perhaps suggestive of an increased dependence on 

arginine uptake in highly supraphysiologic arginine conditions specific to RPMI (Figure 

6D). Similarly, conditional CRISPR phenotypes for genes involved in Ca2+ transport 

(LETM1 and MCUR1) might be linked to the sub-physiologic Ca2+ unique to RPMI versus 

HPLM and DMEM (Figure 6E).

Our analysis also revealed hits shared among all conditions except mHPLM+dS, suggesting 

causes for conditional essentiality that may be traced to differences among the amino acids 

and salt ions in HPLM versus DMEM and RPMI (Figure S6D). Among these hits were 

HK2, NADK, and an isoform of methionine aminopeptidase (METAP1) (Figure 6F). After 

generating knockout cells and sgRNA-resistant cDNAs for these three genes, we validated 

their HPLM-essential phenotypes by comparing short-term growth assays in HPLM+dS and 

RPMI+dS – though the gene-nutrient interactions that explain these hits remain unknown 

(Figures 6G, 6H, 6I, S6E, S6F, and S6G). Additionally, we identified TBC1D31 – a gene of 

unknown function – as a negative hit only versus mHPLM+dS, suggesting that its conditional 

essentiality further depends on the physiologic availability of certain amino acids and/or salt 

ions (Figure S6H).

Interestingly, thymidylate synthase (TYMS) was HPLM-essential versus only RPMI+S and 

DMEM+S, suggesting that untreated FBS might provide an otherwise undefined component 

that supports pyrimidine synthesis (Figure 6J). Further, although genes involved in 

UFMylation were HPLM-relative hits versus RPMI+dS (positive) and DMEM+dS (negative), 

these effects were largely diminished in comparison to counterpart media with untreated 

FBS, again demonstrating that the typically unaccounted contents in serum can affect 

CRISPR phenotypes (Figure S6I).

We then asked if conditional essentiality patterns for GPT2 and GLS were consistent with 

the gene-nutrient interactions elucidated above. GPT2 was a strongly positive hit relative 

only to RPMI+dS and DMEM+dS (Figures 6K and S6J). Although alanine is not defined in 

either RPMI or DMEM, 10% untreated versus dialyzed FBS provides over 50-fold more 

alanine – equivalent to just less than 4-fold that defined in HPLM (Figure 6L). Consistent 

with these data, GPT2-knockout cells did not exhibit a growth impairment in either RPMI+S 

or DMEM+S, indicating that the sub-physiologic alanine in these media was sufficient to 
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complement GPT2 deletion; and as expected, these cells did show a growth defect in 

DMEM+dS that could be rescued by physiologic alanine (Figure 6M). Conditional 

essentiality patterns for MPC1, MPC2, and AARS were largely reflective of that for GPT2 
as well (Figures S6K, S6L, and S6M). Next, we found that GLS was a positive hit relative to 

RPMI+dS, mHPLM+dS, and each DMEM-based condition (Figures 6N and S6N). 

Surprisingly, however, GLS was not a hit versus RPMI+S which, like DMEM+S, contains 

pyruvate from 10% untreated FBS at a concentration 10-fold less than that in HPLM (Figure 

6O). Consistent with these results, GLS-knockout cells exhibited growth defects that were 

comparable between either: (1) RPMI+S and HPLM+dS; or (2) the two DMEM-based media 

and RPMI+dS; and in addition, 50 μM pyruvate had only a slightly positive effect (~6%) on 

their growth in DMEM+dS (Figure 6P). Remarkably, these results indicate that the GLS-

pyruvate interaction in K562 cells is itself context-dependent, as physiologic pyruvate was 

neither necessary nor sufficient to complement GLS deletion across all conditions. Of note, 

cystine levels in DMEM+dS and RPMI+dS were equivalent (Figure S6O).

We could also use our data to identify other genes with HPLM-relative phenotypes unique to 

a particular RPMI- or DMEM-based medium, including hits shared versus all conditions 

except DMEM+S (MTHFD1L, MTHFD2) or RPMI+S (KEAP1); and another only relative to 

RPMI+S (TAF10) (Figure S6P). Indeed, the overall sets of differential dependencies 

measured between either the two RPMI-based or two DMEM-based media showed little 

overlap (Figure 6Q), illustrating that FBS can have strikingly disparate effects on gene 

essentiality depending on the basal medium supplemented. This suggests that essentiality 

profiles across hundreds of human cancer cell lines have in part been influenced by the 

conventional media used to screen specific cells.

CONCLUSIONS

By performing CRISPR screens in HPLM versus traditional media, we demonstrate the 

profound impact of medium composition on gene essentiality in human cells. Sets of 

conditionally essential genes are involved in several cellular processes and can vary with 

natural cell-intrinsic heterogeneity, suggesting that forward genetic screens in HPLM should 

make it possible to define new targetable liabilities in diverse human cancers.

Here, we identify strong conditional CRISPR phenotypes for GPT2 and genes that encode 

the MPC. We traced these effects to alanine, one of the three GPT reaction components 

uniquely defined in HPLM versus both RPMI and DMEM. By mediating de novo 

production of alanine from mitochondrial pyruvate imported via the MPC, we find that 

GPT2 supports protein synthesis in conditions of relative alanine restriction. Further, basal 

media are often supplemented with 10% untreated FBS, which we find can provide alanine 

at sub-physiologic levels that are nonetheless sufficient to complement loss of GPT2, thus 

clarifying why most CRISPR screens in conventional media have masked the identification 

of GPT2 as a cell-essential gene.

We also identify GLS as a cell-specific medium-essential gene. By using an unbiased 

approach, we systematically traced this effect to pyruvate – another HPLM component 

otherwise undefined in RPMI and DMEM. Our results suggest that the GLS-pyruvate 
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interaction is linked to αKG synthesis, one of the many potential fates for (GLS-mediated) 

glutamate. Notably, however, we find that conditional CRISPR phenotypes for GLS in K562 

cells cannot be solely explained by pyruvate availability, highlighting the complexity of 

context-dependent GLS essentiality in human cancers. Efforts to uncover the causes for most 

conditional CRISPR phenotypes in our screens, including those of three HPLM-essential 

hits that we validated (HK2, NADK, and METAP1), may require similar unbiased strategies. 

Of note, these three genes are co-expressed with functional homologs in many human cancer 

cell lines, and NADK has not been annotated as cell-essential in any of the CRISPR screens 

from DepMap.

Medium composition is a relatively flexible and accessible environmental factor among 

those that can influence gene essentiality. These attributes should make it possible to 

examine how the genetic drivers of various phenotypes (e.g., growth, cell state, drug 

response) might differ with nutrient availability, such as by using HPLM derivatives or 

media designed to more closely reflect other biofluids (Cantor, 2019). We also provide 

evidence that gene-nutrient interactions can be phenocopied as drug-nutrient interactions. 

This raises the interesting possibility that conditional essentiality profiles can be leveraged to 

develop new cancer treatment strategies that combine targeted therapies with either dietary 

or enzyme-mediated manipulation of circulating metabolites. Notably, several clinical and 

preclinical enzymes can mediate the systemic depletion of certain metabolites (Cantor and 

Sabatini, 2012; Cantor et al., 2012; Cramer et al., 2017; Lu et al., 2020; Patgiri et al., 2020), 

and dietary interventions designed to alter the availability of specific nutrients can affect 

cancer growth and drug efficacy (Kanarek et al., 2020).

Limitations of Study

First, while several vitamins are among the Eagle-defined nutrients required for the growth 

of mammalian cells in culture (Eagle, 1955), most have sub-micromolar concentrations in 

human blood and thus failed to meet certain inclusion criteria set in our initial design of 

HPLM (Cantor et al., 2017; Wishart et al., 2017). Nonetheless, rather than omit these 

essential nutrients, we have used a commercial mixture to incorporate vitamins into HPLM 

at RPMI-defined concentrations (See STAR Methods). Thus, we would expect that vitamin 

availability could not explain any screen hits in HPLM- versus RPMI-based media. 

