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Abstract

Purpose: Multiple myeloma is a malignancy of plasma cells. Extensive genetic and 

transcriptional characterization of myeloma has identified subtypes with prognostic and 

therapeutic implications. In contrast, relatively little is known about the myeloma epigenome.

Experimental Design: CD138+CD38+ myeloma cells were isolated from fresh bone marrow 

aspirate or the same aspirate after freezing for one to six months. Gene expression and chromatin 

accessibility were compared between fresh and frozen samples by RNA-seq and ATAC-seq. 

Chromatin accessible regions were used to identify regulatory RNA expression in over 700 

samples from newly diagnosed patients in the MMRF CoMMpass trial (NCT01454297).
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Results: Gene expression and chromatin accessibility of cryopreserved myeloma recapitulated 

that of freshly isolated samples. ATAC-seq performed on a series of biobanked specimens 

identified thousands of chromatin accessible regions with hundreds being highly coordinated with 

gene expression. Over 4,700 of these chromatin accessible regions were transcribed in newly 

diagnosed myelomas from the CoMMpass trial. Regulatory element activity alone recapitulated 

myeloma gene expression subtypes, and in particular myeloma subtypes with IGH translocations 

were defined by transcription of distal regulatory elements. Moreover, enhancer activity predicted 

oncogene expression implicating gene regulatory mechanisms in aggressive myeloma.

Conclusions: These data demonstrate the feasibility of using biobanked specimens for 

retrospective studies of the myeloma epigenome and illustrate the unique enhancer landscapes of 

myeloma subtypes that are coupled to gene expression and disease progression.

Introduction

Multiple myeloma is a malignancy of differentiated B cells, known as plasma cells, that 

secrete high levels of immunoglobulin. Tremendous progress in the treatment and 

management of myeloma has been made over the past 25 years resulting in a doubling of life 

expectancy with a 5-year survival rate now well above 50% (1,2). These improved outcomes 

are largely due to the introduction of novel therapeutic agents and regimens that target 

plasma cell biology rather than myeloma-specific mutations (3,4). Nonetheless, over 32,000 

people are diagnosed with myeloma in the U.S. every year – and despite improved outcomes 

and extended remissions – the majority will develop disease that is refractory to treatment 

and thus incurable (2).

The genetic basis of multiple myeloma has been extensively studied leading to a molecular 

classification with prognostic implications (5–7). Approximately half of myelomas have 

translocations that juxtapose strong immunoglobulin heavy chain (IGH) enhancers proximal 

to one of the three cyclin D genes (CCND1–3), the histone methyltransferase NSD2 (also 

known as MMSET, WHSC1), or one of the transcription factors and proto-oncogenes MAF, 

MAFB, or MAFA (8–10). Myelomas without IGH translocations most often have trisomies 

of odd-numbered chromosomes referred to as hyperdiploidy (11). Almost all myelomas also 

have secondary genetic events such as copy number alterations commonly including 

del(13p) (12) and amp(1q) (13,14), structural rearrangements of MYC (15–18), 

translocations of either immunoglobulin light chain Kappa (IGK) or Lambda (IGL) (19), 

inactivation of TP53 (20), mutations in common and disease-specific oncogenes (21), and 

complex structural rearrangements (22). These genetic alterations partially underlie distinct 

gene expression subtypes that reflect the biology and sometimes the disease course of 

myeloma (23,24). However, genetic alterations fail to fully explain the high-risk 

proliferation gene expression subtype and miss a substantial number of myeloma patients 

that experience poor outcomes.

Epigenetic dysregulation including aberrant DNA methylation and altered histone 

modifications has been implicated in myeloma for many years (25–28). The most well 

studied example stems from t(4;14) translocations that result in IGH enhancer-driven NSD2 
overexpression and excessive histone 3 lysine 36 dimethylation (9,29–31). While t(4;14) 
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translocations are a marker of high-risk disease (5,6), the prognostic implications of other 

epigenetic alterations are less well understood.

One challenge that has hindered epigenetic studies of primary myeloma is the use of assays 

that require large amounts of specimen. For example, ChIP-seq is often performed using 

millions of cells. The assay for transpose accessible chromatin-sequencing (ATAC-seq) 

overcomes this limitation by identifying regions of chromatin accessibility using the Tn5 

transposase on small numbers of cells (32). Still, intermittent acquisition of samples makes it 

difficult to plan and conduct large epigenetic studies. Thus, an approach that allows for the 

use of biobanked samples would facilitate retrospective studies of the myeloma epigenome. 

To this end, we recently showed that cryopreserved human peripheral B cells could be used 

to faithfully characterize the accessible chromatin profile from limiting cell numbers (33). 

We therefore sought to determine whether such a technique is amenable to multiple 

myeloma cells from cryopreserved bone marrow aspirates.

Here, we compared RNA-seq and ATAC-seq from CD138+CD38+ myeloma specimens 

obtained from both fresh and biobanked bone marrow aspirates. Myeloma cells isolated 

from cryopreserved aspirates recapitulated both the chromatin accessibility and mRNA 

characteristics of those obtained from fresh samples. We identified hundreds of cis-

regulatory elements where accessibility was predictive of gene expression and confirmed 

these in an independent cohort. Chromatin accessible regions were combined with H3K27ac 

ChIP-seq data to interrogate transcription of intergenic regulatory elements using RNA-seq 

data from 768 newly diagnosed patients from the Multiple Myeloma Research Foundation 

(MMRF) CoMMpass trial. These data identified over 4,700 active regulatory elements that 

reflected myeloma subtype and identified a program of transcribed enhancers in patients 

with poor outcome.

