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Abstract
Purpose Dust pollution is currently one of the most serious environmental problems faced by open-pit mines. Compared with
underground mining, open-pit mining has many dust sources, and a wide area of influence and complicated changes in mete-
orological conditions can result in great variations in dust concentration. Therefore, the prediction of dust concentrations in open-
pit mines requires research and is of great significance for reducing environmental pollution and personal health hazards.
Methods This study is based on monitoring of the concentration of total suspended particulate (TSP) in the Anjialing open-pit
coal mine in Pingshuo. This paper proposes a hybrid model based on a long short-term memory (LSTM) network and the
attention mechanism (LSTM-Attention) and applies it to the prediction of TSP concentration. The LSTM model reflects the
historical process of an input time series, and the attention mechanism extracts the inherent characteristics of the input parameters
to assign weights based on the importance of the influencing factors. The autoregressive integrated moving average (ARIMA)
and LSTMmodels are also used to predict the TSP concentration. Finally, several statistical measures of error are used to evaluate
the accuracy of the model and perform a sensitivity analysis.
Results It was found that, in general, the TSP concentration was highest in the period 08:00–09:00 and lowest in the period
15:00–16:00. In addition to the influence of meteorological parameters and normal operations, the reason for this trend is the
presence of an inversion layer above the open-pit mine. The results show that, compared with the ARIMA and LSTMmodels, the
LSTM-Attention model is more stable and has a prediction accuracy that is 5.6% and 3.0% greater, respectively.
Conclusion This model can be applied to the prediction of dust concentrations in open-pit mines and provide guidance on when
to carry out dust-suppression work. It has expansibility and is potentially valuable for application in a wide range of areas.
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Introduction

With the development of society, people have higher expec-
tations for their quality of life and for the natural environment.
However, exposure to dust pollution is currently a significant
public health problem [1–4]. Open-pit mining is an important
method for extracting mineral resources, and it involves oper-
ations including perforation, blasting, loading, transport, and

soil disposal [5]. In the process of these operations, the
crushing of a large amount of coal and rocks produces a large
concentration of dust. This is called composite dust, and it
includes coal dust, rock dust, and small amounts of other
substances [6]. The composite dust floats in the air for a long
time and is harmful to workers and the environment. It can
reduce visibility in the workspace, cause personal injury, pres-
ent a risk of combustion or explosion, and increase mechani-
cal losses [7, 8]. Thus, accurate prediction of dust concentra-
tion is essential for mitigating these problems and ensuring
effective control of atmospheric pollution around open-pit
mines.

A large number of scholars have proposed many analysis
and prediction methods related to the problem of dust concen-
tration around mines. Some have proposed mathematical
models to estimate dust concentration [9, 10]. However, these
models have some limitations and only apply to certain special
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cases, meaning they cannot be applied universally. Due to the
influence of open-pit mining on airflow, the problem of ven-
tilation in these mines becomes complicated, and this also
increases the difficulty of analysis using mathematical model-
ing [11]. Because of the problems with mathematical model-
ing in open-pit mining situations, making predictions through
data analysis has been considered.

Neural networks have been widely used in prediction of air
pollution [12–15]. Kukkonen et al. [16] used neural-network,
linear statistical, and deterministic model systems to predict
urban concentrations of NO2 and particulate matter with an
aerodynamic diameter less than or equal to 10 μm (PM10),
and their results showed that the neural-network model had
the best performance. Wang et al. [17] proposed an improved
neural network and optimized it using a genetic algorithm, and
their system showed good performance in PM2.5 (particulates
with aerodynamic diameter < 2.5 μm) concentration predic-
tion. Choubin et al. [18] used a random forest algorithm,
bagged classification and regression trees (BCRT), and mix-
ture discriminate analysis (MDA) to predict the danger of
PM10 in the Barcelona Province of Spain [19, 20], finding
that the BCRT model was superior to the MDAmodel. Zhang
et al. [21] proposed a wavelet-based autoregressive moving
average (ARMA)/autoregressive integrated moving average
(ARIMA) model for short-term serial prediction of PM10
concentration in Taiyuan City, Shanxi Province, China. It
was found that the wavelet-ARMA/ARIMA method can ef-
fectively reduce the prediction error and improve the predic-
tion accuracy. Bui et al. [22] studied the prediction and control
of PM10 concentrations caused by open-pit drilling operations
and provided a new artificial-intelligence system. Li et al. [23]
proposed a PM2.5 concentration-prediction algorithm based
on time series and an interactive multi-model (IMM). They
found that the IMM algorithm had higher prediction accuracy
for PM2.5 [24]. Ahn et al. [25] designed a microchip made
from sensors that can record measurement data regularly and
proposed a model to estimate atmospheric changes using deep
learning. Neural-network models are effective for predicting
and controlling dust concentrations [12]. However, the emis-
sion and diffusion of dust are not only related to the nature of
the dust itself, but also to meteorological conditions [11]; the
prediction of dust concentrations needs to consider multiple
influences. In this case, the difficulty of using traditional shal-
low models is increased. Therefore, to better predict dust con-
centrations, it is more appropriate to adopt a model that is
good at dealing with multiple variables.