However, when we measure metabolites in HPLM+dS and RPMI+dS, we typically observe a 

few discrepancies among the vitamins that, in turn, might have contributed to our 

identification of certain screen hits (Cantor et al., 2017; Table S6). Since a number of 

culture-essential vitamins are also unstable (Sigma-Aldrich Media Expert; Online 

Resource), methods that permit the small-scale preparation and feasible incorporation of 

physiologic vitamins into basal media should be a key future objective.

Second, since we chose to normalize the glucose availability (5 mM) across each of our 

screening conditions, we note that if we had used RPMI- and DMEM-based media 

containing the supraphysiologic glucose defined otherwise in conventional recipes of both 

RPMI (11.1 mM) and DMEM (25 mM), we might have uncovered medium-essential genes 

linked to glucose as well.
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Finally, while we provide evidence that cell-intrinsic factors can influence conditional gene 

essentiality, we only used a focused library to screen three cell lines in our panel. This 

limitation could be addressed by future efforts to more broadly define genome-wide genetic 

dependencies in HPLM versus traditional media.

RESOURCE AVAILABILITY

Lead Contact

Further information and requests for resources and reagents should be directed to and will be 

fulfilled by the Lead Contact, Jason R. Cantor (jcantor@morgridge.org)

Materials Availability

The individual gene knockout and expression plasmids generated in this study are deposited 

in Addgene (identifiers annotated in the Key Resources Table).

Data and Code Availability

Datasets can be found in Tables S1, S2, S3, and S6. RNA-Seq data generated in this study is 

available in the Gene Expression Omnibus (GEO: GSE164693).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Cell lines

The following human cell lines were kindly provided by: K562 and NOMO1, Dr. James 

Griffin (Dana Farber Cancer Institute); MOLM13, the Cancer Cell Line Encyclopedia 

(Broad Institute); and SUDHL4, Dr. Margaret Shipp (Dana Farber Cancer Institute). Cell 

lines were verified to be free of mycoplasma contamination (Freshney, 2010) and their 

identities were authenticated by STR profiling.

Cell culture conditions

The following culture media were used in this study (all contained 0.5% penicillin-

streptomycin):

(1) RPMI+S: RPMI 1640, no glucose (Thermo Fisher) with 5 mM glucose and 10% FBS.

(2) RPMI+dS: RPMI 1640, no glucose (Thermo Fisher) with 5 mM glucose and 10% 

dialyzed FBS.

(3) RPMI11+S: RPMI 1640 (Thermo Fisher) with 10% FBS.

(4) RPMI11+2S: RPMI 1640 (Thermo Fisher) with 20% FBS.

(5) DMEM+S: DMEM, no glucose (Thermo Fisher) with 5 mM glucose and 10% FBS.

(6) DMEM+dS: DMEM, no glucose (Thermo Fisher) with 5 mM glucose and 10% dialyzed 

FBS.

(7) DMEM25+S: DMEM, high glucose, GlutaMAX (Thermo Fisher) with 10% FBS.
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(8) DMEM25+2S: DMEM, high glucose, GlutaMAX (Thermo Fisher) with 20% FBS.

(9) HPLM+dS: HPLM (See Table S5) with 10% dialyzed FBS and using RPMI 1640 100X 

Vitamins (Sigma-Aldrich R7256). Relative to the initially reported formulation (Cantor et 

al., 2017), HPLM was prepared with four additional components: α-KG, O-Acetylcarnitine, 

Malate, and Uridine.

(10) mHPLM+dS: minimal HPLM (See Table S5) with 10% dialyzed FBS and using RPMI 

1640 100X Vitamins (Sigma-Aldrich R7256).

By using SnakeSkin tubing (Thermo Fisher PI88244), FBS was dialyzed as previously 

described (Cantor et al., 2017). Prior to use, all media were sterile filtered using bottle-top 

vacuum filters with cellulose acetate membrane, pore size 0.22 μm (Corning 430626). All 

cells were maintained at 37°C, atmospheric oxygen, and 5% CO2.

METHOD DETAILS

Genome-wide CRISPR screens

For genome-wide screens in K562 cells, the human sgRNA library described in (Wang et al., 

2015, 2017) was used. To achieve at least 1000-fold coverage of the library following 

antibiotic selection, 350 million K562 cells were seeded at a density of 2.5 × 106 cells/mL in 

6-well plates containing 2 mL of RPMI+S, 8 μg/mL polybrene, and the pLentiCRISPR-v1 

library virus. Spin infection was carried out by centrifugation at 2,200 RPM for 45 min at 

37°C. After 18 hr incubation, the cells were pelleted to remove virus and then re-seeded into 

fresh RPMI+S for 24 hr. Cells were then pelleted and re-seeded to a density of 150,000 

cells/mL in RPMI+S containing 2 μg/mL puromycin (Sigma-Aldrich) for 72 hr. Following 

selection, an initial pool of 100 million cells was pelleted and frozen, and pools of 216 

million cells were used to collectively seed each of twelve total 225 cm2 rectangular canted 

neck cell culture flasks (Corning 431082) to a density of 150,000 cells/mL in 120 mL of 

either HPLM+dS or RPMI+dS, respectively. Cells were passaged every 48 hr and population 

doublings were tracked by cell density measurements using a Coulter Counter (Beckman 

Z2) with a diameter setting of 8–30 μm. After 13 population doublings, a pool of 100 

million cells from each screen was harvested for genomic DNA (gDNA) extraction using the 

QIAamp DNA Blood Maxi Kit (QIAGEN).

Using Ex Taq DNA Polymerase (Takara), sgRNA inserts from each initial and final pool 

were PCR-amplified from 290 μg of gDNA to achieve ~400-fold coverage of the library. 

The resulting PCR products were purified and sequenced on a HiSeq 2500 (Illumina) 

(Primer sequences are annotated in Table S4) to quantify sgRNA abundances in each 

sample.

RNA sequencing

Following at least two passages in the medium of interest, K562 cells were pelleted and then 

seeded at a density of 200,000 cells/mL in 6 cm culture dishes containing 6 mL fresh 

medium. After 24 hr incubation, RNA was harvested using the miRNeasy Mini Kit 

(QIAGEN) according to manufacturer instructions. 700 ng total RNA was used to generate 
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mRNA libraries using the TruSeq Stranded mRNA Library Preparation Kit (Illumina 

20020594). Libraries prepared from each sample were quantified using the KAPA Library 

Quantification Kit (Roche KK4824) and then pooled at equimolar ratios. Following 

denaturation, 40 bp single-end reads were generated on a HiSeq 2500 (Illumina). Base calls 

were performed by the instrument control software and further processed using the Offline 

Base Caller version 1.9.4 (Illumina), and quality control analysis was performed using the 

FastQC program (Babraham Bioinformatics).

Reads were aligned to the human genome (GRCh37) with Ensembl annotation v. 75 using 

Tophat version 2.1.1 (parameters ‘--no-novel-juncs’ and ‘--segment-length’ of 20) (Kim et 

al., 2013). Across all samples, the overall mapping rate was 91.6% (average) and 79.1% 

(average) of the reads aligned uniquely. Based on two biological replicates for each 

condition, read counts were quantified at the gene level and normalized using the geometric 

means method implemented in the DESeq2 v1.10 package (Love et al., 2014).

Focused sgRNA library construction

To design the focused sgRNA library, each of 212 HPLM- and 182 RPMI-essential hit genes 

that collectively span a number of manually curated biological processes were first selected 

from the genome-wide screen results. An additional 257 genes related to these hits through 

either a shared pathway, gene family, or encoded protein complex were then further selected 

for inclusion (Table S3). The focused sgRNA library contained 16,585 constructs targeting 

651 total protein-coding genes (up to 25 sgRNAs per gene) and 325 non-targeting sgRNAs. 

