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Systemic GLP-1R agonist treatment reverses mouse
glial and neurovascular cell transcriptomic aging
signatures in a genome-wide manner
Zhongqi Li 1,2,10, Xinyi Chen1,2,10, Joaquim S. L. Vong 2,3,10, Lei Zhao1,2,10, Junzhe Huang1,2, Leo Y. C. Yan1,2,

Bonaventure Ip1, Yun Kwok Wing 4,5,6, Hei-Ming Lai1,2,4,5,6, Vincent C. T. Mok 1,5,6,7✉ &

Ho Ko 1,2,4,5,6,7,8,9✉

Pharmacological reversal of brain aging is a long-sought yet challenging strategy for the

prevention and treatment of age-related neurodegeneration, due to the diverse cell types and

complex cellular pathways impacted by the aging process. Here, we report the genome-wide

reversal of transcriptomic aging signatures in multiple major brain cell types, including glial

and mural cells, by systemic glucagon-like peptide-1 receptor (GLP-1R) agonist (GLP-1RA)

treatment. The age-related expression changes reversed by GLP-1RA encompass both shared

and cell type-specific functional pathways that are implicated in aging and neurodegenera-

tion. Concomitantly, Alzheimer’s disease (AD)-associated transcriptomic signature in

microglia that arises from aging is reduced. These results show the feasibility of reversing

brain aging by pharmacological means, provide mechanistic insights into the neurological

benefits of GLP-1RAs, and imply that GLP-1R agonism may be a generally applicable phar-

macological intervention for patients at risk of age-related neurodegeneration.
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Aging has long been considered irreversible. Nearly all
cellular processes are implicated in or impacted by aging,
ranging from metabolism, stress response, immune

responses, cellular senescence, to gene expression, and genomic
stability1. These complex molecular changes presumably lead to
an alteration of cellular states and compositions in body
organs1,2, manifesting as age-related functional decline. Given
the complexity of biological changes involved and a lack of easily
targetable sets of driving pathways, anti-aging pharmacotherapy
is considered highly challenging. However, it remains an
attractive pursuit for tackling age-related disorders, such as
neurodegeneration for which aging is the strongest risk factor.
Slowing down or even reversing transcriptomic and functional
alterations in the aging brain may provide a strategy for the
primary prevention and even the treatment of neurodegenerative
diseases.

Glucagon-like peptide-1 (GLP-1) is a peptide hormone pro-
duced peripherally by the intestinal L-cells for potentiating
glucose-dependent insulin release, and centrally in the brain by
preproglucagon neurons in the nucleus tractus solitarii3. In the
past decade, multiple pharmacokinetically optimized GLP-1
receptor (GLP-1R) agonists (GLP-1RAs) have been approved
for the clinical treatment of diabetes mellitus. Remarkably, recent
clinical studies provided compelling evidence that GLP-1RAs
exhibit neuroprotective effects beyond that conferred by glycemic
control, reducing the incidences of cognitive decline and Par-
kinson’s disease (PD) in diabetic patients4,5. Additionally, GLP-
1RAs may slow the progression of established Alzheimer’s disease
(AD) and PD in non-diabetic patients6,7. Mechanistically, apart
from alleviating neuroinflammation in animal models of
neurodegeneration8,9, we recently demonstrated that exenatide (a
GLP-1RA) treatment partially reverses age-related transcriptomic
changes in brain endothelial cells (ECs) and reduces nonspecific
blood-brain barrier (BBB) leakage10. How GLP-1RA treatment
impacts glial and other neurovascular cell types, whose age-
related expression changes also play crucial roles in brain aging
and degeneration, remained unclear.

Results and discussion
Systemic GLP-1RA treatment reverses aging-associated tran-
scriptomic changes in diverse mouse brain cell types. We
hypothesized that GLP-1RAs may be potent anti-aging ther-
apeutics that impact diverse brain cell types. We thus performed
single-cell transcriptomic profiling experiments in young adult
(2–3 months old (m.o.)), aged (18–20 m.o.) and exenatide-treated
aged (18–20 m.o. with prior daily intraperitoneal injection for
~1 month, see “Methods” section) C57BL/6 mice (Fig. 1a, b and
Supplementary Fig. 1), to examine the genome-wide expression
changes in glial and neurovascular cells in aging, and their
modulation by GLP-1R agonism. We calculated significant dif-
ferentially expressed genes (DEGs) (defined as those with false
discovery rate (FDR)-adjusted P-value < 0.05) for each cell type,
to analyse their patterns of expression changes in aging and the
effects of exenatide treatment. We obtained DEGs with similar
magnitudes of change as previous studies1,2, which were generally
not large (Fig. 1c), likely due to comparisons being made between
normal aging and young adulthood. At 18–20 m.o., however,
these expression changes already have age-related functional
change correlates in the C57BL/6 mice, including those that
impact cognitive11–14, glial (recently reviewed by ref. 15), and
neurovascular functions10,16.