Long short-term memory (LSTM) networks are good at
dealing with multiple variables. Their memory feature makes
them better at solving complex time-series forecasting prob-
lems [26–28]. Pak et al. [29] proposed a combined model
involving a spatiotemporal convolutional neural network
(CNN) and an LSTM network and applied it to predict the
PM2.5 concentration of the next day in Beijing. Lin et al. [30]

studied the training and prediction performance of neural net-
works using three models, a fast Fourier transform (FFT)–
deep neural network, an FFT–LSTM network, and a one-
dimensional CNN to predict the surface roughness in the mill-
ing process by combining vibration signals with a deep-
learning prediction model. Kim et al. [31] developed a deep
recursive neural-network system based on an LSTM model
and applied it to the daily prediction of PM10 and PM2.5 in
Korea. Their results showed that the LSTM model had better
performance than a 3D chemistry-transport model. Zhang
et al. [32] proposed an LSTM-network prediction method
based on actual monitoring data from coal mine production.
Their results showed that the LSTM model predicts more
accurately than the traditional model. Kim et al. [33] proposed
using an LSTM model to predict the hourly fine dust concen-
tration of a target location in Seoul. As these sources show,
LSTM models have been widely used in dust-concentration
prediction. However, these studies mainly consider the influ-
ence of time on changes in dust concentration and cannot
consider the influence of different weightings of input vari-
ables. The weighting relationships between the input variables
are crucial for improving the accuracy of the prediction
results.

The attention mechanism can be used to apply adaptive
attention to input data or features in a neural network and
improve its feature-extraction ability [34–36]. Li et al. [37]
proposed a new spatiotemporal prediction model based on
densely connected convolutional networks and attention
LSTM. Wang et al. [38] proposed a new attention model
based on an LSTM encoder structure to predict long-term time
series. Their experimental results showed that the accuracy of
the model was at least 2% better than the latest benchmark. Li
et al. [39] proposed a new LSTM code model based on hier-
archical time attention for individual position sequence pre-
diction. By incorporating the calendar period of individual
travel schedules into location predictions, frequent and peri-
odic movement patterns were revealed. Zou et al. [40] predict-
ed the water quality of Beilun Estuary based on a multi-time-
scale two-way LSTM network. Their experimental results
showed that the model was superior to single LSTM or bidi-
rectional LSTM in predicting water quality. When attention-
related inputs are different, the attention mechanism can focus
on different parts of the input features to better extract the
features, which can improve the accuracy of the prediction
model.

The above research shows that although there has been
significant study of the prediction of dust concentrations, the
techniques are still imperfect. Furthermore, our literature re-
view found that no specific studies examining the regional
dust concentrations around open-pit mines have been carried
out. Due to the different meteorological conditions in various
regions, the changes in dust concentrations around different
mines will also vary. It is therefore necessary to conduct
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targeted research into the dust-concentration problem. Shanxi
province is a large coal-producing province in China, and the
Pingshuo Anjialing open-pit coal mine is representative of
mines in the area. Since this mine is close to residential areas,
air pollution from it is bound to affect the health of residents.
This study first TSP concentration changes in the Anjialing
open-pit coal mine. Then the attention mechanism was used to
tap the advantages of the hidden information in the input pa-
rameters. LSTM-Attention was used with a view to improving
the accuracy and stability of predictions of TSP concentration.
Finally, the results of the proposed LSTM-Attention model
and other models (ARIMA and LSTM) were compared and
evaluated. The results of this study have reference value for
the prediction of dust concentrations in the field of environ-
mental research and mining engineering and the adoption of
dust-reduction measures.

Materials and methods

Area description

The Pingshuo mining area is located in the Pinglu District of
Shuozhou City, Shanxi Province, China. It is one of the five
largest open-pit mining areas in China, and is in a warm,
temperate, semi-arid climate zone. The annual average tem-
perature is 6.5 °C, the extreme minimum temperature is
−32.4 °C, and the extreme maximum temperature is 37.9 °C.
The highest, lowest, and average annual precipitation are
757.4 mm, 195.6 mm, and 428.00 mm, respectively, and this
mostly falls in July, August, and September, months which
account for 75% of the annual precipitation. The dominant
wind direction in the region is northwest, with an average
annual wind speed of 1.8 m/s and a maximum of 10 m/s.