An oligonucleotide pool for the library was synthesized (Agilent), PCR-amplified according 

to manufacturer instructions using the primers JC842/JC843 to incorporate overhangs 

compatible for Gibson Assembly (New England Biolabs), and cloned into BsmBI-digested 

pLentiCRISPR-v1. Reaction products were transformed into E. coli Endura 

electrocompetent cells (Lucigen), plated onto prewarmed LB medium/agar containing 100 

μg/mL ampicillin in a 245 mm square bioassay dish (Corning 431111), and incubated for 18 

hr at 30°C, yielding ~107 individual transformants – equivalent to ~500-fold coverage of the 

theoretical library diversity. Colonies were scraped and pooled in LB medium, and plasmid 

DNA was then extracted using an EndoFree Maxi Kit (QIAGEN).

Secondary CRISPR screens

The focused library screening procedure was similar to that used for the genome-wide 

screens with minor modifications.

1. To achieve at least 1000-fold coverage of the library following antibiotic 

selection in each cell line, 60 million cells were transduced with virus.

2. For selection of the remaining transduced cell lines, puromycin was used at the 

following concentrations: NOMO1 (0.5 μg/mL), MOLM13 (1 μg/mL), and 

SUDHL4 (0.5 μg/mL).

3. To initiate and maintain each screen, 18 million cells were seeded in single flasks 

to the same density (150,000 cells/mL) and in the same volume (120 mL) of 

culture medium.
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4. To harvest gDNA from each pool, 10 million cells were extracted using the 

QIAamp DNA Blood Midi Kit (QIAGEN).

5. For each extraction, sgRNA inserts were PCR-amplified from 24 μg of gDNA

Plasmid construction

All oligonucleotides and gBlock Gene Fragments used in this study are described in Table 

S4.

Construction of lentiviral plasmids pLJC5-Rap2A-3xFLAG and pLJC6-
Rap2A-3xFLAG—The human ubiquitin C (UbC) promoter was amplified from the 

pLenti6/UbC/V5-DEST Gateway vector (Thermo Fisher V49910) using the primers JC419/

JC420, digested with ClaI-AgeI, and then cloned into pLJC2-Rap2A-3xFLAG to generate 

pLJC5-Rap2A-3xFLAG. The blasticidin resistance cassette was amplified from the pMXs-

IRES-blasticidin retroviral vector (Cell Biolabs RTV-016) using the primers JC606/JC607, 

digested with BamHI-KpnI, and cloned into pLJC5-Rap2A-3xFLAG to generate pLJC6-

Rap2A-3xFLAG.

Construction of gene knockout plasmids—For each of the following genes, sense 

and antisense oligonucleotides were annealed and then cloned into BsmBI-digested 

pLentiCRISPR-v1: GPT2, MPC2, GLS, HK2, NADK, and METAP1.

Construction of expression plasmids—The GPT2 gene was amplified using the 

primers GPT2-F/GPT2-R, digested with PacI-NotI, and cloned into pLJC2-Rap2A-3xFLAG 

to generate pLJC2-GPT2-3xFLAG. GPT2-F was designed to remove a GPT2-internal NotI 
site and to reduce the GC content at the 5’ terminus of the gene. Plasmid pLJC6-

GPT2-3xFLAG contains a sgGPT2_5-resistant GPT2 cDNA and was generated using a 2-

step protocol based on overlap extension PCR methodology. In the first step, two fragments 

were amplified from pLJC2-GPT2-3xFLAG by using the following primer pairs: LJCF/

GPT2_5-R and GPT2_5-F/LJC-R. In the second step, the two fragments were pooled in a 

second PCR containing the primers LJC-F/LJC-R, then digested with PacI-NotI, and cloned 

into pLJC6-Rap2A-3xFLAG. The same 2-step protocol was used to generate plasmids 

pLJC6-HK2-3xFLAG and pLJC6-METAP1-3xFLAG, which contain a sgHK2_2-resistant-

HK2 cDNA and a sgMETAP1_2 METAP cDNA, respectively. For pLJC6-HK2-3xFLAG, 

the following internal primers were used: HK2_2-F and HK2_2-R. For pLJC6-

METAP1-3xFLAG, the following internal primers were used: METAP1_2-F and 

METAP1_2-R.

The GPT1 gene was amplified from a codon-optimized gBlock Gene Fragment (IDT) using 

the primers GPT1-F/GPT1-R, digested with PacI-NotI, cloned into pLJC2-Rap2A-3xFLAG 

to generate pLJC2-GPT1-3xFLAG, and then subcloned into pLJC6-Rap2A-3xFLAG to 

generate pLJC6-GPT1-3xFLAG as well. The GLS gene was amplified from a codon-

optimized gBlock Gene Fragment (IDT) using the primers GLS-F/GLS-R, digested with 

PacI-NotI, and cloned into pLJC6-Rap2A-3xFLAG to generate pLJC6-GLS-3xFLAG, 

which contains a sgGLS_6-resistant GLS cDNA. The NADK gene was amplified from a 

codon-optimized gBlock Gene Fragment (IDT) using the primers NADK-F/NADK-R, 
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digested with PacI-NotI, and cloned into pLJC6-Rap2A-3xFLAG to generate pLJC6-

NADK-3xFLAG, which contains a sgNADK_1-resistant NADK cDNA.

To create an empty vector (EV) derivative of pLJC6, oligonucleotides JC1145 and JC1146 

were annealed and cloned into pLJC6-Rap2A-3xFLAG at PacI-NotI to generate pLJC6-EV.

Lentivirus production

To produce lentivirus, HEK293T cells in DMEM25+S were co-transfected with the VSV-G 

envelope plasmid, the Delta-VPR packaging plasmid, and the appropriate transfer plasmid 

(either a pLJC6 or pLentiCRISPR-v1 backbone) using X-tremeGENE 9 Transfection 

Reagent (Sigma-Aldrich). Culture medium was exchanged with fresh DMEM25+2S 16 hr 

after transfection, and the virus-containing supernatant was collected at 48 hr post-

transfection, passed through a 0.45 μm filter to eliminate cells, and then stored at −80°C.

Cell line construction

Knockout cell lines—To establish knockout clonal cell lines, K562 cells were seeded at a 

density of 500,000 cells/mL in 6-well plates containing 2 mL RPMI11+S, 8 μg/mL 

polybrene, and the pLentiCRISPR-v1 lentivirus of interest. Spin infection was carried out by 

centrifugation at 2,200 RPM for 45 min at 37°C. After 16–18 hr incubation, the cells were 

pelleted to remove virus and then re-seeded into fresh RPMI11+S for 24 hr. Cells were then 

pelleted and re-seeded into fresh RPMI11+S containing puromycin (Sigma-Aldrich) for 72 

hr and, following selection, were single-cell FACS-sorted into 96-well plates containing 

RPMI11+2S. After 1.5–2 weeks, cell clones with the desired knockouts were identified by 

immunoblotting. To control for infection with pLentiCRISPR-v1 virus, a control population 

of K562 cells was similarly selected following transduction with sgAAVS1-containing virus 

(Wang et al., 2015).

cDNA expression cell lines—To establish stable expression cell lines, K562 clonal cells 

were seeded at a density of 175,000 cells/mL in 6-well plates containing 2 mL of 

RPMI11+S, 8 μg/mL polybrene, and the pLJC6 lentivirus of interest. Spin infection and 

initial medium exchange were each performed identically as described above for knockout 

cell lines. Cells were then pelleted and re-seeded into fresh RPMI11+S containing blasticidin 

(Invivogen) for 72 hr. Stable cDNA expression of cDNA was confirmed by immunoblotting.