In line with our previous report10, the aging-associated
transcriptomic changes in brain ECs were partially reversed by
exenatide treatment (Fig. 1c, d). Strikingly, the transcriptomic
reversal effect of the GLP-1RA was even more profound in other

brain cell types (Fig. 1c, d). These included multiple glial (Fig. 1c,
d, AC: astrocyte; OPC: oligodendrocyte precursor cell; MG:
microglia) and mural (Fig. 1c, d, SMC: smooth muscle cell; PC:
pericyte) cell types. This phenomenon was also observed,
although weaker, in oligodendrocyte (OLG) and perivascular
macrophage (MAC) (Fig. 1c, d). Overall, the reversal effect on
glial cell age-related transcriptomic changes appeared to be the
most prominent in AC and OPC, followed by MG (Fig. 1d).
Among vascular cells, the effects were stronger in SMC and PC
compared with that in EC (Fig. 1d). Further supporting the aging
reversal effects, in seven out of the eight cell types analyzed (i.e.,
all except OLG), the number of significant DEGs for exenatide-
treated aged vs. young adult group comparison was much smaller
than that for untreated aged vs. young adult group comparison
(Supplementary Fig. 2).

Functional associations of the aging reversal effects at the
transcriptomic level. We next asked if the expression changes
reversed by GLP-1RA treatment were functionally relevant, and
which cellular pathways may be affected. Pathway enrichment
analysis for each cell type on their most prominent reversed
DEGs highlighted the amelioration of age-related expression
changes involved in extensive cellular functions (Fig. 2a). In most
cell types, these included genes mediating glucose/energy, lipid,
and protein metabolic processes (Fig. 2a), as well as transcrip-
tional and translational regulation (Fig. 2a). We also noted cell
type-specific changes by pathway analysis and examining the
expression changes of selected genes with significant functional
roles. In aged brain ACs, upregulation of immune response-
related genes and downregulation of homeostatic function-related
genes occur (Fig. 2b) (also see ref. 17). In our dataset, the ACs
from the exenatide-treated aged mice appeared to partially revert
to a younger phenotype, with downregulation of several com-
plement component 1q genes (Fig. 2b), and upregulation of
subsets of genes encoding synaptic modification-related proteins,
metabolite receptors and transporters, neurotransmitter receptors
and ion channels (Fig. 2b).

Immune response and cytokine signaling-related genes were
especially prominent among DEGs reversed in MG and MAC,
followed by EC (Fig. 2a). Indeed, previous studies reported that
MGs in the aging and AD brain exhibit pro-inflammatory
phenotypes1,18–20. A subset of MGs in AD mouse models are
characterized by a disease-associated microglia (DAM) state,
whose transcriptomic signature also increases in aging1,20. After
exenatide treatment, apart from the reversed expression changes
of several microglial activation-associated genes similar to what
we previously reported10 (Fig. 2b), we noted that the MGs also
showed an upregulation of multiple homeostatic function-related
and immune response inhibitory genes (Fig. 2b), and decreased
AD-associated MG signature1,20 scores (Fig. 2c, d). In SMC, we
found post-treatment reversal of expression changes involving
important functional processes associated with age-related
vascular stiffening, such as calcium signaling, extracellular matrix
(ECM) remodelling and contractile pathways (Fig. 2a, b).