The Anjialing open-pit coal mine is the largest open-pit
mine in the Pingshuo mining area. Its annual output is 2000

Mt/year, and the average amount of rock stripped is about
9000 Mm3/year. The distances between the three nearby vil-
lages and the Anjialing open-pit coal mine are 1.6 km, 2.0 km,
and 2.8 km. These villages are located downwind from the
mine, as shown in Fig. 1, and environmental pollution from
the mine is therefore bound to affect them.A large amount of
dust is generated during coal production at the mine, and be-
cause dust pollution lasts for a long time, the pollution situa-
tion is complicated and has a wide scope. The main areas
producing dust pollution are mining operations, transportation
operations, and disposal operations. An example of the dust
produced during these operations is shown in Fig. 1. The main
hazards of dust pollution at the mine itself are workers devel-
oping pneumoconiosis, a reduction of visibility potentially
causing more workplace accidents, and the dust increasing
mechanical losses. The proximity of the mine to local villages
will also inevitably have an impact on their air quality,
harming the health of villagers. Therefore, it is necessary to
predict dust concentrations to facilitate the timely implemen-
tation of reasonable control measures.

Data collection

We installed seven online dust monitoring stations at the
Anjialing open-pit coal mine to monitor dust concentration.
Because the prevailing wind direction at the mine is north-
west, we deployed three of these in the upwind direction and
four downwind. These locations and a photograph of one of
the monitoring stations are shown in Fig. 2.

The recorded monitoring data included TSP, PM10,
PM2.5, temperature (T), relative humidity (RH), wind direc-
tion (WD), wind speed (V), air pressure (P). The equipment
parameters used in this monitoring process are shown in
Table 1.

We conducted continuous monitoring at the Anjialing
open-pit mine from 10 September 2019 to 9 September

Fig. 1 Location map of the study area (left) and a photograph showing the generation of dust pollution during mining operations (right)
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2020. The collected data were preprocessed so as to improve
their quality. There will be gaps in the data collected from air-
quality monitoring equipment due to equipment failure and
other uncontrollable factors. When there were several missing
values in a data record, we directly removed them; when there
was only one missing value, linear interpolation was used to
fill this gap [32]. Four-hour average concentration values were
used for the data sets. After data processing, we obtained 2179
sets of valid data, as shown in Table 2. The average, median,
and mode are statistics that reflect the central tendency of the
data. The standard deviation is used to evaluate the degree of
variation in the data distribution; skewness and kurtosis are
used to evaluate whether the sampling distribution is normal;
the minimum and maximum values indicate the magnitude of
changes in the data.

It can be seen from Table 2 that the average concentration
of PM2.5 was 60.89 μg/m3 and the average concentration of
PM10 was 114.25 μg/m3. This indicates that the air quality

was good. However, the highest concentration of PM2.5
reached 225.62 μg/m3 and the highest concentration of
PM10 reached 405.64 μg/m3. This indicates that the air was
moderately polluted. Therefore, prediction of dust concentra-
tions is crucial so that a convenient dust-reduction plan can be
prepared.It can also be seen from Table 1 that the high stan-
dard deviation of the TSP concentration indicates that the data
is rather dispersed, which increases the difficulty of predicting
this value.

ARIMA method

The time-series analysis method is mainly used to summarize
and reveal the features of a time series using autocorrelation
[41]. Depending on whether the original time series is stable
and which part is contained in the regression, it can be divided
into an autoregressive process AR(p), a moving-average pro-
cess MA(q), an autoregressive moving-average process

Wind Direction

Fig. 2 Locations of the
monitoring stations (left) and an
example photograph of the moni-
toring equipment

Table 1 Monitoring equipment parameters

Parameter Value

Working environment −20 °C to 60 °C
Built-in sensors T, RH, P, TSP, PM10, PM2.5, V, WD
Sensor accuracy T: ±0.01 °C, RH: ±2%, P: 0.2 Pa, TSP: measurement range: 0.01–10,000 μg/m3;

measurement accuracy: ±10%
PM2.5+PM10 Effective range: 0–1000 μg/m3

Wind speed Measurement range: 0–30 m/s, measurement accuracy: ±1 m/s
Wind direction Range of wind direction: 0–360°, measurement accuracy: ±3°
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ARMA(p,q), or a summation autoregressive moving average
process ARIMA(p,d,q). For a stationary series, after the series
difference is processed, we can use the ARIMA model to
perform fitting prediction. This model is described mathemat-
ically as:

Δdyt ¼ θ0 þ ∑
p

i¼1
ϕiΔ

dyt−1 þ ∑
q

j¼1
θ jεt−1 ð1Þ

where: yt is the original time series; Δdyt represents the sta-
tionary series of yt after d difference; εt represents a white-
noise random-error sequence with zero mean; ϕi (i = 1, 2,
…, p) and θj (j = 1, 2, …, q) are parameters to be estimated
for each model; and p and q are the orders of the models.