Cell lysis for immunoblotting

Cells were centrifuged at 250 g for 5 min, resuspended in 1 mL ice-cold PBS, and then 

centrifuged again at 250 g for 5 min at 4°C. Cells were then immediately lysed with ice-cold 

lysis buffer (40 mM Tris-HCl pH 7.4, 1% Triton X-100, 100 mM NaCl, 5 mM MgCl2, 1 

tablet of EDTA-free protease inhibitor (Roche 11580800; per 25 mL buffer), 1 tablet of 

PhosStop phosphatase inhibitor (Roche 04906845001; per 10 mL buffer). The cell lysates 

were cleared by centrifugation at 21130 g for 10 min at 4°C and then quantified for protein 

concentration using an albumin standard (Thermo Fisher 23209) and Bradford reagent (Bio-

Rad 5000006). Cell lysate samples were normalized for protein content, denatured upon the 

addition of 5X sample buffer (Thermo Fisher 39000), resolved by 12% SDS-PAGE, and 

transferred to a polyvinyl difluoride membrane (Millipore IPVH07850). Membranes were 
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blocked with 5% nonfat dry milk in TBST for 1 hr at room temperature, and then incubated 

with primary antibodies in 5% nonfat dry milk in TBST overnight at 4°C. Primary 

antibodies to the following proteins were used at the indicated dilutions: GAPDH (1:1000); 

RAPTOR (1:1000); GPT1 (1:100); GPT2 (1:100); MPC2 (1:100); GLS (1:100); HK2 

(1:1000); NADK (1:300); and METAP1 (1:200). Membranes were washed with TBST three 

times for 5 min each, and then incubated with species-specific HRP-conjugated secondary 

antibody (1:3000) in 5% nonfat dry milk for 1 hr at room temperature. Membranes were 

washed again with TBST three times for 5 min each, and then visualized with 

chemiluminescent substrate (Thermo Fisher) on a LICOR Odyssey FC.

Short-term growth assays

Following at least two passages in RPMI+S, cells were pelleted and resuspended to a density 

of 1 million cells/mL in RPMI+S. From each resuspension, 80,000 total cells were seeded in 

each of three replicate wells containing 4 mL of the appropriate culture medium in 6-well 

plates. Following 96 hr incubation, cell density measurements were recorded using a Coulter 

Counter (Beckman Z2) with a diameter setting of 8–30 μm. Stock solutions of the following 

components were prepared relative to working concentrations in HPLM: L-Alanine (500X), 

αKG (1000X), 2-hydroxybutyrate, 3-hydroxybutyrate, malonate (250X), citrate (250X), 

malate (1000X), succinate (1000X), acetate (500X), lactate (100X), and pyruvate (250X). In 

addition, stock solutions of dimethyl αKG, dimethyl malate, and dimethyl succinate were 

each prepared at 100 mM in water.

Drug treatments—The short-term growth assay procedure was identical to that above 

with minor modifications.

1. Following 1 hr incubation of seeded 6-well plates, cells were treated with 

CB-839 (Sigma-Aldrich 5337170001) (50 nM or 500 nM) and all plates were 

gently shaken for 2 min.

2. All wells, including untreated controls, contained 0.25% DMSO.

The stock solution of CB-839 was prepared at 20 mM in DMSO.

Metabolite Profiling and Quantification of Metabolite Abundance

LC-MS analyses were performed on a QExactive HF benchtop orbitrap mass spectrometer 

equipped with an Ion Max API source and HESI II probe, which was coupled to a Vanquish 

Horizon UPLC system (Thermo Fisher). External mass calibration was performed using 

positive and negative polarity standard calibration mixtures every 7 days. Acetonitrile was 

hypergrade for LC-MS (Millipore Sigma) and all other solvents were Optima LC-MS grade 

(Thermo Fisher).

Cells—Following at least two passages in RPMI+S, cells were pelleted, resuspended in 

fresh medium of interest, and then seeded in a volume of 4 mL per well at a density of 

125,000 cells/mL in 6-well plates. For labeling experiments, the procedure was identical 

except that RPMI+dS containing either 5 mM [U-13C]-glucose or 430 μM 13C3-alanine was 

used. After 24 hr incubation, a 500 μL aliquot was used to measure cell number and volume 

via Coulter Counter (Beckman Z2) with a diameter setting of 8–30 μm, and the remaining 
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cells were then centrifuged at 250 g for 5 min, resuspended in 1 mL ice-cold 0.9% sterile 

NaCl (Growcells MSDW1000), and again centrifuged at 250 g for 5 min at 4°C. Metabolites 

were extracted in 1 mL ice-cold 80% methanol containing 500 nM internal amino acid 

standards (Cambridge Isotope Laboratories). Following a 10 min vortex and centrifugation 

for 3 min at 21130 g for 10 min at 4°C, samples were dried under nitrogen gas. Dried 

samples were stored at −80°C and then resuspended in 100 μL water. Following a 10 min 

vortex and centrifugation at 21130 g for 10 min at 4°C, 2.5 μL from each cell sample was 

injected onto a ZIC-pHILIC 2.1 × 150 mm analytical column equipped with a 2.1 × 20 mm 

guard column (both 5 μm particle size, Millipore Sigma). Buffer A was 20 mM ammonium 

carbonate, 40 mM ammonium hydroxide; buffer B was acetonitrile. The chromatographic 

gradient was run at a flow rate of 0.15 mL/min as follows: 0–20 min: linear gradient from 

80% to 20% B; 20–20.5 min: linear gradient from 20% to 80% B; 20.5–28 min: hold at 80% 

B.

The mass spectrometer was operated in full scan, polarity-switching mode with the spray 

voltage set to 3.0 kV, the heated capillary held at 275°C, and the HESI probe held at 350°C. 

The sheath gas flow rate was set to 40 units, the auxiliary gas flow was set to 15 units, and 

the sweep gas flow was set to 1 unit. The MS data acquisition in positive mode was 

performed in a range of 50–750 m/z, with the resolution set to 120,000, the AGC target at 

106, and the maximum integration time at 20 msec. The settings in negative mode were the 

same except that the range was instead 70–1000 m/z.

Media—To extract metabolites from cell culture media, samples were diluted 1:40 in a 

solution of 50:30:20 methanol:acetonitrile:water containing 500 nM internal amino acid 

standards (Cambridge Isotope Laboratories). Following a 10 min vortex and centrifugation 

at 21130 g for 5 min at 4°C, 2.5 μL of each sample was injected for LC-MS analysis as 

described above for profiling cell samples.

GPT activity assay—For detection of αKG generated in GPT activity assays, reaction 

mixtures were extracted (See GPT Activity Assay) and 5 μL was injected onto a ZIC-

pHILIC 2.1 × 150 mm analytical column equipped with a 2.1 × 20 mm guard column (both 

5 μm particle size, Millipore Sigma). Buffer A was 20 mM ammonium carbonate, 40 mM 

ammonium hydroxide; buffer B was acetonitrile. The chromatographic gradient was run at a 

flow rate of 0.15 mL/min as follows: 0–10 min: linear gradient from 80% to 20% B; 10–10.5 

min: linear gradient from 20% to 80% B; 10.5–16.5 min: hold at 80% B. The mass 

spectrometer was operated in full scan, polarity-switching mode with the spray voltage set to 

3.5 kV (positive mode) and 2.5 kV (negative mode), the heated capillary held at 275°C, and 

the HESI probe held at 350°C. The sheath gas flow rate was set to 40 units, the auxiliary gas 

flow was set to 10 units, and the sweep gas flow was set to 1 unit. The MS data acquisition 

in negative mode was performed in a range of 70–1050 m/z, with the resolution set to 

120,000, the AGC target at 106, and the maximum integration time at 200 msec.

Highly Targeted Metabolomics—For the highly targeted analysis of pyruvate in whole-

cell samples without nutrient labeling, the instrument was run as described (See Cells), but 

with additional tSIM (targeted selected ion monitoring) scans in negative ionization mode. 

The tSIM settings were as follows: resolution set to 120,000, an AGC target of 105, and a 
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maximum integration time of 200 msec. The target mass was 87.0088 (corresponding to 

pyruvate) and the isolation window was set to 1.0 m/z.