Consistency of the transcriptomic aging reversal effects across
cell subtypes and datasets. As we found prominent tran-
scriptomic reversal effects in ACs (Fig. 1c, d), whose molecular
phenotypes vary across brain regions21, we asked if the age-
related transcriptomic alterations and the GLP-1RA treatment
effect in ACs may exhibit regional specificity. We identified four
main regional AC subtype clusters, namely telencephalic AC
clusters 1 and 2 (ACTE1 and ACTE2, respectively), and non-
telencephalic AC clusters 1 and 2 (ACNT1 and ACNT2,
respectively), using the expression patterns of known regional AC
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marker genes21 (Supplementary Fig. 3a, b). Despite differences in
their molecular characteristics (Supplementary Fig. 3a, b), the AC
subtypes shared highly consistent age-related differential expres-
sions (Supplementary Fig. 4a). The expression changes induced
by exenatide treatment were generally even more consistent in the
AC subtypes (Supplementary Fig. 4a). Consequently, the tran-
scriptomic reversal effect of exenatide on the aging-associated
expression changes was well conserved across all four regional AC
subtypes examined (Supplementary Fig. 4b). We also performed
similar analysis on the mural cell subtypes that segregate along
the arteriovenous axis22 (Supplementary Fig. 5a, b). Pairwise
comparison of the differential expressions likewise revealed
shared age-related expression changes and reversal by GLP-1RA
treatment in all four mural cell subtypes (Supplementary Fig. 6a,
b), despite their intrinsic transcriptomic differences (Supple-
mentary Fig. 5a, b).

Finally, to test the robustness of the results, we verified that
most of the top reversed age-related DEGs (i.e., those included
in the pathway enrichment analysis) in EC, MG, and SMC had
opposite directions of change in aging and after GLP-1RA
treatment, with additional experiment comparing exenatide-
treated aged mice to their vehicle-treated counterparts (Supple-
mentary Fig. 7a, b). In addition, we also obtained qualitatively
similar results on the genome-wide reversal of aging-associated
differential expressions for several major brain cell types,
including AC, OPC, MG, MAC, SMC, and EC (Supplementary
Fig. 7c), based on an independent dataset from our prior
study10.

Conclusions
In conclusion, we demonstrated that a generalized reversal of
functionally relevant transcriptomic changes at the genome-wide
level in multiple glial and vascular cell types in the aged brain is
pharmacologically achievable with GLP-1R agonism. Further
studies are required to assay the molecular and functional
changes in neuronal circuits and glial cells with GLP-1R agonism
in the aged brain. For example, while DAM is associated with
neuropathology development in an AD mouse model20, it
remains incompletely understood what the functional significance
of DAM-like MGs are in the aged brain. It has been shown that
microglial depletion and repopulation in the aged mouse brain
confers cognitive benefits23. Based on our results, we propose that
the DAM-like MGs may be age-primed MGs with weakened
homeostatic functions that are partially restored by GLP-1RA
treatment—a hypothesis to be further tested.

In all, we speculate that the profound pleiotropic effects of
GLP-1RA on brain aging may depend on a combination of
central and peripheral mechanisms. Centrally in the brain, sub-
sets of GLP-1R-expressing neurons and glial cells may be directly
targeted by GLP-1RA9,24. Peripherally, GLP-1RA-mediated
improvement in metabolic profiles or immunomodulation may
impact the glial and neurovascular cells, as they are responsive to
compositions of the circulation25 and interact with peripheral
immune cells26. Clarifying these possibilities will require sys-
tematic studies involving knockout or knockdown of GLP-1R in
the respective putative target cell types (e.g., neuron, MG).
The knowledge will also instruct further developments of

Fig. 1 Reversal of glial and neurovascular cell transcriptomic aging signatures by GLP-1RA treatment. a UMAP visualization of the major cell type
clusters identified and analysed. Numbers in brackets: cell numbers for the respective cell types. AC astrocyte, OPC oligodendrocyte precursor cell, MG
microglia, MAC perivascular macrophage, OLG oligodendrocyte, SMC smooth muscle cell, PC pericyte, EC endothelial cell. b UMAP visualization of the
single-cell transcriptomes from young adult, aged, and GLP-1RA (exenatide)-treated aged mouse brains. For each plot, colored dots highlight cells from the
respective labeled group, while gray dots are cells from the other groups. Numbers in brackets: cell numbers for the respective groups in the dataset (n= 3
animals for each group). For clarity, 6000 cells were subsampled for visualization in each plot in a and b. c Age-related expression changes (x-axis) plotted
against post-exenatide treatment expression changes (y-axis) in glial (AC, OPC, MG, and OLG), vascular (EC, PC, and SMC) cell types, and MAC. Each dot
represents one differentially expressed gene (DEG). lnFC: natural log of fold change. Gray lines: lines of best fit by linear regression. d Proportions of DEGs
reversed and the slopes of lines of best fit by linear regression shown in c in the different cell types. See Supplementary Data 1 for source data underlying (c).
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small-molecule GLP-1RAs27–29, which may need to cross the BBB
to act on the cell type target(s) necessary to attain any centrally
mediated anti-brain aging effects.