Materials and Methods

Myeloma sample isolation

Written patient informed consent was obtained and collection of multiple myeloma bone 

marrow aspirates followed approved protocols from the Emory University Institutional 

Review Board and comply with the Belmont Report and the U.S. Common Rule. Processing 

bone marrow aspirates has previously been described (34). Specifically, bone marrow 

aspirates were enrichment for mono-nuclear cells by Ficoll gradient centrifugation by first 

diluting aspirates to 25 mL in PBS and carefully pipetting 10 mL of Ficoll lymphocyte 

separation medium (Corning 25–072-Cl) under the aspirate prior to centrifugation for 30 

minutes at 400 g with no deceleration resistance. The mono-nuclear cell layer (“buffy coat”) 

was collected by graduated transfer pipette (Fisherbrand 13–711-9AM), washed in PBS and 

re-suspended in RPMI-1640 (Corning #14–030-CV) with 10% FBS (GeminiBio 

97068-085), 1% Pen-strep (Corning 30-002-CI), 1% L-glutamine (Corning 25005CI), and 

1% HEPES (Corning 25–060-CI).

After processing, bone marrow aspirate cells were either cryopreserved or analyzed within 6 

hours. Cryopreservation used 1–5 million cells per mL in 10% DMSO followed by 

immediately cooling to −80°C buffered by isopropyl alcohol (Thermo Scientific 51000001) 
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and transfer to −140°C liquid nitrogen freezers within 1–4 days. Both fresh and 

cryopreserved samples were stained with anti-CD138-FITC (Becton Dickinson 552723), 

anti-CD38-BV450 (Becton Dickinson 561378), anti-CD45-APC-Cy7 Becton Dickinson 

348795), and propidium iodide (PI; Sigma-Aldrich P4170) prior to analysis and isolation on 

a FACS Aria II (Becton Dickinson) (Supplementary Fig. S1).

mRNA-seq

mRNA-seq analysis was performed similarly to previously described (35). 50,000 cells were 

FACS isolated directly into 600 μL of RLT lysis buffer with 1% β-ME (Sigma-Aldrich 

M6250) prior to vortexing 1 min at max speed and freezing in a dry ice ethanol mixture. 

RNA was isolated (Qiagen RNeasy Mini 74104) and quality assessed using an Agilent 

BioAnalyzer. Stranded mRNA-seq libraries were made using the mRNA HyperPrep kit 

(Kapa 08098115702) following the manufacturer’s protocol and using custom short TruSeq 

compatible sequencing adapters (IDT) (Supplementary Table S1) (36). Barcodes were added 

to each library using long PCR primers (Supplementary Table S1) during 8 cycles of PCR 

amplification. Samples were sequenced on a HiSeq 4000 (Illumina).

mRNA-seq processing

FASTQ sequencing files were quality and adapter trimmed using Trim Galore! (v0.6.4; 

https://www.bioinformatics.babraham.ac.uk/projects/trim_galore/) and CutAdapt (v2.5; 

https://github.com/marcelm/cutadapt/) prior to mapping the GRCh37 genome accounting for 

the Ensembl GRCh37.74 transcription database using the STAR aligner (v2.5.3a) (37). 

Putative PCR duplicate reads were marked in BAM files using Samtools (v1.7) (38). Gene 

read counts were calculated in R (v3.6.2) (39) by reading in BAM files using the function 

readGAlignmentPairs and counting the number of reads that overlap any exonic region of an 

Ensemble (v74) gene using the function summarizeOverlaps of the GenomicAlignments 

package (v1.2) (40). Gene expression data was normalized for sequencing depth using reads 

per million (RPM) or fragments per kilobase per million reads (FPKM) where read depth 

was the total number of reads on autosomal chromosomes only (Supplementary Data S6).

mRNA-seq analysis

Genes that did not have ≥1 FPKM in expression in at least one sample were removed from 

downstream analyses as not expressed. Principle component analysis used the R function 

prcomp of the stats package and using log2(FPKM+1) gene expression values from 

autosomes only. Hierarchical clustering used the hclust function also of the stats package as 

well as a Euclidean distance dissimilarity metric of the log2(FPKM+1) expression values 

again from only the autosomes. Plots of genomic regions used rtracklayer (v1.44.4) (41) to 

read in summarized files and custom R code to plot sequencing depth.

ATAC-seq

ATAC-seq was performed similarly to previously described (33,42). Here, 20,000 

CD138+CD38+PI- viable myeloma cells were sorted into PBS and kept on ice. Cells were 

isolated by centrifugation at 500 × g for 10 minutes at 4°C and the supernatant was carefully 

removed by pipet. Cells were resuspended in 50 μL of nuclei-lysis buffer (10 mM Tris pH 

Barwick et al. Page 4

Clin Cancer Res. Author manuscript; available in PMC 2021 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://www.bioinformatics.babraham.ac.uk/projects/trim_galore/
https://github.com/marcelm/cutadapt/


7.4, 10 mM NaCl, 3mM MgCl2, 0.1% IGEPAL) prior to centrifugation at 500 × g for 30 

minutes at 4°C and careful removal of nuclei-lysis buffer by pipet. Nuclei were resuspended 

in 25 μL of tagmentation mix consisting of 10.5 μL H2O, 12.5 μL TD Buffer (Illumina) and 

2 μL Tn5 transposase (Illumina) and incubated at 37 °C for 1 hour. After tagmentation, DNA 

was isolated by digesting with 20 mg Proteinase K for 1 hour in 25 μL of tagmentation 

clean-up buffer (326 mM NaCl, 109 mM EDTA, 0.63% SDS). High molecular weight DNA 

was excluded by 0.6 × volume negative selection with SPRI beads (Kapa Biosystems) 

followed by a 1.2 × SPRI bead positive selection, which was repeated twice. ATAC libraries 

were amplified for 12 PCR cycles using Nextera adapters (Illumina) prior to sequencing on 

an Illumina HiSeq 4000.