For αKG and pyruvate in culture media samples, all settings as described for the tSIM scan 

used for cell samples were identical, except that the target mass 145.0142 (corresponding to 

αKG) was added. For pyruvate and M+3-pyruvate in cell samples with nutrient labeling, all 

settings were again identical, except that the target mass 90.01887 (corresponding to M+3-

pyruvate) was added.

For αKG in GPT activity assay samples, all settings as described for the tSIM scan used for 

αKG in media were identical except that the maximum integration time was 400 msec. For 

pyruvate in the same samples, all settings as described for the tSIM scan used for pyruvate 

were identical. Finally, for L-Phenylalanine (13C9, 99%; 15N, 99%) in the same samples, all 

settings as described for the tSIM scan used for whole-cell metabolites were identical except 

that the scan was run in positive ionization mode, and the target mass 176.1135 was added.

Identification and Quantification—Metabolite identification and quantification were 

performed with XCalibur version 4.1 (Thermo Fisher) using a 10-ppm mass accuracy 

window and 0.5 min retention time window. To confirm metabolite identities and to enable 

quantification when desired, a manually constructed library of chemical standards was used. 

Standards were validated by LC-MS to confirm that they generated robust peaks at the 

expected m/z ratio, and stock solutions were stored in pooled format at −80°C at the 

following concentrations: 1 mM, 100 μM, 10 μM, and 0.1 μM. On the day of a given queue, 

each stock was diluted 1:10 in water containing 500 nM internal amino acid standards 

(Cambridge Isotope Laboratories), and then vortexed and centrifuged as described for 

biological samples (See Cells and Media). For those metabolites lacking a chemical 

standard, peak identification was restricted to high confidence peak assignments (Smith et 

al., 2005). See Table S6.

Because metabolite extraction protocols differed by sample type, the internal standard 

concentrations in processed samples varied: chemical standards (450 nM), media samples 

(487.5 nM), and cell samples (5 μM). Therefore, the raw peak areas of internal standards 

within each sample of a given batch were first normalized to account for these differences. 

Metabolite quantification was then performed as described elsewhere (Cantor et al., 2017).

Expression and immunoprecipitation of recombinant proteins

For isolation of recombinant GPT proteins, 4 million HEK293T cells were plated in 15 cm 

culture dishes containing DMEM25+S. After 24 hr incubation, cells were transfected with 15 

μg of pLJC2-GPT1-3xFLAG or pLJC2-GPT2-3xFLAG as described elsewhere (Cantor et 

al., 2017). After an additional 48 hr incubation, cells were rinsed once with ice-cold PBS 

and then immediately lysed in ice-cold lysis buffer (See Cell lysis for immunoblotting). The 

cell lysates were cleared by centrifugation at 21130 g for 10 min at 4°C. For anti-FLAG 

immunoprecipitation, the FLAG-M2 affinity gel (Sigma-Aldrich) was washed three times in 

lysis buffer, and then 400 μL of a 50:50 affinity gel slurry was added to a pool of clarified 

lysates collected from five individual 15 cm culture dishes, and incubated with rotation for 3 

hr at 4°C. Following immunoprecipitation, the beads were washed twice in lysis buffer and 
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then four times with lysis buffer containing 500 mM NaCl. Recombinant protein was then 

eluted in lysis buffer containing 500 μg/mL 3x-FLAG peptide (Sigma-Aldrich) for 1 hr with 

rotation at 4°C. The eluent was isolated by centrifugation at 100 g for 4 min at 4°C (Bio-Rad 

732–6204), buffer exchanged (Amicon Ultra 30 kDa MWCO UFC503024) against 20 

volumes of storage buffer (40 mM Tris-HCl pH 7.5, 100 mM NaCl, 2 mM dTT, 100 μM 

pyridoxal 5’-phosphate (PLP)), mixed with glycerol (final concentration 15% v/v), snap-

frozen with liquid nitrogen, and stored at −80°C.

Protein samples were quantified using an albumin standard (Thermo Fisher 23209) and 

Bradford reagent (Bio-Rad 5000006). Purified proteins were normalized for protein content, 

denatured upon the addition of 5X sample buffer (Thermo Fisher 39000), and resolved by 

12% SDS-PAGE. Apparent molecular weights via immunoblotting were comparable to 

those expected, but upon loading 600-fold more purified protein, those via Coomassie 

staining were lower than expected, likely reflective of differences in buffer conditions in the 

samples.

GPT Activity Assay

To determine kinetic constants for the conversion of pyruvate and L-Glutamate (L-Glu) to L-

Alanine and αKG catalyzed by each GPT, we developed an in vitro GPT activity assay. To 

estimate kinetic parameters for pyruvate, reactions of purified GPT (2–4 nM enzyme) with 

fixed L-Glu (2.5 mM) and varying concentrations of pyruvate were carried out at 37°C in 40 

mM Tris-HCl pH 7.5, 5 mM MgCl2, 5 mM Na2HPO4, 2 mM dTT, 500 μM NaCl, 150 μM 

PLP, and 100 μM EDTA in a total volume of 100 μL. After 30 sec incubation, a 35 μL 

aliquot of the reaction was removed and immediately added to 65 μL ice-cold 50:30:20 

methanol:acetonitrile:water containing 500 nM internal amino acid standards (Cambridge 

Isotope Laboratories) for metabolite extraction. Samples were then vortexed for 10 min and 

centrifuged at 21130 g for 1 min at 4°C. To estimate kinetic parameters for L-Glu, the assay 

extraction procedure was similar with minor modifications. Reactions of purified GPT (20–

40 nM) with fixed pyruvate (1 mM) and varying concentrations of L-Glu were carried out in 

the same conditions, except incubation times were either 1 min (GPT1) or 5 min (GPT2).

Concentrations of αKG generated in each reaction were evaluated by LC-MS analysis of 

extracted samples (See Metabolite Profiling and Quantification of Metabolite Abundance). 

Using peak areas of an αKG standard normalized by those of L-Phenylalanine (13C9, 99%; 
15N, 99%) identically prepared in the same extraction solution, we constructed standard 

curves fit to linear equations to ensure that αKG concentrations in the reaction samples did 

not exceed ~10% of the initial substrate concentrations. For reactions with fixed L-Glu, 

standard curves consisted of points at the following concentrations: 167 nM, 500 nM, 1.5 

μM, and 4.5 μM; and for those with fixed pyruvate, they were instead at: 4.5 μM, 13.5 μM, 

40.5 μM, and 121.5 μM.

Of note, given both the 10% turnover threshold above and the αKG detection limit that 

could be achieved by the method used, we could not measure meaningful αKG 

concentrations from reactions containing pyruvate below the estimated KM, PYR of GPT2. 

Stock solutions of L-Glu (Sigma-Aldrich) and PLP (Sigma-Aldrich) were prepared at 100 
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mM in 10 mM HCl and 200 mM HCl, respectively, and upon appropriate dilutions, had little 

effect on reaction pH.

QUANTIFICATION AND STATISTICAL ANALYSIS

Genome-wide CRISPR screens

Sequencing reads were aligned to the sgRNA library and only exact matches were allowed. 

sgRNAs with less than 50 counts in the initial dataset were removed from downstream 

analysis. Genes targeted by less than seven distinct sgRNAs following this filtering were 

also removed from further analysis. Abundances of all remaining sgRNAs were determined 

by adding a pseudocount of one and then normalizing by the total number of read counts for 

a given sample. Depletion scores were calculated as the log2 fold-change in abundance of 

each sgRNA between the initial and final populations. Gene scores were defined as the 

average log2 fold-change in depletion scores of all sgRNAs targeting the gene.

Screens in different conditions may introduce discrepancies in aggregate gene selection that 

affect the dynamic range of gene scores (Wang et al., 2019). Therefore, to reduce potential 

bias in calculating differential scores based on assuming that such distributions are 

equivalent between screens, we scaled all gene scores instead based on the assumption that 

the sets of nontargeting (NT) sgRNAs and core essential genes (CEGs) would exhibit the 

same selection across different screens. In brief, gene scores were scaled such that the 

medians of post-filtering NT sgRNAs (989) and reference CEGs (680 genes) (Hart et al., 

2017) included in the library were defined as 0 and −1, respectively, using the following 

equation where XS is the scaled gene score:

XS =
X − NTmed

NTmed − CEGmed

For each gene, a differential score between screens was calculated and then standardized 

relative to the entire set of targeted genes to assess differential dependency.