Methods
Animal subjects. All experimental procedures were approved in advance by the
Animal Research Ethical Committee of CUHK, and were carried out in accordance

with the Guide for the Care and Use of Laboratory Animals. C57BL/6J mice were
provided by the Laboratory Animal Service Center of CUHK and maintained at
controlled temperature (22–23 °C) with an alternating 12-h light/dark cycle with
free access to standard mouse diet and water. The ambient humidity was main-
tained at <70 % relative humidity. Male mice of two age groups (2–3 months old
and 18–20 months old) were used for experiments. For the treatment groups,
exenatide (5 nmol/kg bw, Byetta, AstraZeneca LP) or saline vehicle (0.9% w/v
sodium chloride) was intraperitoneally (I.P.) administered (volume: 250 μl per 30 g

Fig. 2 Functional pathway analysis of the GLP-1RA treatment-reversed age-related transcriptomic changes. a Pathways with significant enrichment
among the most prominent age-related expression changes reversed by exenatide treatment in the different cell types. b Dot plots of expression changes
of selected functionally important genes in AC, MG, and SMC, in aging and post-exenatide treatment. c UMAP visualization and d violin plots of AD
signature scores in the MGs from young adult, aged and exenatide-treated aged mouse brains. Numbers in brackets in c: cell numbers for the respective
groups in the dataset. Horizontal lines in d represent medians (young adult, 0.36; aged, 0.46; exenatide-treated aged: 0.43), 25th and 75th percentiles.
Comparison of Alzheimer’s disease (AD) signature scores in the MGs among the three groups: P= 2.2 × 10−16, Kruskal–Wallis test; the P-values of
pairwise comparisons by post hoc Dunn’s test are shown in d. Cell type abbreviations: same as in Fig. 1. See Supplementary Data 1 for source data
underlying a and b.
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bw) daily starting at 17–18 months old for 4–5 weeks prior to transcriptomic
profiling experiments.

Single-cell dissociation and RNA sequencing. Results reported in the study
consisted of three datasets. The main results presented in all figures except Sup-
plementary Fig. 7a, c were based on a dataset with young adult, aged and exenatide-
treated aged mouse groups with cDNA library constructed using the 10× Chro-
mium Single Cell 3′ Reagent Kits v3 (10× Genomics, USA) (hereafter referred to as
the v3 kit-based dataset) (three mice per experimental group, one experimental
batch). The second dataset with exenatide-treated and vehicle-treated aged mouse
groups (hereafter referred to as the vehicle-controlled dataset) presented in Sup-
plementary Fig. 7a, b was based on the 10× Chromium Single Cell 3′ Reagent Kits
v2 (10× Genomics, USA) (three mice per experimental group, 1 experimental
batch). The third dataset presented in Supplementary Fig. 7c was reported in our
previous study10 (with each batch consisting of young adult, aged, and exenatide-
treated aged mouse groups, five mice per experimental group, three experimental
batches, hereafter referred to as the v2 kit-based dataset).

For the v3 kit-based and vehicle-controlled datasets, identical brain tissue
digestion, cell dissociation and single-cell RNA sequencing protocols were adopted
as our previous study10. Mice were deeply anaesthetized and perfused
transcardially with 20 ml of ice-cold phosphate buffered saline (PBS). Mice were
then rapidly decapitated, and whole brains (except cerebellum) were immersed in
ice-cold Dulbecco’s modified Eagle’s medium (DMEM, Thermo Fisher Scientific,
USA). The brain tissues were cut into small pieces and dissociated into single cells
using a modified version of the Neural Tissue Dissociation Kit (P) (130-092-628,
Miltenyi Biotec, USA). Myelin debris was removed using the Myelin Removal kit II
(130-096-733, Miltenyi Biotec, USA). Cell clumps were removed by serial filtration
through pre-wetted 70-μm (#352350, Falcon, USA) and 40-μm (#352340, Falcon,
USA) nylon cell strainers. Centrifugation was performed at 300×g for 5 min at 4 °C.
The final cell pellets were resuspended in 500–1000 μl FACS buffer (DMEM
without phenol red (Thermo Fisher Scientific, USA), supplemented with 2% fetal
bovine serum (Thermo Fisher Scientific, USA)). For the v3 kit-based dataset, the
single-cell suspension directly proceeded to cDNA library construction, while for
the vehicle-controlled dataset the single-cell suspension was kept at −80 °C
overnight and then thawed for cDNA library construction.