LSTM method

In a standard recurrent neural network (RNN), the state of
the hidden layer at each moment is determined by the
current input and the previous state of the hidden layer.
Because the memory capacity is limited, any gradient dis-
appears rapidly [32 42]. An LSTM network is an im-
proved version of an RNN. Its main features are a forget

gate, an input gate, and an output gate. The LSTM model
architecture is shown in Fig. 3, in which σ represents the
sigmoid activation function, the output range is 0–1, and
tanh is used to adjust the value of the function. The output
range is between −1 and 1.

The forget gate is used to control how the state of the
previous moment is retained in the current unit state to realize
screening of the memory content. The output of the forget gate
ft is:

f t ¼ σ Wxf xt þWhf ht−1 þ bf
� � ð2Þ

where: Wxf is the weight matrix between the input and the
forget gate; Whf is the weight matrix between the historical
output and the forget gate; bf is the forget gate bias term; xt
is the current input state; and ht − 1 is the output state at the
previous moment.

The input gate is used to update the unit state, input the
previous state and the current input information into the
sigmoid activation function, and obtain an output value
between 0 and 1 to determine the updating of information.
In this system 0 indicates not important and 1 indicates
important. The previous state and input information are

Table 2 Characteristics of the data used

Statistic TSP
(μg/m3)

PM10
(μg/m3)

PM2.5
(μg/m3)

T
(°C)

RH
(%)

V
(m/s)

P
(kPa)

Mean 250.30 114.25 60.89 9.07 60.85 1.44 86.53

Median 231.98 105.55 56.06 11.77 60.10 1.00 86.60

Mode 227.42 65.73 31.96 −2.00 48.30 0.00 86.80

Standard deviation 121.08 55.37 31.59 9.84 20.53 1.50 0.57

Skewness 1.20 1.25 1.21 −0.65 0.02 1.11 0.13

Kurtosis 2.55 2.64 2.47 −0.27 −0.94 0.86 −0.60
Min. 17.18 11.66 8.02 −23.00 14.47 0.00 85.30

Max. 896.36 405.64 225.62 34.17 98.97 8.80 88.10

Fig. 3 Diagram of LSTM model
architecture
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fed into the tanh function to obtain a candidate unit state
between −1 and 1. The input gate output it and the can-
didate unit status bct are:
it ¼ σ Wxixt þWhiht−1 þ bið Þ ð3Þ
bct ¼ tanh Wxcxt þWhcht−1 þ bcð Þ ð4Þ
where: Wxi is the weight matrix between the input and the
input gate; Whi is the weight matrix between historical output
and input gate;Wxc is the weight matrix between the input and
the unit state; Whc is the weight matrix between the historical
output and unit state; bi is the input gate bias term; and bc is the
unit state bias term.

After obtaining the outputs of the forget gate and the input
gate, the current unit state ct is obtained by adding two things.
One is the information retention determined by the multipli-
cation of the output of the forget gate and the unit state at the
previous moment, and the other is the information addition
determined by the multiplication of the input gate and the
current candidate state. The unit status is:

Ct ¼ f tCt−1 þ itbct: ð5Þ

The output gate is used to control the final output of the unit
state. The unit output is obtained by multiplying the output
gate output and the current unit state information through tanh
activation function. The output gate ot and the unit output ht
are:

ot ¼ σ Wxoxt þWhoht−1 þ boð Þ; ð6Þ
ht ¼ ottanh Ctð Þ; ð7Þ
where:Wxo is the weight matrix between the input and output
gates; Who is the weight matrix between historical output and
the output gate; and bo is the output gate bias term.

Attention method

In this study, an attention-mechanism layer was added to bet-
ter capture the effective information in the data. This attention-
mechanism layer overcomes the problem of a standard LSTM
model not being able to fully learn detailed information about
the sequence encoding when the same state vector is used for
each prediction. The attention mechanism of the neural net-
work can be described as follows [34]:

M ¼ tanh WhHð Þ; ð8Þ
α ¼ softmax ωTM

� �
; ð9Þ

r ¼ HαT ; ð10Þ
where: W ∈ Rd ×N, α ∈ RN, r ∈ Rd, Wh ∈ Rd × d, and wT ∈ Rd is
the parameter matrix that the subsequent model needs to train.
H ∈ Rd ×N represents the matrix composed of the LSTM net-
work output vector [h1, h2, …, hN]. The attention mechanism
will eventually generate attention weight vector a and r.