ATAC-seq processing

ATAC-seq FASTQ files were quality and adapter trimmed using Trim Galore! (v0.6.4; 

https://www.bioinformatics.babraham.ac.uk/projects/trim_galore/) and CutAdapt (v2.5; 

https://github.com/marcelm/cutadapt/) prior to mapping the GRCh37 genome using bowtie2 

(v2.2.6) for alignment (43). Aligned SAM files were converted to BAM files and putative 

PCR duplicates were marked with Samtools (v1.7) (38). Regions of chromatin accessibility 

were identified in each sample using MACS2 (v2.1.0.20151222) (44). The union of all 

accessible regions was determined and reads mapping into these regions were determined 

for each sample using the summarizeOverlaps of the GenomicAlignments package (v1.2) in 

R (v3.6.2). Regions that overlapped ENCODE blacklisted regions were removed (45). As a 

quality control metric the number of reads in peaks was determined and used to calculate a 

normalized accessibility score as reads per peak million (RPPM) as previously described 

(42) according to the following formula:

RPPM = reads × 106
total reads in autosomal peaks

ATAC-seq data is listed Supplementary Data S7.

ATAC-seq analysis

The chromatin accessibility signal was log2(RPPM+1) transformed and used for PCA 

analysis using the prcomp function in R, hierarchical clustering using the hclust function 

also in R, as well as Pearson correlation comparisons. Chromatin stretch enhancer analysis 

was performed as previously described (46). Briefly, regions of chromatin accessibility that 

did not overlap promoters (>2,500 bp from the TSS) but were within 12,500 bp of each other 

were stitched together. The RPPM normalized read count of these stretch regions was 

determined for all samples and they were ranked by the average RPPM signal with regions 

past the inversion point being considered ‘super enhancers’. Gene ontology analysis of genes 

most proximal to these regions was performed using the GOstats (v2.50.0) R packages to 

determine enriched biological processes (47).

ATAC-seq correlation with mRNA-seq

The edgeR package (v3.26.8) (48) was used to correlate regions of chromatin accessibility 

with the 5% most variably expressed genes between samples. Here, a ‘digital gene 
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expression’ list (DGEList) using read counts for all ATAC-seq autosomal regions of 

chromatin accessibility was used to estimate dispersion in edgeR. Next, for each gene the 

DGEList object was subsetted for regions within 100 kb of the transcribed region of the 

gene and ATAC-seq reads were correlated with the log2(FPKM+1) gene expression using the 

glmQLFit and glmQLFTest functions. Data were compiled for all genes tested and P-values 

were corrected for multiple hypothesis testing using a Benjamini-Hochberg FDR correction.

Replication of myeloma ATAC-seq and mRNA-seq and meta-analysis of ChIP-seq data

mRNA-seq, ATAC-seq, and H3K27ac ChIP-seq data from Jin et al. (49) was downloaded 

from the European nucleotide archive for project PRJEB25605 (https://www.ebi.ac.uk/ena/

data/search?query=PRJEB25605). mRNA-seq and ATAC-seq data were processed as 

described above in a harmonized fashion as the data we generated. ChIP-seq data were 

processed as described for ATAC-seq data above except normalization used RPM instead of 

RPPM.

Analysis of CoMMpass RNA-seq and regulatory element transcription

Access to CoMMpass data was granted through the dbGaP data access committee and data 

was downloaded from project (phs000748.v7.p4). Processing of CoMMpass was as 

previously described (19) and used the same reference genome to harmonize the data.

Regulatory element regions were defined as the union of overlapping regions with H3K27ac 

enrichment in any primary myeloma sample from Jin et al. (49) and regions showing 

chromatin accessibility for any primary myeloma sample analyzed here. Regulatory element 

regions were trimmed so that they did not overlap any region within 500 bp upstream of a 

TSS to 5 kb downstream of the TTS. Regulatory element transcription was determined by 

counting the number of CoMMpass RNA-seq reads using the countOverlaps function of the 

GenomicRanges (v1.36.1) package in R. To discriminate signal from noise, regulatory 

element transcription for each region in each sample was compared to the transcription 

detected from that same sized region shuffled 1,000 times across the genome following the 

same rules (i.e. cannot overlap regions 500 bp upstream of TSS to 5 kbp downstream of 

TTS). Detection of regulatory element transcription was defined as regions that had more 

reads in the actual regulatory region as compared to the shuffled regions (P ≤0.01).

Gene set enrichment analysis of regulatory element transcription used GSEA (v4.03) and the 

hallmarks MSigDb gene set (v7.0) (50). Here, the regulatory elements were annotated to the 

closest gene and the GSEA Preranked gene set option was used based on the –log10(P-value) 

× sign(odds ratio) where P-value and odds ratio were determined by Fisher’s exact test of 

enhancer expression based on the number of samples in which transcription of the regulatory 

element was detected.

Correlation of regulatory element transcription and proximal mRNA expression used edgeR 

(v3.26.8) as described in the “ATAC-seq correlation with mRNA-seq” methods section 

above. Gene expression subtypes of CoMMpass data were determined by consensus 

clustering as previously described (19) using the ConsensusClusterPlus package (v1.48.0) 

(51). t-SNE analysis of CoMMpass mRNA and enhancer transcription used the Rtsne 

package (v0.15) (52) based on the log2(FPKM+1) expression values.
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Gene expression prognostic of outcome was determined using a cox proportional hazard 

regression implemented using the R function ‘coxph’ of the survival package (v3.1–8). Here, 

the log2(FPKM+1) expression values for each gene were regressed on censored survival data 

from CoMMpass interim analysis 15. P-values from the cox proportional hazards Wald test 

were corrected for multiple hypothesis correction using a Benjamini-Hochberg FDR.

Data Access

RNA-seq and ATAC-seq raw data as well as summarized data have been deposited in the 

Gene Expression Omnibus under access GSE167969.