Single-cell RNA sequencing libraries were generated using the Chromium Single
Cell 3′ Reagent Kit v3 (for the v3 kit-based dataset) or v2 (for the vehicle-controlled
dataset) (10× Genomics, USA). Briefly, single-cell suspension at a density of 500–1000
cells/μL in FACS buffer was added to real-time polymerase chain reaction (RT-PCR)
master mix aiming for sampling of up to 8000 cells, and then loaded together with
Single Cell 3′ gel beads and partitioning oil into a Single Cell 3′ Chip (10× Genomics,
USA). RNA transcripts from single cells were uniquely barcoded and reverse-
transcribed within droplets. cDNA molecules were preamplified and pooled, followed
by library construction. All libraries were quantified by Qubit and RT-PCR on a
LightCycler 96 System (Roche Life Science, Germany). The size profiles of the pre-
amplified cDNA and sequencing libraries were examined by the Agilent High
Sensitivity D5000 and High Sensitivity D1000 ScreenTape Systems (Agilent, USA),
respectively. All single-cell libraries were sequenced with a customized paired-end
with single indexing (26/8/98-bp) format. All single-cell libraries were sequenced on a
NextSeq 500 system (Illumina, USA) using the NextSeq 500 High Output v2 Kit
(Illumina, USA). The data were aligned in Cell Ranger (v3.0.0, 10× Genomics, USA).
For the v3 kit-based dataset, the library sequencing saturation was on average 68.73%.
Compared to the v2 kit-based dataset in our previous study10, the v3 kit-based dataset
had much improved mRNA capture efficiency (median genes per cell: 2091, range:
505–5791), allowing more sensitive detection of differentially expressed genes (DEGs).
For the vehicle-controlled dataset, the sequencing saturation was on average 84.1%
(median genes per cell: 1229, range: 1175–1283).

Data quality control, single-cell transcriptome clustering, and visualization.
Data processing and visualization were performed using the Seurat package
(v3.1.5)30 and custom scripts in R (v3.6.1). The raw count matrix was generated by
default parameters (with the mm10 reference genome). For the v3 kit-based
dataset, there were 106,902 cells in the primary count matrix. Genes expressed by
fewer than five cells were removed, leaving 21,259 genes in total. Among these
genes, 3000 high-variance genes were identified by the Seurat FindVariableFeatures
function. The dataset was filtered to exclude low-quality cells by the following
criteria: (1) <5% or >95% UMI count or gene count, or (2) proportion of mito-
chondrial genes >20%. Gene count normalization and high-variance gene identi-
fication were applied to the raw data of 78,490 cells retained for further analysis.
The SCTransform function in the Seurat package was used for expression nor-
malization by fitting the data to a negative binomial regression model. For
dimensionality reduction, principal component analysis (PCA) was applied to
compute the first 30 top principal components. Clustering was carried out by the
Seurat functions FindNeighbors and FindClusters. Modularity optimization was
then performed on the shared nearest neighbor graph results from FindNeighbors
for clustering (resolution parameter: 1.4). We employed Uniform Manifold
Approximation and Projection (UMAP)31, a manifold learning-based technique
for dimensionality reduction, for the visualization of single-cell transcriptomes and
clustering results. For the vehicle-controlled dataset, there were 6703 cells in the
primary count matrix. Genes expressed by fewer than three cells were removed,

leaving 16,684 genes in total. Subsequent data processing was identical to that
performed for the v3 kit-based dataset.