LSTM-attention method

For a given sequence, the importance of each element will
be different; that is, the weight of each element will be
different. This study used an attention mechanism to re-
tain the intermediate output results of the input sequence
of the LSTM encoder. A model was then trained to selec-
tively learn these inputs and associate the output sequence
with it. The LSTM-Attention model architecture as shown
in Fig. 4.

In Fig. 4, [h1, h2, …, ht] is equivalent to H in Eq. (8); [α1,
α2,…, αt] is equivalent to α in Eq. (9), which is the attention
weight of feature H, and r is calculated using Eq. (10). The
dust-concentration prediction output is located at the end of

Fig. 4 Diagram of the LSTM-
Attention model architecture
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the network architecture diagram. It is a single-layer, fully-
connected neural network. The prediction formula is as fol-
lows:

hs ¼ tanh Wpr þWxht
� � ð11Þ

y ¼ Wshs þ bs ð12Þ

Accuracy evaluation

Four evaluation indicators, the root mean square error
(RMSE), mean absolute percentage error (MAPE), mean ab-
solute error (MAE), and correlation coefficient (R2), were
used to evaluate the accuracy of the TSP dust-concentration
prediction model. These can be calculated using:

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

l
∑l

i¼1 Oi−Pið Þ2
r

; ð13Þ

MAPE ¼ 1

l
∑l

i¼1

Oi−Pi

Oi
; ð14Þ

MAE ¼ 1

l
∑l

i¼1Oi−Pi; ð15Þ

R2 ¼ 1−
∑
i

Oi−Pið Þ2

∑
i

Oi−O
� �2 ð16Þ

In Eqs. (13)–(16), Oi, Pi, and O, represent the observed,
predicted, and average values of the output, respectively, and l
is the number of evaluation samples.

The RMSE and the MAE are used to evaluate the absolute
error; the smaller the values of these parameters, the better the
performance of the model. TheMAPE is a measure of relative
error; the smaller its value, the closer the predicted result is to
the actual value. The value of R2 represents the ratio of the
explained sum of squares and is between 0 and 1. This can be
used as a measure of the goodness of fit of the regression
equation; the larger the value of R2, the better the fitting effect.

Hybrid prediction algorithm

Here, we propose a hybrid algorithm using an attention mech-
anism with an LSTM to improve the accuracy of dust-
concentration predictions in open-pit mines. To consider the
influences of different factors on the concentration of TSP as
much as possible, we used time and date, PM10, T, RH, WD,
V, and P as independent variables for TSP concentration pre-
diction. The inputs to the model are PM10, T, RH,WD, V, and
P their corresponding time series every 4 h on average; the
output based on the weather conditions and air-quality data
from the previous 4 h, is a prediction of the average TSP
concentration in the next 4 h. The accuracy of the model is
then evaluated. The steps we took were as follows (Fig. 5):

Fig. 5 The proposed LSTM-
Attention model for estimating
TSP concentration
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Step 1. Standardize raw data (PM10, T, RH, WD, V, and P
and the corresponding time series every 4 h on av-
erage) and perform data preprocessing;

Step 2. Observe parameters and analyze changes in them;
Step 3. Turn the dataset into a supervised learning problem;
Step 4. Construct traditional prediction models (ARIMA

and LSTM) and a combined LSTM-Attention pre-
diction model; sequentially carry out TSP concen-
tration prediction and related analysis;

Step 5. Evaluate the prediction accuracies of the traditional
and hybrid models.

Results

Influence of air-quality data on TSP concentration
prediction

To evaluate the impact of air-quality data on the accuracy of TSP
forecasts, we separately input meteorological data alone and me-
teorological data along with air-quality data (PM2.5) into the
ARIMAmodel. The results of this analysis are shown in Table 3.

From the results in Table 3, we can see that the air-quality
data improve the TSP-prediction performance. Based on the
difference in the R2 value, the accuracy of the model including
air-quality data is 22% higher than that of the model only
using meteorological data. The inclusion of air-quality data
therefore notably improves the accuracy of the model.

Variation of dust concentration

Figure 6a shows a graph of the concentrations of PM2.5,
PM10, and TSP over the observation period. To examine di-
urnal variations in the TSP concentration, a TSP concentration
map based on data from 00:00 on 16 September 2019 to 00:00
on 17 September 2019 was drawn, as shown in Fig. 6b.