Probability of dependency in genome-wide screens

For each genome-wide screen, probabilities of dependency were calculated for all targeted 

genes (Dempster et al., 1977, 2019). In brief, the gene score dataset from each screen was 

treated as a mixture model comprised of two normal distributions. Densities were generated 

using a standard E-M optimization procedure initialized with the means and standard 

deviations from reference sets of 680 CEGs and 768 nonessential genes (Hart et al., 2014, 

2017). The probability of dependency for a given gene was then calculated as the ratio of 

CEG density to the sum of the two densities at the gene score of interest. Given that standard 

deviations of the two distributions differ, their estimated densities converge to zero at 

different rates in extreme tail regions, which can cause erroneous inflation of estimated 

probabilities at large enough gene score values. Thus, genes with a score greater than or 

equal to zero were assigned a dependency probability equal to the minimum such value in 

the dataset.

Rossiter et al. Page 24

Cell Metab. Author manuscript; available in PMC 2022 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Genes involved in fundamental processes

The following KEGG gene sets were obtained from the Gene Set Enrichment Analysis 

(GSEA) database: aminoacyl tRNA biosynthesis, DNA replication, nucleotide excision 

repair, proteasome, ribosome, RNA polymerase, and spliceosome.

Receiver-operator analysis

From each genome-wide screen dataset, receiver-operator characteristic (ROC) curves were 

generated from relatively balanced reference sets of 680 CEG and 768 nonessential genes 

(Hart et al., 2014, 2017). Area under the ROC curve was used as the performance metric to 

assess how well each dataset could discriminate for CEGs.

PANTHER pathway-enrichment analysis

To determine which biological processes were enriched among conditionally essential hits 

from genome-wide K562 screens, genes were queried using the PANTHER 

Overrepresentation Test with Gene Ontology Biological Processes as the annotation dataset 

(Mi et al., 2019). Significance was measured with Fisher’s Exact Test using a false discovery 

rate (FDR) cutoff of 0.05.

RNA sequencing

Differential expression was evaluated by FeatureCounts. Significance of differential 

expression between conditions was measured using negative binomial distribution as 

implemented in the DESeq2 v1.10 package, with P-values multiple-test corrected to estimate 

FDRs using the Benjamini-Hochberg procedure.

Secondary CRISPR screens

Gene scores were calculated using a procedure similar to that for the genome-wide screens 

with minor modifications. From each initial reference set, sgRNAs with less than 100 counts 

were removed from downstream analysis. sgRNA depletion scores were similarly scaled, but 

with the post-filtering NT sgRNAs in each initial dataset and CEGs (83) targeted by the 

focused library.

To combine data from replicate focused library screens in the K562 cell line in each of 

HPLM+dS and RPMI+dS, scaled sgRNA-level data from replicates were pooled and gene 

scores were then calculated as the average from all sgRNAs targeting the gene. For all genes, 

P-values to compare differential depletion distributions of respective targeting sgRNAs to 

those of NT sgRNAs were calculated using a two-tailed Welch’s t-test, and then multiple-

test corrected to estimate FDRs using the Benjamini-Hochberg procedure. Significance of 

the r value that describes the relationship between conditional CRISPR phenotypes from 

genome-wide and pooled secondary screens was determined from a correlation test 

performed in R.

Quality control for linear transformations of gene score datasets

To assess the separation of control set distributions in each screen, strictly standardized 

mean difference (SSMD) statistics were calculated using the sgRNA depletion scores from 
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NT and CEG-targeting sgRNAs (Zhang, 2007, 2008). For all CRISPR screens in this study, 

calculated SSMD values were < −2, indicating excellent separation (Tables S1 and S3).

Metabolite Profiling

To compare intracellular metabolite abundances, P-values were calculated using a two-tailed 

Welch’s t-test, and then multiple-test corrected to estimate FDRs using the Benjamini-

Hochberg procedure. P-values to compare differences in fractional labeling were also 

calculated using a two-tailed Welch’s t-test.

Enzyme kinetics

To determine kinetic constants for pyruvate and L-Glu, plots of substrate concentration 

versus reaction velocity in GraphPad Prism were fit using the Michaelis-Menten equation.

P-values to compare relative growth were determined using a two-tailed Welch’s t-test. The 

exact value of n and the definition of center and precision measures are provided in 

associated figure legends. Bar graphs were prepared in GraphPad Prism 8; remaining plots 

and heatmaps were prepared in R. All instances of reported replicates refer to n biological 

replicates.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

CRISPR-based screens identify essential genes that vary with medium composition

Basal and serum components of culture media influence gene essentiality

Analysis of conditional gene essentiality reveals gene-nutrient interactions

CRISPR phenotypes for genes linked to metabolites uniquely defined in HPLM
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Figure 1. Genome-wide CRISPR screens for conditionally essential genes
See also Figure S1; Tables S1 and S2.

(A) Schematic for forward genetic screen methods based on either RNAi or CRISPR. 

sgRNA, single guide RNA. shRNA, short hairpin RNA.

(B) Growth conditions across 844 CRISPR screens from DepMap. 50% DMEM, contained 

DMEM and another basal medium in a 1:1 mixture.

(C) Schematic for genome-wide CRISPR screens in K562 cells.

(D) Genes ranked by differential dependency (See STAR Methods). Barcode and enrichment 

plots depict the distribution of genes targeted by a metabolism-focused sgRNA library 

reported elsewhere (top).

(E) Subset of enriched GO biological processes represented by the 952 medium-essential 

hits analyzed using a PANTHER overrepresentation test (See STAR Methods and Table S2).
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(F) Relative mRNA levels versus differential dependency for medium-essential hits. *41 of 

the 952 genes had no reads in the RNA-seq datasets. r, Pearson’s correlation coefficient.
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Figure 2. Conditionally essential genes span several cellular processes and can vary with cell-
intrinsic diversity.
See also Figure S2 and Table S3

(A) Schematic for focused library CRISPR screens. AML, acute myeloid leukemia; 

DLBCL, diffuse large B-cell lymphoma.

(B) Comparison between phenotypes from genome-wide and secondary K562 screens. Data 

are fit by linear regression (blue line); shaded bands indicate 95% confidence intervals. r, 
Pearson’s correlation coefficient. *P = 2.2 × 10−16. Data for secondary K562 screens are 

from pooled replicates in panels B-Q.

(C) Conditional phenotypes in the secondary K562 screens. Dotted lines mark ± 1 (x-axis) 

and a false discovery rate (FDR) = 0.1 (y-axis).

(D-L) Medium-essential hits encode proteins that have roles in: (D) metabolism, (E) gene 

expression, (F) translation, (G) transport, (H) post-translational modification (PTM), (I) 

protein catabolism, (J) RNA processing, and (K) other processes, including apoptosis and 
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mTOR signaling. Other hits lack a GO process annotation (L). Shaded points indicate hits 

manually curated for association with process highlighted in the panel (See STAR Methods).

(M) Cluster map showing conditional phenotypes in four cell lines.

(N-O) Conditional phenotypes for ACLY (N) and NADK (O).

(P-Q) Heatmap of conditional phenotypes for indicated genes (left). PDHA1 and PDHB are 

components of PDH complex E1 subunit (P, right). SLC25A32 is a mitochondrial folate 

transporter (Q, right). Remaining genes are highlighted elsewhere in the Figure.
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Figure 3. Identification of a gene-nutrient interaction between GPT2 and alanine
See also Figure S3

(A) Top three scoring RPMI-essential hits in four cell lines. Data for secondary K562 

screens are from pooled replicates in panels A, I.