Cell type and subtype identification. To identify primary cell types, we employed
known cell type-specific marker genes and examined their expression levels among
all initial clusters included. We excluded clusters with high expression of two or
more cell type-specific marker genes. These included clusters with high expression
of both endothelial cell and pericyte markers in the v3 kit-based and the vehicle-
controlled datasets, corresponding to contamination of pericytes by endothelial cell
fragments22,32,33. For the v3 kit-based dataset, the remaining clusters were classi-
fied into primary cell types, whereby eight were analysed in this study (see Fig. 1
and Supplementary Fig. 1). Telencephalic and non-telencephalic AC subtypes were
identified by unsupervised clustering of the AC transcriptomes (after expression
normalization among ACs), followed by examining the expression patterns of
regionally specific marker genes21 (see Supplementary Fig. 3). We did not analyze a
relatively small number of midbrain astrocytes (i.e., small sample size compared to
telencephalic and non-telencephalic astrocytes, whereby midbrain astrocytes con-
stituted <1% of the total number of astrocytes sampled). To identify SMC subtypes,
the CellAssign algorithm was employed34, using previously reported SMC subtype
marker genes22 as prior (see Supplementary Fig. 5). For the vehicle-controlled
dataset, three major cell types (EC, MG, and SMC) with sufficient cell numbers
underwent further differential expression analysis.

Differential expression analysis. The Seurat FindMarkers function and the
MAST package (v1.8.2) were employed for the calculation of differentially
expressed genes (DEGs) with associated false discovery rate (FDR)-adjusted P-
value and magnitude of change expressed in natural log of fold change (lnFC) for
each cell type or subtype. We define significant DEGs as those with FDR-adjusted
P-value < 0.05.

Transcriptomic reversal effect, pathway enrichment, and consistency of dif-
ferential expressions analyses. For each cell type (or subtype) in the v3 kit-based
or the v2 kit-based dataset10, the union of significant DEGs in either or both the
aged versus young adult group, and the exenatide-treated versus untreated aged
group comparisons were included for transcriptomic reversal analysis. Proportions
of genes with opposite directionality of changes (i.e., reversed), linear regression
analysis with slope of line of best fit, associated r2 and P-values were obtained.

For pathway enrichment analysis of the reversed DEGs of a given cell type using
the v3 kit-based dataset, DEGs with fold changes ranking within top 500 in both
age-stratified and treatment-stratified comparisons and opposite directionality of
changes were included (i.e., top reversed DEGs). Pathways with significant
enrichment were identified using the GeneAnalytics platform35. To examine the
consistency of differential expressions across cell subtypes in the v3 kit-based
dataset, for each pair of cell subtypes, the union of their significant DEGs in a given
comparison (i.e., age-stratified or treatment-stratified) were included. Linear
regression analysis was then carried out with slope of line of best fit, associated r2

and P-values obtained.
For the vehicle-controlled dataset, differential expressions with the associated

lnFC and FDR-adjusted P-values were calculated for the top reversed DEGs
(defined above), and plotted against the lnFC from the aged vs. young adult mouse
group comparison in the v3 kit-based dataset.

Calculation of Alzheimer’s disease (AD)-associated microglia signature
scores. For each single MG transcriptome, the AD-associated MG signature score
was calculated using the AddModuleScore function in the Seurat package, as the
average normalized expression levels of top 100 upregulated genes in AD-
associated MGs20 subtracted by the aggregated expression of control feature sets1.

Statistics and reproducibility. For the v3 kit-based dataset, we used three mice per
group (young adult, aged and exenatide-treated aged groups) for the scRNA-seq
experiments. For the vehicle-controlled dataset, we used three mice per group
(vehicle-treated and exenatide-treated aged groups) for the scRNA-seq experiments.
The statistical tests were performed in R (v3.6.1) as indicated at the respective places
in the main text. We confirmed reproducibility of the main findings with independent
batches of experiments and datasets (see Supplementary Fig. 7).

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Source data underlying Figs. 1–2 are presented in Supplementary Data 1. The single-cell
RNA sequencing data presented in the main figures has been deposited at the Broad
Institute Single Cell Portal and are accessible at the following URL: [https://singlecell.
broadinstitute.org/single_cell/study/SCP1182/glp1ra-brain-aging-reversal]. The dataset
reported in our previous study (Zhao et al.) is accessible at the following URL: [https://
singlecell.broadinstitute.org/single_cell/study/SCP829/aging-mouse-brain-kolab]. All
other data are available from the corresponding authors upon reasonable request.
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Code availability
The R code for data analysis is available at GitHub at the following URL: [https://github.
com/RichardLZQ/NVUB5_code].
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