It can be seen from Fig. 6a that the trends in the changes in
the PM2.5, PM10, and TSP concentrations are similar and
there is a certain correlation between them. Additionally,
Fig. 6a indicates that the dust concentrations exhibit a high
degree of daily fluctuation. This can be seen more clearly in
Fig. 6b, which shows that the dust concentration is high in the

morning and low in the afternoon. The dust concentration
reaches a maximum value at around 00:00–01:00 every day,
before falling to a minimum value at around 05:00–06:00 and
then starting to rise again. After reaching another maximum
around 08:00–09:00, it begins to decline, and reaches a min-
imum around 16:00–17:00 and starts to rise again before
reaching the maximum around 00:00–01:00 once more.

In addition to normal operations and the influence of me-
teorological parameters, the main reason for the above trends
in dust concentration is the inversion layer above the open-pit
mine. With the increase in the mining depth, the open-pit mine
stope has a concave structure. When the wind is calm or there
is a slight breeze, under the heat mainly caused by solar radi-
ation, the particular topographic structure of the stope makes it
easy to form an inversion layer. Due to the existence of the
temperature-inversion layer, the upper part of the pit dissipates
heat quickly and the cold air circulates from the pit edge to
sink to the bottom of the pit. The warmer air at the bottom of
the pit is pushed up by the cold air, and the temperature rises
after the convection are completed, resulting in the inversion
of high and low temperatures. As a result, the dust concentra-
tion of the open-pit mine continuously decreases during the
day and rises at night. A temperature-inversion layer is more
likely to appear in the period 00:00–08:00, and the probability
of inversion decreases in the period 09:00–10:00. It will grad-
ually weaken or even disappear in the period 12:00–16:00.
This has an impact on the dust concentration.

Since the PM2.5, PM10, and TSP concentrations are cor-
related, only PM2.5 or PM10 needs to be selected as one of
the independent variables. We applied both PM2.5 and PM10
as independent variables and used the LSTM network to pre-
dict the concentration of TSP so that it could be established
which of the two will give greater prediction accuracy. The
results of this analysis are shown in Table 4.

It can be seen from Table 4 that the errors in the TSP
concentration prediction using PM10 as an independent vari-
able are smaller than those using PM2.5. Therefore, PM10
was used as an independent variable to predict the TSP
concentration.

Correlations between influencing factors

Figure 7 shows amatrix of graphs of the relationships between
the input variables. The matrix is symmetric, and the sub-

Table 3 Analysis of the impact including air-quality data on TSP predictions

Influencing factors Learning paradigm RMSE (μg/m3) MAE (μg/m3) MAPE
(%)

R2

Meteorological data ARIMA 61.853 40.303 18.639 0.739

Meteorological data and air quality 31.393 21.106 11.842 0.902
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graphs on the diagonals represent the internal relationships of
the variables while the sub-graphs on the non-diagonal ele-
ments represent the correlations between variables.

It can be seen from Fig. 7 that most of the input variables
are not highly correlated, indicating that the parameters are
reasonable as variables. The graphs on the diagonal line show
the interval distributions of each variable. Taking PM10 as an
example, it can be seen from that the concentration of PM10
corresponding to the abscissa of 65 μg/m3 has the largest
proportion, and the proportion above 300 μg/m3 is the
smallest. This shows that the PM10 concentrations are mainly
clustered around 65 μg/m3. The other variables here show
similar tendencies.

Forecasting of TSP with ARIMA and LSTM

The ARIMA [21, 41] and LSTM [26, 28, 32] methods were
used to establish models for predicting the TSP concentration,
and the performances of the two methods were compared.
According to the principle of using 70% of the data for model
training and 30% of the data for model testing, in this study,
the first 1525 sets of data among the 2179 sets of data were
used as training samples for model training, and the remaining
654 were used as test samples to verify the model. The pre-
diction results from the ARIMA and LSTMmodels are shown
in Fig. 8.

It can be seen from Fig. 8a that both the ARIMA model and
the LSTM model can be used to predict the TSP concentration,
and both generally give good results. However, at the positions

of peaks, their predictions are comparatively poor, and the pre-
dicted values are too low. It can be seen from Fig. 8b that the
correlation coefficients between the predicted and the actual
values of the two models are greater than 0.9 (specifically
0.922 and 0.946), indicating that the prediction abilities of the
two models are similar and generally good. But when the dust
concentration is less than 180 μg/m3 or greater than 300 μg/m3,
the prediction errors of the two algorithms begin to increase.