Results

mRNA content and chromatin accessibility are preserved in viable frozen myeloma 
specimens

To determine the feasibility of performing transcriptional and epigenetic studies on 

biobanked myeloma specimens, we compared CD138+CD38+ myeloma cells obtained from 

fresh bone marrow aspirates to those obtained from cryopreserved bone marrow cells from 

the same aspirate (see methods). Both fresh and cryopreserved cells were isolated by 

fluorescence activated cell sorting (FACS) to obtain viable CD138+CD38+ cells 

(Supplementary Fig. S1A). Cryopreserved bone marrow aspirates had reduced overall 

viability relative to fresh isolates (Supplementary Fig. S1B), but CD138+CD38+ myeloma 

cells were obtained in both cases (Supplementary Fig. S1C).

RNA-seq was performed on FACS-isolated myeloma cells from both fresh and frozen bone 

marrow aspirates for three patients. Principal component analysis (PCA) and hierarchical 

clustering of RNA expression indicated a strong similarity between fresh and frozen samples 

from the same patient as compared to samples from other patients (Fig. 1A, Supplementary 

Fig. S2A). In parallel, we also isolated 20,000 CD138+CD38+ myeloma cells for ATAC-seq. 

Regions of chromatin accessibility for each sample were determined and normalized reads in 

all accessible regions were calculated (RPPM: reads per peak million). Similar to the RNA 

expression, both PCA and hierarchical clustering of chromatin accessibility data indicated 

that fresh and frozen samples from each patient were very similar to each other but distinct 

from specimens from other patients (Fig. 1B, Supplementary Fig. S2B). Pairwise 

comparison of both gene-specific expression and chromatin accessibility levels for all six 

samples indicated that fresh and frozen samples from the same patient consistently had a 

higher Pearson correlation coefficient (R) as opposed to inter-patient comparisons 

(Supplementary Fig. S2C–D). RNA-seq at the immunoglobulin light chains IGK and IGL 
reflected the clonal nature of myeloma where both fresh and frozen specimens from the 

same patient expressed variable, joining (J), and constant (C) regions from either IGK 
(1563) or IGL (1557 and 1562), but not both (Supplementary Fig. S2E, top and middle) – a 

phenomenon known as light chain restriction. Additionally, both fresh and frozen samples 

for each patient showed consistent expression of a unique immunoglobulin heavy chain 

(IGH) variable, diversity (D), joining (J), and constant (C) chain (Supplementary Fig. S2E).
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Inspection of the myeloma oncogene CCND1 showed that two of the patients expressed very 

high levels and this was consistent in both fresh and frozen specimens (Fig. 1C, left). 

Fluorescence in-situ hybridization data indicated that both patients had a t(11;14) 

translocation that juxtaposes the strong IGH enhancer(s) to the CCND1 locus (8). The 

specimens from patient 1557 did not express high levels of CCND1, but did express high 

levels of CCND2 – which is consistent with previous reports that myeloma aberrantly 

express one of the Cyclin D genes (Fig. 1D, middle) (53). Additionally, inspection of the 

MYC oncogene showed that it was highly expressed in two of the patients and this was 

consistent between fresh and frozen specimens (Fig. 1D). We queried chromatin 

accessibility near CCND2 and MYC to gain insight into the regulation of these oncogenes. 

This showed that the ATAC-seq signal was similar between fresh and frozen samples for all 

patients, but distinct from samples from other patients as well as identifying regions of 

chromatin accessibility that corresponded with CCND2 and MYC expression (Fig. 1D, see 

shaded regions). Overall, these data indicate that the mRNA content and chromatin 

accessibility state are preserved in viably frozen cells.

cis-regulatory elements predict gene expression in myeloma.

To better understand the distinct cis-regulatory elements coordinating gene expression in 

multiple myeloma we performed paired RNA-seq and ATAC-seq on eight cryopreserved 

myeloma specimens. This identified 91,632 autosomal regions of chromatin accessibility 

that were present in at least one sample (Fig. 2A). The largest regions of chromatin 

accessibility were cataloged by calculating the number of ATAC-seq reads in stretches of 

accessible regions that were within 12.5 kb of each other – similar to the “super-enhancer” 

analyses performed on H3K27ac or MED1 ChIP-seq data (46). Cumulatively across all the 

samples, the regions with the largest stretches of accessible chromatin were found at several 

myeloma lineage-defining genes including IRF4, CD38, SLAMF7, IGH, IGL, and MYC 
(Fig. 2B). Annotation of genes proximal to these large regions of chromatin accessibility 

indicated functions in RNA biosynthesis, nucleotide metabolism, transcription, and protein 

modification (Fig. 2C) – processes required to support the copious amounts of 

immunoglobulin synthesis and growth that are hallmarks of multiple myeloma. Inspection of 

IRF4, CD38, and SLAMF7 loci showed that samples shared the same regions of chromatin 

accessibility (Fig. 2D).

To identify gene regulatory elements, we correlated chromatin accessibility to expression for 

regions within 100 kb of a gene. Here, we focused on the most variably expressed genes in 

our cohort (top 5%), which also showed significantly higher variation in expression across 

samples in larger studies (Supplementary Fig. S3A–B). For example, there were four regions 

of chromatin accessibility within 100 kb of TLR1 (Fig. 3A), but only the most distal region 

showed a significant correspondence between chromatin accessibility and TLR1 expression 

(Fig. 3A–B, see red arrow). Cumulatively, 16,822 comparisons identified 833 regions where 

chromatin accessibility significantly correlated with expression of 376 genes (FDR ≤0.05; 

Supplementary Data S1) including several genes that have been implicated in the pathology 

of myeloma such as CCND2, FRZB, GSTT1, MS4A1 (encodes CD20), NCAM1, PAX5, 

RRAS2, and WNT5A (Supplementary Fig. S4). These results were confirmed in an 

independent data set by repeating these analyses using RNA-seq and ATAC-seq data from 18 
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myeloma samples from Jin et al. (49). This resulted in 1,190 regions that correlated with 

proximal gene expression, including 207 of those found in our cohort (Supplementary Fig. 