(B) Cellular fates of pyruvate and the reversible reaction catalyzed by GPT1/2. LDH, lactate 

dehydrogenase; PDH, pyruvate dehydrogenase; PC, pyruvate carboxylase.

(C-D) Immunoblots for expression of GPT2 (C) and GPT1 (D). Purified proteins confirm 

antibody specificity. High intrinsic protease activity in the MOLM13 line might cause the 

observed banding.

(E) Immunoblots for expression of either GPT2 (left) or GPT1 (right) in GPT2-knockout 

and control (sgAAVS1) K562 cells.

(F) Relative growth of GPT2-knockout versus control cells (mean ± SD, n = 3, **P < 0.005). 

EV, empty vector.

Rossiter et al. Page 37

Cell Metab. Author manuscript; available in PMC 2022 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(G) Measured concentrations of GPT reaction components in RPMI+dS and HPLM+dS 

(mean ± SD, n = 3). Neither αKG nor pyruvate could be detected in RPMI+dS by the 

metabolite profiling method; thresholds correspond to levels in RPMI+S.

(H) Relative growth of GPT2-knockout versus control cells (mean ± SD, n = 3, **P < 

0.005).

(I) Conditional phenotypes for MPC1 (left) and MPC2 (right).

(J) Immunoblot for expression of MPC2 in MPC2-knockout and control K562 cells.

(K) Relative growth of MPC2-knockout versus control cells (mean ± SD, n = 3, **P < 

0.005).

(L) Schematic for the incorporation of 13C from glucose into alanine via pyruvate.

(M-N) Fractional labeling of pyruvate (left) and alanine (right) following culture of cells in 

RPMI+dS containing [U-13C]-glucose (M) and further supplemented with 430 μM alanine 

(N) (mean ± SD, n = 3, **P < 0.005). M+3, incorporation of three 13C.
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Figure 4. Protein synthesis underlies the GPT2-alanine interaction and human GPTs show 
markedly different KM values for pyruvate.
See also Figures S4 and Table S6

(A) Unbiased metabolite profiling of GPT2-knockout versus control K562 cells (n = 3). 

Dotted lines mark a fold-change of ± 1.5 (x-axis). GPT reaction components are labeled.

(B-C) Heatmap of relative abundances for metabolites highlighted in either red (B) or blue 

(C) in panel A, RPMI+dS. GPT2-knockout cells following culture in the indicated conditions 

(three rows) versus control cells in RPMI+dS. Metabolite clusters are sorted by log2-

transformed fold change of the top row. Argininosuccinic acid (ASA) can be a precursor to 

fumarate. Remaining metabolite abbreviations in Table S6.

(D) Schematic for the incorporation of 13C from alanine into pyruvate.

(E) Fractional labeling of pyruvate (left) and alanine (right) following culture of cells in 

RPMI+dS containing [U-13C]-alanine (mean ± SD, n = 3, **P < 0.005). M+3, incorporation 

of three 13C.

(F) Proposed model for the cell-essential role of GPT2 in conditions of relative alanine 

limitation. Proteins encoded by RPMI-essential hits (blue). A canonical mitochondrial 

alanine carrier (MAC) has not yet been identified.

(G) Schematic of an assay for the forward GPT reaction using LC-MS-based detection of 

αKG.
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(H-I) Plots of reaction velocity as a function of either glutamate (H) or pyruvate (I) 

concentration for human GPT1 (top) and GPT2 (bottom) (n = 3). Data are fit by Michaelis-

Menten curves. *kcat values displayed by GPT2 may be underestimated (See Main Text).
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Figure 5. Identification of a gene-nutrient interaction between GLS and pyruvate
See also Figure S5

(A) Conditional phenotypes for GLS. Data for secondary K562 screens are from pooled 

replicates.

(B) Reaction catalyzed by GLS and cellular fates of glutamate, including its reversible 

conversion to αKG (top) as coupled to various reactions (bottom). BCKA, branched-chain 

keto acid. BCAA, branched-chain amino acid.

(C) Relative growth of GLS-knockout versus control cells (mean ± SD, n = 3, **P < 0.005).

(D) Pools of defined HPLM components.

(E-H) Relative growth of GLS-knockout versus control cells (mean ± SD, n = 3, **P < 

0.005). Pool designations correspond to panel D (E). Metabolites added at HPLM-defined 

concentrations (F-G).

(I) Schematic for competitive inhibition of GLS by the small-molecule CB-839.

(J-L) Relative growth of either control (J, K) or GLS-knockout K562 cells (L) treated with 

CB-839 versus DMSO (mean ± SD, n = 3, **P < 0.005).
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Figure 6. Basal and serum components of complete culture media affect gene essentiality
See also Figures S6 and Table S3

(A) Schematic for focused library K562 screens in six different conditions.

(B) Cluster map showing conditional phenotypes versus HPLM+dS. Data for screens in 

RPMI+dS and HPLM+dS are from pooled replicates in panels B-F; J-K; N; and Q. 

Differential dependencies were determined as HPLM+dS – “versus medium”.

(C) Heatmap of HPLM-relative phenotypes for the indicated genes (left). SFXN1 is a 

mitochondrial serine transporter; reaction catalyzed by NADK2; manually curated processes 

for DLD and NAIF1 (right). Remaining genes highlighted in Figure 2.

(D) HPLM-relative phenotypes for SLC7A1.

(E) Heatmap of HPLM-relative phenotypes for MCUR1 and LETM1 (left). LETM1 is a 

mitochondrial H+/Ca2+ antiporter and MCUR1 is a regulator of the MCU, mitochondrial 

Ca2+ uniporter (right).
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(F) HPLM-relative phenotypes for HK2 (left), NADK (middle), and METAP1 (right).

(G-I) Relative growth of HK2-knockout (G), NADK-knockout (H), and METAP1-knockout 

versus control K562 cells (mean ± SD, n = 3, **P < 0.005).

(J-K) HPLM-relative phenotypes for TYMS (J) and GPT2 (K).

(L) Defined alanine levels in each basal medium (top). Concentrations of alanine in 10% 

FBS (dS, dialyzed; S, untreated) as determined by metabolite profiling of RPMI+dS and 

RPMI+S (mean ± SD, n = 3).

(M) Relative growth of GPT2-knockout versus control cells (mean ± SD, n = 3, **P < 

0.005).

(N) HPLM-relative phenotypes for GLS.

(O) Defined pyruvate levels in each basal medium (top). Concentrations of pyruvate in 10% 

FBS (dS, dialyzed; S, untreated) as determined by metabolite profiling of RPMI+dS and 

RPMI+S (mean ± SD, n = 3). Pyruvate could not be detected in RPMI+dS by the metabolite 

profiling method.

(P) Relative growth of GLS-knockout versus control cells (mean ± SD, n = 3).