Forecasting of TSP with ARIMA and LSTM-attention

The ARIMA [21, 41] and LSTM-Attention methods were
used to establish models for predicting the TSP concentration,
and the performances of the two methods were compared.
Again, the first 1525 sets of data were used as training samples
and the remaining 654 were used as test samples to verify the
model. The results are shown in Fig. 9.

Figure 9a shows that that both the ARIMA and LSTM-
Attention model can be used to predict the TSP concentration,
and both give reasonable results. Again, the under-prediction of
the ARIMA model at peaks can be seen. The LSTM-Attention
model, however, predicts the peaks significantly better. Figure 9b
shows that the correlation coefficient of the values predicted by the
LSTM-Attention model is 0.986, very much higher than that of
the ARIMA model. When the dust concentration is lower than
180 μg/m3, the prediction ability of the ARIMA model is only
average, and the error in the prediction is higher., The LSTM-
Attentionmodel, however, has a small overall error and only gives
small deviations from the actual values.

Fig. 6 Changes in dust concentrations; a variations of PM2.5, PM10, and TSP concentration over the study period; b changes in TSP concentration over
16 September 2019

Table 4 Analysis of prediction errors with PM2.5 and PM10 as the independent variable

Independent variable Learning paradigm RMSE (μg/m3) MAE (μg/m3) MAPE (%)

PM2.5 LSTM 29.517 21.215 11.573

PM10 23.204 19.435 8.537
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Forecasting of TSP with LSTM and LSTM-attention

The LSTM [26, 28, 32] and LSTM-Attention methods were
used to establish models for predicting the TSP concentration,
and the performances of the two methods were compared.
Once more, the first 1525 sets of data were used as training
samples and the remaining 654 were used as test samples to
verify the model. The results are shown in Fig. 10.

Similar to the analysis in the previous section, it can be seen
from Fig. 10a that both the LSTM model and the LSTM-
Attention model can be used to predict the TSP concentration,
and both give good results. However, oncemore, in contrast to
the LSTM-Attention model, at the positions of peaks, the
overall predictions of the LSTM model are too large. This is
again reflected in the correlation coefficients. When the dust
concentration is lower than 300 μg/m3, the errors of the two
prediction algorithms are small. When the dust concentration
is higher than 300 μg/m3, the errors of the two prediction
algorithms increase, but the prediction error of the LSTM
model is greater than that of the LSTM-Attention model,
which further shows that the LSTM-Attention model is better
than the LSTM model.

Comparative analysis of forecast results

In this study, the RMSE, MAE, MAPE, and R2 values were
selected as indicators to evaluate the accuracy of the predic-
tion model. A comparative analysis of the prediction results of
the three models is shown in Table 5.

It can be seen from Table 5 that all three prediction models
show good prediction ability. On the whole, the predictions of
the LSTM-Attention model are better than those of the
ARIMA model. This is related to the advantages of the
LSTM model. The LSTM model can handle a large amount
of air-quality and meteorological data, and even long-term
sequence data without gradual changes. In other words, the
LSTMmodel can fully reflect the historical process data in the
input time series, which is the advantage of the LSTM model
over the ARIMA model. Furthermore, the predictions of the
LSTM-Attention model are better than those of the LSTM
model. This shows that when the attention mechanism is
added to the LSTM model, the inherent characteristics of the
input data can be effectively extracted, and the prediction per-
formance can be improved. Based on our proposed hybrid
algorithm, the values of RMSE, MAE, and MAPE are

Fig. 7 Diagram of the
relationship between variables
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significantly reduced compared to the benchmark model, and
R2 has also been significantly improved.

Discussion

Sensitivity analysis

To verify the impact of small data changes on the prediction
results, a sensitivity analysis of the three methods was con-
ducted. The concentration of PM10 can have a large influence
on dust-concentration prediction. Since the PM10 concentra-
tion interval 70 μg/m3–300 μg/m3 accounts for 2/3 of the
overall data volume, this range was chosen for conducting a
sensitivity analysis of this parameter. The PM10 value was
varied in this range with a step size of 1, and different dust

concentration values were obtained. The results are shown in
Fig. 11.

It can be seen from the sensitivity analysis in Fig. 11 that in
231 tests, the value of dust concentration predicted using the
LSTM-Attention method had relatively little change, with a
maximum change rate of 0.18. In contrast, the maximum
change rate of the value of dust concentration predicted using
the LSTM method was 0.26, and the value of dust concentra-
tion predicted using the ARIMA method had relatively large
changes, with a maximum rate of change of 0.29. This shows
that LSTM-Attention is the least sensitive to changes in the
input value, but it also has a certain sensitivity, with small
changes and a certain degree of stability. This model can ef-
fectively avoid the problem of inaccuracy in the predicted
concentration value caused by algorithm defects.