S3C). The composition of the different study populations and modest sample sizes may 

account for some of the differences observed, but it is important to note that there was a 

significant overlap of regions where chromatin accessibility predicted gene expression 

between the two studies (P=8.4×10−62, Fisher’s exact test).

To understand what discriminates regions of chromatin accessibility that correspond with 

gene expression from those that do not, we assessed the genomic overlap with the activating 

modification histone 3 lysine 27 acetylation (H3K27ac) using ChIP-seq data from primary 

myeloma samples (49). Regions where chromatin accessibility negatively correlated with 

gene expression were depleted of H3K27ac and conversely those regions where accessibility 

positively corresponded with gene expression were enriched for H3K27ac as compared to 

regions not indicative of gene expression (Fig. 3C). Furthermore, H3K27ac enrichment 

negatively correlated with expression at regions where accessibility also negatively 

corresponded with expression, and H3K27ac positively correlated with expression at regions 

where chromatin accessibility did as well (Fig. 3D). For example, distinct regions of 

chromatin accessibility and H3K27ac were present both upstream of the promoter and in the 

first intron of the mitosis related kinase NEK6 (Fig. 3E, left). However, in the two ATAC and 

ChIP-seq samples shown only the intronic enhancer was strongly correlated with expression 

(Fig. 3E, see red arrow), and this was generally true across all the samples analyzed (Fig. 

3F). Cumulatively, these data identify a set of cis-regulatory elements implicated in 

myeloma gene regulation.

Transcription of regulatory elements reflects myeloma gene expression subtype

We sought to expand this analysis by interrogating samples from the CoMMpass trial 

(NCT01454297), a longitudinal study of over 1,000 myeloma patients. Since epigenetic data 

have yet to be included in CoMMpass, we used RNA-seq data available for 768 samples to 

interrogate transcription of regulatory elements, a phenomenon linked to active enhancers 

(54,55). Here, the overlapping regions of chromatin accessibility and H3K27ac (49) defined 

above were assessed for transcription using CoMMpass RNA-seq. To avoid contamination 

from exonic mRNAs or intronic pre-mRNAs, intragenic regions were removed as well as 

500 bp upstream of TSSs and 5 kb downstream of transcription termination sites. This 

identified 13,452 putative intergenic regulatory elements to query for transcription 

(Supplementary Data S2). To distinguish signal from noise we compared the RNA-seq reads 

at each regulatory element for each sample to the same size region shuffled 1,000 times 

across the genome (see methods). Thus, detection of transcription could be determined for 

each regulatory element in each sample by comparing the actual number of reads with those 

obtained from the permuted regions. Plotting the frequency of detected RNA for each 

regulatory element showed an asymmetrical distribution (Fig. 4A) with some that were 

consistently transcribed as well as those that were only transcribed in a subset of samples. In 

total, transcription was detected at 4,729 regulatory elements in 5% or more of samples. 

Gene set enrichment analysis of the genes closest in proximity to the most commonly 

transcribed regulatory elements indicated the top enriched gene set was protein secretion 

(Fig. 4B, Supplementary Data S3), which is consistent with the primary function of plasma 
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cells from which myelomas are derived. As an example, there are three regions between 

PIK3C2B and MDM4 that contain overlapping H3K27ac and chromatin accessibility as well 

as evidence of transcription in both our cohort (generated using stranded RNA-seq) and that 

from CoMMpass (Fig. 4C, left – see shaded areas). Notably, paired-end RNA-seq reads from 

the middle enhancer region were all contained within that transcribed element indicating that 

it is not spliced with MDM4 or some other gene, but rather is a distinct transcriptional unit. 

The stranded RNA-seq data also indicated that the two promoter proximal transcribed 

regions near PIK3C2B and MDM4 are on the antisense strand respective to each gene, and 

are thus not part of the canonical gene, but likely represent bi-directional transcription. 

Conversely, inspection of the FOS locus (Fig. 4C, right) shows a regulatory region 

immediately upstream of the FOS TSS that is transcribed on the same strand as FOS. 

Importantly, paired-end RNA-seq reads did not span this promoter proximal cis-regulatory 

region with those coming from FOS, again indicating that this is a distinct transcriptional 

product.

Distal regulatory elements define specific myeloma subtypes

The above examples at PIK3C2B, MDM4, and FOS suggest that these regulatory regions are 

composed of both promoter proximal and distal elements, with the latter more likely 

representing enhancer elements. To understand how these distinct active regulatory elements 

were coupled to gene expression, we used previously defined gene expression subtypes that 

reflect key oncogenic drivers and genomic alterations in myeloma (19). T-distributed 

stochastic neighbor embedding (t-SNE) analysis was performed for gene expression data as 

well as for transcription at both promoter proximal (≤2500 bp of TSS) and distal regulatory 

elements with each sample colored by gene expression subtype (Fig. 5A). As expected, t-

SNE analysis of gene expression data grouped expression subtypes together. Additionally, 

both sets of regulatory elements tended to group myeloma subtypes together, however the 

promoter proximal elements separated the MMSET (MS), CCND (CD), and MAF (MF) 

subsets into multiple clusters (Fig. 5A, middle – see red, gold, and turquoise colors, 

respectively), whereas the distal regulatory elements clustered these subsets with other 

samples from the same subset (Fig. 5A, right). Indeed, quantifying the t-SNE distances 

between all samples within a given group showed that the average distance between 

MMSET, CCND, and MAF samples was significantly less when using distal regulatory 

elements as opposed to promoter proximal elements (Fig. 5B). To a lesser extent this is also 

observed in the Proliferation (PR) and low-bone disease (LB) groups. Subsequently, we 

determined uniquely transcribed regulatory elements for each myeloma subtype and focused 

on several hundred elements that distinguished the MMSET and MAF subtypes from others 

(Supplementary Data S3). Integrating these data with expression of genes within 1 MB 

identified distal regulatory elements highly predictive of genes uniquely regulated in the 