(Q) Cluster map showing differential dependencies calculated as DMEM+S – DMEM+dS 

(top row) and RPMI+S – RPMI+dS (bottom row).
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Mouse monoclonal anti-GAPDH (0411) Santa Cruz Biotechnology Cat #: sc-47724;
RRID: AB_627678

Rabbit polyclonal anti-RAPTOR EMD Millipore Cat #: 09-217;
RRID: AB_612103

Rabbit monoclonal anti-GLS (6H5L15) Thermo Fisher Cat #: 701965;
RRID: AB_2633041

Mouse monoclonal anti-GPT (E-3) Santa Cruz Biotechnology Cat #: sc-374501; RRID: AB_10987666

Mouse monoclonal anti-GPT2 (G-7) Santa Cruz Biotechnology Cat #: sc-398383;
RRID: N/A

Rabbit monoclonal anti-MPC2 (D417G) Cell Signaling Technology Cat #: 46141;
RRID: AB_2799295

Rabbit monoclonal anti-HK2 (C64G5) Cell Signaling Technology Cat #: 2867;
RRID: AB_2232946

Rabbit polyclonal anti-NADK (55948) Cell Signaling Technology Cat #: 55948;
RRID: AB_2799500

Mouse monoclonal anti-METAP1 (A-2) Santa Cruz Biotechnology Cat #: sc-514653;
RRID: N/A

Horse anti-Mouse IgG HRP Cell Signaling Technology Cat #: 7076;
RRID: AB_330924

Goat anti-Rabbit IgG HRP Cell Signaling Technology Cat #: 7074
RRID: AB_2099233

Bacterial and Virus Strains

Endura ElectroCompetent Cells Lucigen Cat #: 60242

XL10-Gold Ultracompetent Cells Agilent Cat #: 200315

Biological Samples

Chemicals, Peptides, and Recombinant Proteins

3X FLAG Peptide Sigma-Aldrich Cat #: F4799

Anti-FLAG M2 Affinity Gel Sigma-Aldrich Cat #: A2220

Mixture of amino acid standards for metabolomics Cambridge Isotope Laboratories Cat #: MSK-A2-1.2

Defined metabolite components of HPLM Multiple See Table S5

Sodium Pyruvate Sigma-Aldrich Cat #: P2256

L-Glutamic acid Sigma-Aldrich Cat #: G1251

α-Ketoglutaric acid disodium salt dihydrate Sigma-Aldrich Cat #: 75892

Pyridoxal 5’-phosphate hydrate Sigma-Aldrich Cat #: P9255

D-glucose (U-13C6, 99%) Cambridge Isotope Laboratories Cat #: CLM-1396

L-Alanine (13C3, 99%) Cambridge Isotope Laboratories Cat #: CLM-2184

RPMI 1640 100X Vitamins Sigma-Aldrich Cat #: R7256

L-Alanine Sigma-Aldrich Cat #: A7627

Dimethyl a-ketoglutarate Sigma-Aldrich Cat #: 349631

Dimethyl malate Sigma-Aldrich Cat #: 374318

Dimethyl succinate Sigma-Aldrich Cat #: W239607
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REAGENT or RESOURCE SOURCE IDENTIFIER

CB-839 Sigma-Aldrich Cat #: 5337170001

RPMI 1640, no glucose Thermo Fisher Cat #: 11879020

RPMI 1640 Thermo Fisher Cat #: 11875093

DMEM, no glucose Thermo Fisher Cat #: 11966025

DMEM, high glucose, GlutaMAX Thermo Fisher Cat #: 10566024

Glucose Thermo Fisher Cat #: 15023021

Penicillin-Streptomycin Thermo Fisher Cat #: 15140122

Fetal Bovine Serum (FBS), Heat Inactivated Thermo Fisher Cat #: 16140071

X-tremeGENE 9 DNA Transfection Reagent Sigma-Aldrich Cat #: 6365779001

TaKaRa Ex Taq DNA Polymerase TaKaRa Cat #: RR001A

Puromycin dihydrochloride Sigma-Aldrich Cat #: P7255

Blasticidin (solution) Invivogen Cat #: ant-bl-1

Critical Commercial Assays

QIAamp DNA Blood Maxi Kit QIAGEN Cat #: 51194

QIAamp DNA Blood Midi Kit QIAGEN Cat #: 51183

EndoFree Plasmid Maxi Kit QIAGEN Cat #: 12362

miRNeasy Mini Kit QIAGEN Cat #: 217004

Deposited Data

DepMap CRISPR screens; Culture conditions (sample 
info)

(Dempster et al., 2019; Meyers et 
al., 2017)
DepMap, Broad 2020: DepMap 
20Q1 Public

https://depmap.org/portal/download/

DepMap CRISPR screens; Probability of dependency 
(Achilles_gene_dependency)

(Dempster et al., 2019; Meyers et 
al., 2017)
DepMap, Broad 2020: DepMap 
20Q1 Public

https://depmap.org/portal/download/

GPT1 expression data (cancer cell lines)
(Ghandi et al., 2019)
DepMap, Broad 2020: DepMap 
20Q1 Public

https://depmap.org/portal/gene/GPT?
tab=characterization

GPT2 expression data (cancer cell lines)
(Ghandi et al., 2019)
DepMap, Broad 2020: DepMap 
20Q1 Public

https://depmap.org/portal/gene/GPT2?
tab=characterization

GPT1 and GPT2 expression data (normal human tissues) GTEx Project https://www.gtexportal.org/home/datasets

RNA-Sequencing This paper Table S2; GEO: GSE164693

Experimental Models: Cell Lines

K562 J.D. Griffin ACC-10;
RRID_CVCL_0004

NOMO1 J.D. Griffin ACC-542;
RRID_CVCL_1609

MOLM13 CCLE ACC-554;
RRID_CVCL_2119

SUDHL4 M.A. Shipp ACC-495;
RRID_CVCL_0539

Experimental Models: Organisms/Strains

Oligonucleotides

Primers for Illumina sequencing (Wang et al., 2017) Table S4
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REAGENT or RESOURCE SOURCE IDENTIFIER

Primers for sgRNA quantification This paper Table S4

Primers for Focused sgRNA Library amplification This paper Table S4

Primers for construction of expression plasmids This paper Table S4

Individual sgRNA target sequences This paper Table S4

Focused sgRNA library This paper Table S4

GPT1 gBlock This paper Table S4

GLS gBlock This paper Table S4

NADK gBlock This paper Table S4

Recombinant DNA

pLJC2-Rap2A-3xFLAG (Cantor et al., 2017) Addgene 87974

pLJC5-Rap2A-3xFLAG This paper Addgene 163444

pLJC6-Rap2A-3xFLAG This paper Addgene 163445

pLJC2-GPT 1-3xFLAG This paper Addgene 163446

pLJC2-GPT2-3xFLAG This paper Addgene 163447

pLJC6-GPT1-3xFLAG This paper Addgene 163448

pLJC6-GPT2-3xFLAG This paper Addgene 163449

pLJC6-GLS-3xFLAG This paper Addgene 163450

pLJC6-HK2-3xFLAG This paper Addgene 163451

pLJC6-NADK-3xFLAG This paper Addgene 163452

pLJC6-METAP1-3xFLAG This paper Addgene 163453

pLJC6-EV This paper Addgene 163454

pLentiCRISPR-v1 Addgene Addgene 49535

Genome-wide human sgRNA library (Wang et al., 2017) N/A

Focused sgRNA library This paper N/A

pLentiCRISPR-v1-sgAAVS1 (Wang et al., 2015) Addgene 70661

pLentiCRISPR-v1-sgGPT2_5 This paper Addgene 163455

pLentiCRISPR-v1-sgGPT2_9 This paper Addgene 163456

pLentiCRISPR-v1-sgMPC2_7 This paper Addgene 163457

pLentiCRISPR-v1-sgMPC2_9 This paper Addgene 163458

pLentiCRISPR-v1-sgGLS_2 This paper Addgene 163459

pLentiCRISPR-v1-sgGLS_6 This paper Addgene 163460

pLentiCRISPR-v1-sgHK2_2 This paper Addgene 163461

pLentiCRISPR-v1-sgNADK_1 This paper Addgene 163462

pLentiCRISPR-v1-sgMETAP1_2 This paper Addgene 163463

Software and Algorithms

XCalibur version 4.1 Thermo Fisher https://www.thermofisher.com/us/en/
home.html

R version 3.6.2 The R Project https://www.r-project.org/

Prism version 8 GraphPad https://www.graphpad.com/

PANTHER (Mi et al., 2019) http://www.pantherdb.org/
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REAGENT or RESOURCE SOURCE IDENTIFIER

DESeq2 (Love et al., 2014) https://bioconductor.org/packages/release/
bioc/html/DESeq2.html

TopHat version 2.1.1 (Kim et al., 2013) http://ccb.jhu.edu/software/tophat/
index.shtml

Other

SnakeSkin dialysis tubing, 3.5K MWCO, 35 mm Thermo Fisher Cat #: PI88244

Z2 Coulter Counter Beckman Cat #: 6605700
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