Fig. 8 Forecasting results from the ARIMA and LSTM models. a Graph
of predicted changes in TSP concentration. b Graph of correlation
coefficient analysis

Fig. 9 Forecasting results from the ARIMA and LSTM-Attention
models. a Graph of predicted changes in TSP concentration. b Graph of
correlation coefficient
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Model comparison

To verify the feasibility and effectiveness of the proposed
LSTM-Attention model, we compared it with three other
models: simple RNN [16, 17], ARIMA [21, 22], and LSTM
[26–28]. After training all models with the same training set,
according to ambient air quality standards (GB3095–2012),
we divided 654 sets of validation data into two groups: those

with TSP concentration less than 300 μg/m3 and those with
TSP concentration greater than 300 μg/m3. A performance
evaluation was then performed on each model, and the results
are shown in Tables 6 and 7.

It can be seen from Tables 6 and 7 that with higher con-
centrations, the predictive abilities of all models become
worse. This conclusion is consistent with the previous analy-
sis. The three algorithms based on time series (ARIMA,
LSTM, and LSTM-Attention) are better than the algorithm
based on non-time series (Simple RNN). However, when the
attention mechanism is added to the LSTMmodel, the overall
difference in prediction accuracy for different concentrations
is minimal. This result is consistent with the results of the
sensitivity analysis and also further indicates the superiority
of the LSTM-Attention model.

Conclusion

In this study, the temporal characteristics of dust concen-
tration in an open-pit mine and its variation within the 24-
h cycle were revealed. The TSP concentration was pre-
dicted using meteorological data, time data, and a deep-

Fig. 10 Forecasting results from the LSTM and LSTM-Attentionmodels.
a Graph of predicted changes in TSP concentration. b Graph of correla-
tion coefficient analysis

Table 5 Comparative analysis of forecast results

Learning paradigm RMSE (μg/m3) MAE (μg/m3) MAPE
(%)

R2

ARIMA 24.797 18.905 10.604 0.922

LSTM 20.298 16.743 7.002 0.946

LSTM-Attention 16.298 13.028 6.108 0.974

Fig. 11 Sensitivity analysis of the effects of changing PM10
concentration on the three algorithms

Table 6 Comparative analysis of forecast results for data with TSP
concentration < 300 μg/m3

Learning paradigm RMSE (μg/m3) MAE (μg/m3) MAPE (%)

Simple RNN 30.718 22.623 14.059

ARIMA 23.652 19.523 10.102

LSTM 22.392 18.960 8.349

LSTM-Attention 21.831 18.061 7.539

412 J Environ Health Sci Engineer (2021) 19:401–414



learning method. The training and prediction perfor-
mances of the ARIMA, LSTM, and LSTM-Attention
models were evaluated. All three models had good train-
ing performance under the same conditions, with R2 >
0.90 and MAPE <12%. Comparing the prediction results,
the prediction ability of ARIMA was the worst, and
LSTM was second. However, the attention mechanism
was able to extract complex features to provide better
prediction ability and improve prediction accuracy, and
the LSTM-Attention model had the best prediction ability
and the highest stability.

The results of this study indicate the following. (1) The
average concentrations of PM2.5, PM10, and TSP in the
Anjialing open-pit coal mine over the study period were
60.89 μg/m3, 114.25 μg/m3, and 250.30 μg/m3, respectively.
The dust concentration changes were the highest in the period
08:00–09:00 and the lowest in the period 15:00–16:00. In
addition to the influence of meteorological parameters and
normal operations, the reason for this trend is the inversion
layer above the mine. (2) The performance evaluation results
show that the prediction accuracy is significantly improved,
by 22%, when both air-quality and meteorological data are
used, as compared to the case of using meteorological data
alone. (3) The proposed hybrid algorithm combines an LSTM
model with the attention mechanism. When compared with
the traditional ARIMA and LSTM models, this hybrid algo-
rithm improves the overall prediction accuracy by 5.6% and
3.0%, respectively. Therefore, it is suggested that the LSTM-
Attention model should be used to predict TSP concentration
in open-pit mines.

However, this study still has the following deficiencies.
(1) Because the inversion layer distribution is related to
the dust concentration of the open-pit mine,, we recom-
mend further study of the factors influencing the forma-
tion and dissipation of the inversion layer and their rela-
tionships with open-pit mine dust concentrations [43]. (2)
On the basis of the current research, we will conduct
further study into the relationship between field opera-
tions and the distribution of dust concentration. (3) With
reasonable design modifications, the hybrid algorithm
proposed in this paper is a good alternative for the pre-
diction of other air pollutants in other areas.
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