MMSET and MAF subtypes. For instance, a regulatory element ~154 kb upstream of 

CCND2 was uniquely transcribed in the MAF subtype and this was highly correlated with 

MAF expression (Fig. 5C–D). These data identify active distal regulatory elements that are 

coordinately regulated with the unique gene expression programs of myeloma subtypes.
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Distal regulatory element activity predicts myeloma gene expression and outcome

Given that transcription at regulatory elements predicted gene expression, we wondered if 

regulatory element activity could be used to identify putative mechanisms of molecular 

pathogenesis and poor outcome. First, we identified gene expression that was prognostic of 

overall survival (OS) in CoMMpass patients using a Cox proportional hazards model. Gene 

expression prognostic of OS are represented in a volcano plot of the OS hazard ratio (HR) 

for each gene compared to the significance of association with outcome (Fig. 6A). For 

example, reduced expression of CD27 and SLAMF7 or increased expression of RUNX2 or 

SUZ12 correspond with poor outcome. Next, distal regulatory RNA levels within 1 MB of 

genes prognostic of outcome were correlated with expression identifying 42% of regulatory 

elements that positively corresponded with gene expression (Fig. 6B, see green; 

Supplementary Data S4). Plotting the frequency of transcribed distal regulatory elements 

relative to genes prognostic of outcome indicated that approximately 1.5 active regulatory 

elements per MB per gene could be detected (Fig. 6C). In total, 1,308 active distal regulatory 

elements were identified within 1 MB of genes prognostic of OS and 609 of these were 

positively correlated with gene expression (Fig. 6C, green; Supplementary Data S5). We 

asked if these regions were enriched or depleted for transcription factor binding consensus 

motifs, which identified five transcription factor families enriched in these regions including 

Nuclear Respiratory Factor (NRF), Zinc Finger (ZF), Nuclear Receptor (NR), Helix-Loop-

Helix (HLH), and Activating Protein 2 (AP2) families, whereas only Interferon Response 

Factor (IRF) binding motifs were depleted (Fig. 6D–E; Supplementary Data S6). 

Additionally, gene expression of the genes that encode NRF1, SP1, and HIF-1β (encoded by 

ARNT1) were also associated with worse outcome as shown by a hazard ratio greater than 

one (Fig. 6F), further indicating these factors may be driving a gene expression program of 

aggressive myeloma. Indeed, NRF1 has previously been linked to proteasome inhibitor 

resistance (56,57), and similarly both SP1 and HIF-1β have also been linked to myeloma 

pathogenesis (58,59). An example of one of these distal regulatory elements is shown for 

RUNX2 (Fig. 6G). Here, genes are shown on top with RUNX2 in red and the correlation of 

regulatory element transcription to gene expression (RE/GX) is denoted by the height of the 

curves connecting each regulatory element to the RUNX2 promoter; regulatory elements, 

ATAC-seq, and H3K27ac ChIP-seq data are shown below. The specific regulatory element 

demarcated by the red correlation curve and the region harboring the regulatory element is 

enlarged to show RNA levels stratified by quartile. This particular regulatory element 

contained both SP1 and HIF-1b binding motifs (Fig. 6G, bottom). Regulatory element 

expression quartiles are quantitated on a box-and-whisker plot and the corresponding 

expression of RUNX2 is shown for each quartile (Fig. 6H), indicating a strong concurrence 

in regulation as denoted by a positive Pearson correlation (R=0.35) which was highly 

significant (FDR = 9.4×10−28). Cumulatively, these data identify putative distal regulatory 

elements and transcription factors whose activity are highly coordinated with the gene 

expression program of aggressive myeloma.

Discussion

Here, we show that cryopreserved bone marrow aspirates can be used to isolate multiple 

myeloma cells that faithfully recapitulate the mRNA content and chromatin accessibility of 
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those isolated from fresh samples. This approach was applied to a series of cryopreserved 

samples that were interrogated to identify regions of chromatin accessibility that were 

predictive of gene expression – results that were corroborated using a published study in an 

independent cohort of myeloma specimens. Intergenic chromatin accessible regions were 

used to query transcription in over 700 myelomas from newly diagnosed patients to identify 

active regulatory elements. Analysis of these active regulatory elements provided interesting 

insights into gene regulation in this disease. First while regulatory RNAs were able to 

predict gene expression-defined myeloma subtypes, they were in some cases not as good as 

the mRNA expression. This might be expected as the subtypes were defined by the mRNA 

expression. However, closer examination reveals that distal active regulatory elements better 

predicted mRNA expression than promoter elements that likely represent bidirectional 

transcription. This suggests that it is the activity of these distal elements that is driving the 

gene expression-based subtypes. Thus, while myeloma has been appreciated to be a 

“enhanceropathy” for some time now (8,60), our data suggest that this relationship goes well 

beyond enhancers that are physically juxtaposed to oncogenes during initiating translocation 

events, and include the impact of many distal regulatory elements. Nevertheless, such 

initiating events appear to influence enhancer usage. While the activity of distal regulatory 

elements was much better at identifying gene expression-defined myeloma subtypes, this 

relationship was most evident amongst myelomas that have a primary IGH translocation 

(CCND, MMSET or MAF). In contrast, there was little difference in the ability of distal vs. 

proximal regulatory element activity in distinguishing myelomas of subtypes that were not 

exclusively associated with an IGH translocation, such as the hyperdiploid (HY), low bone 

disease (LB), and proliferation (PR). It is possible that this reflects a distinct gene regulatory 

program between hyperdiploid and non-hyperdiploid myeloma. Regardless, understanding 

how oncogenic changes are controlling these distal regulatory elements may provide insights 

into new pathways to target myeloma based on the transcriptional mechanisms propagating a 

malignant phenotype, as well as explain the molecular basis of therapeutic response to 

current backbone therapies that work in part by targeting transcription factor activity (e.g. 
IMiDs, steroids and indirectly, proteasome inhibitors).

