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Abstract
BACKGROUND 
Cholestatic liver diseases are characterized by an accumulation of toxic bile acids 
(BA) in the liver, blood and other tissues which lead to progressive liver injury 
and poor prognosis in patients.

AIM 
To discover and validate prognostic biomarkers of cholestatic liver diseases based 
on the urinary BA profile.

METHODS 
We analyzed urine samples by liquid chromatography-tandem mass spectrometry 
and investigated the use of the urinary BA profile to develop survival models that 
can predict the prognosis of hepatobiliary diseases. The urinary BA profile, a set 
of non-BA parameters, and the adverse events of liver transplant and/or death 
were monitored in 257 patients with cholestatic liver diseases for up to 7 years. 
The BA profile was characterized by calculating BA indices, which quantify the 
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composition, metabolism, hydrophilicity, formation of secondary BA, and toxicity 
of the BA profile. We have developed and validated the bile-acid score (BAS) 
model (a survival model based on BA indices) to predict the prognosis of 
cholestatic liver diseases.

RESULTS 
We have developed and validated a survival model based on BA (the BAS model) 
indices to predict the prognosis of cholestatic liver diseases. Our results 
demonstrate that the BAS model is more accurate and results in higher true-
positive and true-negative prediction of death compared to both non-BAS and 
model for end-stage liver disease (MELD) models. Both 5- and 3-year survival 
probabilities markedly decreased as a function of BAS. Moreover, patients with 
high BAS had a 4-fold higher rate of death and lived for an average of 11 mo 
shorter than subjects with low BAS. The increased risk of death with high vs low 
BAS was also 2-4-fold higher and the shortening of lifespan was 6-7-mo lower 
compared to MELD or non-BAS. Similarly, we have shown the use of BAS to 
predict the survival of patients with and without liver transplant (LT). Therefore, 
BAS could be used to define the most seriously ill patients, who need earlier 
intervention such as LT. This will help provide guidance for timely care for liver 
patients.

CONCLUSION 
The BAS model is more accurate than MELD and non-BAS models in predicting 
the prognosis of cholestatic liver diseases.

Key Words: Hepatobiliary diseases; Bile acid indices; Death; Liver transplant; Survival 
model; Prognosis
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Core Tip: We have developed survival models based on bile acid (BA) indices to 
predict the prognosis of hepatobiliary diseases. Our BA models outperformed the 
model for end-stage liver disease and non-BA models in predicting the occurrence of 
the adverse events of death and/or liver transplant.
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INTRODUCTION
Cholestatic liver diseases are hepatobiliary diseases associated with a reducing in bile 
flow due to impairment in bile production or failure of bile flow into bile duct[1]. 
Chronic liver diseases account for greater than 41000 deaths in the United States in 
2017, making it the 11th leading cause of mortality[2]. Most cholestatic diseases 
progress toward end stage liver failure, which likely requires liver transplantation. 
Even after liver transplantation, post-surgery complications are common, which may 
require liver re-transplantation[3].

Biomarkers currently used in the clinic for the diagnosis and prognosis of liver 
diseases are primarily serum liver enzymes such as aspartate transaminase (AST), 
alanine transaminase (ALT), and bilirubin. However, these markers have numerous 
shortfalls including the lack of specificity for liver or bile duct injuries as they can be 
elevated in hyperthyroidism, adrenal, heart, or muscle disorders. Also, severe cell 
injury has to occur before their levels increase[4,5]. Multifactorial models with 
multiple parameters based on these biomarkers are also frequently used and offer 
advantages compared to the use of their individual biomarker components such as the 
Child-Turcotte-Pugh score[2].
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More recently, the model for end-stage liver disease (MELD) was developed to 
predict three-month mortality of patients with end-stage liver disease[5,6]. MELD is 
calculated based on serum creatinine, bilirubin, international normalized ratio (INR), 
and Na+, which are related to both liver and renal functions. MELD is currently used 
in many countries to classify patients awaiting transplantation to identify patients with 
the highest priority for liver transplant (LT)[6]. Since its implementation, MELD led to 
an intense reduction in the number of people waiting for liver transplant and 
decreased mortality on the waiting list without affecting post-transplant survival[7]. 
MELD is also an effective predictor of outcome in other conditions, such as patients 
have cirrhosis going for surgery and patients with alcoholic hepatitis or fulminant 
hepatic failure[7]. However, MELD is based on three objective laboratory variables, 
that are not necessarily liver specific. For example, serum bilirubin can be elevated in 
cases of hemolysis or sepsis. Serum creatinine can also be elevated from an underlying 
kidney disease that unrelated to hepatorenal syndrome and is a poor surrogate of 
renal function in cirrhotic patients[8]. In addition, patients may have an elevated INR 
which can be secondary to warfarin use. Any of these conditions can increase the 
MELD score and overestimate the liver disease severity[9]. Furthermore, several 
studies have shown that patients with cholestatic liver diseases may still have high 
mortality rates despite having low MELD scores[10,11].