Interrogating current RNA-seq data sets for regulatory RNAs has emerged as a powerful tool 

in deciphering gene regulatory mechanisms. Enhancer transcription from TCGA has 

provided unique insight into a range of solid and some hematological tumors revealing both 

ubiquitously expressed and cancer specific enhancer transcription (61,62). While multiple 

myeloma was not included in the TCGA project, use of data from the MMRF CoMMpass 

study has allowed us to provide the largest study of enhancer transcription in myeloma to 

date. Median depth of mRNA-sequencing for CoMMpass specimens was over 230 million 

mapped reads per sample, which is significantly higher than most TCGA data, and provides 

sufficient power to detect regulatory element transcription. Our discovery of 4,729 

transcribed regulatory elements in 5% or more of myeloma samples is highly congruent with 

TCGA analysis that found on average 4,591 eRNAs expressed in 10% or more of samples 

per cancer type (61). Others have found ~20% of all detectable reRNAs are ubiquitous 

across cancer types whereas the remaining 80% are either partially shared or unique to 

specific cancer types (62). We anticipate that myeloma is similar in this regard. For instance 

transcribed enhancers predictive of MDM4 expression have previously been reported, albeit 
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the regulatory element reported here is distinct from that previously described (62). Further 

insights into the unique molecular architecture of myeloma – and therefore potential 

therapeutic targets – will likely be provided by understanding the regulatory elements that 

are unique to myeloma versus those that are common across other cancer and/or cell types.

Despite the powerful insights gleaned, interrogating regulatory element transcription from 

RNA-seq is not without caveats. For instance, most RNA-seq data sets, including those used 

here, primarily only capture poly-adenylated RNAs, and only a portion of regulatory RNAs 

such as enhancer RNAs (eRNAs) are poly-adenylated (55,63). Additionally, it is not 

currently feasible to interrogate intragenic regions thereby missing more than half of all 

regulatory elements. Furthermore, transcription through the annotated transcription 

termination site often occurs and contaminates 3’ regulatory elements with RNA that is a 

byproduct of transcription rather than a signal of enhancer function. For these reasons it will 

be important to conduct large-scale genetic, epigenetic, and transcriptional studies to better 

interrogate the regulatory mechanisms and identify molecular susceptibilities of myeloma. 

In this regard, the high-level of RNA and chromatin accessibility correspondence between 

fresh and biobanked samples should provide confidence that such studies can be conducted 

using viably frozen bone marrow aspirates. While it is important to note that these samples 

were only frozen for 4 months – and longer term studies are needed – this approach 

potentially has the advantage of isolating immune or stromal cells from the same bone 

marrow aspirate, thus allowing for analysis of both tumor, stromal and/or immune 

compartments.

Large scale genetic, epigenetic, and transcriptional studies have the potential to change our 

understanding of myeloma pathogenesis and ultimately allow us to alter the disease course. 

Ensuring an adequate sample size will be of paramount importance in dissecting the distinct 

molecular pathology of the many myeloma subtypes. Such analyses should shed light on 

effective modes of oncogene regulation. For instance, some Hyperdiploid cases of myeloma 

express high levels of CCND1 despite not having t(11;14) IGH translocations (64), and 

while we were not able to identify candidate cis-elements regulating CCND1 expression 

outside of the promoter in these myelomas this may be due to such an element residing in a 

intron or an enhancer that does not efficiently transcribe eRNA. In the case of CCND2, we 

were able to identify an element highly coordinated with CCND2 expression in the MAF 

subtype, but CCND2 is also aberrantly expressed in the MMSET and Proliferation subtypes, 

which showed much more modest transcription at the same enhancer. Thus, it still remains 

to be shown if the MMSET and Proliferation subtypes regulate CCND2 expression through 

the same regulatory elements (albeit with less transcription) or if there are other elements not 

discernable by this analysis that contribute to CCND2 dysregulation in these subtypes. 

Further studies of myeloma epigenetic and molecular programming may provide insight into 

why these types of myeloma exhibit aberrant expression of such oncogenes. Likewise, 

epigenetic studies may provide insight into the cell differentiation state from which a 

myeloma originated. For instance, B cells undergo rapid epigenetic remodeling as they 

become activated and differentiate into germinal center B cells and plasma cells (35,42,65); 

thus epigenetic analysis of myeloma may provide insights into disease etiology. Indeed, the 

CD2 myeloma subtype derives its name for Cyclin D and CD20, the latter being a B cell 

marker normally not retained on plasma cells or other myeloma subtypes (23). Thus, 
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epigenetic analysis of this subtype may reveal remnants of the B cell molecular program. 

Such epigenetic studies will identify important cis-regulatory regions for myeloma 

pathology and help prioritize transcription factors and signaling pathways for a myeloma 

subtype precision medicine approach.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
The mRNA content and chromatin accessibility of myeloma is maintained in cryopreserved 

specimens. A-B, Principle component analysis of mRNA expression (A) and chromatin 

accessibility (B). Principle components (PC) 1 and 2 are shown with the percent of variation 

explained by each component denoted in parentheses. C, mRNA-seq reads for CCND1, 

CCND2, and MYC genes. Note that specimens 1562 and 1563 were FISH positive for 

t(11;14). D, ATAC-seq data for fresh and frozen replicates at CCND2 (left) and MYC 
(right). Gray shading denotes regions of differences between the samples. The scale is either 

reads per million (RPM; C), log2(RPM+1) (A), reads per peak million (RPPM; D) or 

log2(RPPM+1) (B).
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Figure 2. 
Chromatin accessibility clusters at highly expressed genes in myeloma. A, Heatmap of 

ATAC-seq data at 91,632 chromatin accessible autosomal regions in eight CD138+CD38+ 

myeloma specimens from bone marrow aspirates. Accessible regions were sorted from most 

(top) to least (bottom) accessible. B, ATAC-seq signal (reads per peak million; RPPM) in 

stretch regions of chromatin accessibility C, Top 5 gene ontology biological processes for 

genes proximal to stretch regions of chromatin accessibility. D, Genome plot of stretch 

regions of chromatin accessibility at IRF4, CD38, and SLAMF7 shown for all eight samples.
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Figure 3. 
Chromatin accessibility and H3K27ac correspond with gene expression. A, Schematic of 

analysis where RNA expression (top) was correlated with regions of chromatin accessibility 

(ATAC; bottom) within 100 kb of the top 5% of variably expressed genes (see 

Supplementary Figure S3). B, Correlation of ATAC and RNA shown for the region identified 

by the red arrow in part A. C, Frequency of H3K27ac overlap and accessible regions that are 

negatively (Neg.) or positively (Pos.) associated with gene expression. The frequency of 

patients with overlapping H3K27ac enriched regions are shown in a gray scale and P-values 

for significant differences are shown on top (Fisher’s exact test). D, Correlation (Pearson R) 

of H3K27ac level and proximal gene expression for regions that overlap chromatin 

accessibility which is negatively or positively associated with gene expression. P-values for 

significant differences in correlation distribution are shown on top (Mann Whitney U-test). 

E, cis-regulatory elements identified upstream of the promoter and in the first intron (see red 

arrow) of NEK6 using both chromatin accessibility (top; blue) and H3K27ac from Jin et al. 
(bottom; green). The scale is RPPM (ATAC) or RPM (ChIP-seq) and RNA expression is 

shown (right). F, Scatterplot of chromatin accessibility and gene expression (left) or 

H3K27ac enrichment and gene expression (right) for the loci shown in part E (see red 

arrow) with samples from Emory (blue) and Jin et al. (green) denoted by color.

Barwick et al. Page 21

Clin Cancer Res. Author manuscript; available in PMC 2021 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 4. 
Regulatory element transcription reflects the myeloma gene expression program. A, 
Frequency of detected transcription at 13,452 regulatory elements (RE) in 768 newly 

diagnosed myeloma patients from the CoMMpass study. Detection for each sample and 

regulatory element is determined based on the actual signal compared to 1,000 permutated 

enhancers (P ≤0.01; see methods). B, Gene set enrichment analysis of the top pathway 

enriched at genes proximal to transcribed regulatory elements. C, Genome plot of the 

PIK3CB and MDM4 locus (left) and the FOS locus (right) with regulatory elements (grayed 

boxes) defined as overlapping regions with both H3K27ac ChIP-seq (from Jin et al.) and 

chromatin accessibility (ATAC) that are 500 bp from the TSS and 5 kb from TTS. Both 

stranded mRNA-seq data (Emory) and unstranded mRNA-seq data (CoMMpass) are shown. 

The scale for ChIP-seq is reads per million (RPM), ATAC-seq is reads per peak million 

(RPPM), and mRNA-seq is log2(RPM+1), all tracks represent a composite of all samples 

analyzed.
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Figure 5. 
Distal regulatory elements define myeloma subtype gene expression. A, t-SNE analysis of 

gene expression data (left), transcription at promoter proximal (middle) and distal (right) 

regulatory elements. Samples are colored by myeloma gene expression subtype (key 

bottom). B, t-SNE distance between samples within a given subtype (denoted by color) for 

mRNA as well as promoter proximal and distal regulatory elements. ***P<0.001, **P<0.01, 

*P<0.05, NS: not significant; determined by a paired Mann-Whitney U test. C, Genome plot 

of regions distinctly regulated between myeloma subtypes near the CCND2 locus. 

Regulatory elements (REs) are denoted on top with cumulative ATAC (RPPM) and 

H3K27ac (RPM) signal shown and mean transcription is shown (log2(RPM+1)) for each 

myeloma subtype. Transcription for the shaded region is shown (right). D, Scatterplot of 

CCND2 expression and regulatory element transcription.
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Figure 6. 
Distal regulatory element activity predicts expression of genes prognostic of myeloma 

outcome. A, Volcano plot of gene expression (GX) associated with overall survival (OS). 

The y-axis represents the hazard ratio (HR) of OS given gene expression with genes 

significantly associated with poor outcome denoted in blue (less expression) or red (more 

expression). The significance line (FDR ≤0.01) is shown (dashed red line). B, Correlation 

(Pearson R) between transcribed distal regulatory elements and gene expression. C, 
Frequency of regulatory elements relative to the average gene. All expressed distal 

regulatory elements are denoted in gray and those that are positively associated with gene 

expression are shown in green (FDR ≤0.01). D, Top transcription factor consensus binding 

motifs enriched in distal regulatory elements that predict gene expression associated with 

poor outcome. Only the top factor for each family is shown (see Supplementary Data S6 for 
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full results). NRF: Nuclear Respiratory Factor; ZF: Zinc Finger; NR: Nuclear Receptor; 

HLH: Helix-Loop-Helix; AP2: Activating Protein 2; IRF: Interferon Regulatory Factor. E, 

Overlap odds ratio of transcription factor binding motifs in regulatory elements positively 

associated with gene expression indicative of poor outcome relative to all transcribed 

regulatory elements (95% confidence intervals are shown). F, Overall survival (OS) hazard 

ratio of expression of the transcription factors (95% confidence intervals are shown). G, 

Genome plot of RUNX2 (denoted in red). The correlation of regulatory element 

transcription with gene expression (GX) is shown below the genes with the height of each 

line denoting the significance of correlation. Regulatory elements, and cumulative ATAC 

and H3K27ac signal are shown below. A specific distal regulatory region is enlarged as 

denoted by a black polygon with regulatory element transcription stratified by quartile of 

expression. H, Regulatory element transcription quartiles (left) and corresponding gene 

transcription for RUNX2. The Pearson correlation (R) and significance (FDR) of reRNA and 

RUNX2 expression is shown.
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