Numerous clinical and preclinical studies have shown up to a 100-fold increase in 
BA concentrations in urine with various hepatobiliary diseases[12-16]. The 
impediment in bile flow associated with cholestatic liver diseases cause accumulation 
of toxic BA in the liver and blood, which can worsen the liver condition that lead to 
their accumulation and contribute to the unfavorable liver disease prognosis[17]. 
However, the potential use of BA as a marker for liver diseases have never translated 
into a widespread use in the clinic[18,19], due to major limitations including the major 
differences of the physiologic and pathologic effects of the various individual BA and 
the extremely high inter- and intra-individual variability of BA concentrations.

To this regard, we have developed the concept of “BA Indices”, which are ratios 
calculated from the absolute concentration of individual BA and their metabolites. BA 
indices offered numerous advantages over absolute BA concentrations including low 
intra- and inter-individual variability and resistance to the influence of food 
consumption, age, gender, body mass index (BMI), and moderate alcohol 
consumption[19-21]. In the 1st part of this study, we have demonstrated that BA 
indices outperformed serum liver enzymes as biomarkers for the diagnosis of 
cholestatic liver diseases. In this second part of the study, we have developed survival 
models based on BA indices to predict the prognosis of hepatobiliary diseases. Our BA 
models outperformed the non-BA and MELD models in predicting the occurrence of 
the adverse events of death and/or LT.

MATERIALS AND METHODS
Study participants
New and existing patients of the University of Nebraska Medical Center (UNMC) 
hepatology clinic, who were diagnosed with one or multi-hepatobiliary conditions due 
to chronic hepatitis C (n = 63) , hepatitis B (n = 14), alcoholic liver disease/alcoholic 
cirrhosis (n = 103), primary biliary cholangitis (n = 11), primary sclerosing cholangitis (
n = 13), autoimmune hepatitis (n = 24), alpha-1-antitrypsin deficiency (n = 5), 
nonalcoholic fatty liver disease/nonalcoholic steatohepatitis (n = 51), carcinoma (n = 
24), cryptogenic cirrhosis (n = 10), polycystic liver disease (n = 5), elevated liver 
function test (n = 18), and unknown etiology (n = 5), were enrolled in this study. 
Table 1 shows a summary of our patient population characteristics. A total of 257 
patients (121 female and 136 male) between the ages of 19 and 83 years, who were 
treated for cholestatic liver diseases in UNMC, over the period from November of 2011 
to December of 2018, were recruited into the study. All participants were followed up 
for up to 7 years by collecting urine samples for BA analysis and monitoring non-BA 
parameters and adverse events including liver transplant, and death from their 
medical records.

The study was approved by the Institutional Review Board at UNMC and written 
informed consents were provided for all participating subjects. The registry URL was (
https://www.clinicaltrials.gov/ct2/show/NCT01200082?term=alnouti&draw=2&ran
k=1). The clinical trial number was NCT01200082. Thirty milliliters of urine samples 
were collected from patients on their first visit to the hepatology clinic. All urine 
samples were stored in -80 °C until analyzed by liquid chromatography-tandem mass 
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Table 1 Patient population characteristics

Patients Death Liver transplant
n 257 27 25

Gender

Male 136 21 17

Female 121 6 8

Age (yr)

mean ± SE 52.2 ± 0.71 55.9 ± 1.88 52.9 ± 2.1

Body mass index

mean ± SE 30.7 ± 0.45 29.65 ± 1.19 29.11 ± 0.45

Race

White 217 26 24

Black 11 0 0

Asian 7 0 0

Hispanic 4 0 1

Others 18 1 0

Non-BA parameters (mean ± SE)

Creatinine (mg/dL) 1.02 ± 0.09

Albumin (g/dL) 3.53 ± 0.04

INR 1.19 ± 0.02

Protime (s) 12.01 ± 0.42

AST (U/L) 59.9 ± 4.07

ALT (U/L) 54.9 ± 4.26

Bilirubin (mg/dL) 1.75 ± 0.15

AST/ALT 1.28 ± 0.04

MELD 10.6 ± 0.34

APRI 1.15 ± 0.11

BA: Bile acids; INR: International normalized ratio; AST: Aspartate aminotransferase; ALT: Alanine aminotransferase; MELD: Model for end-stage liver 
disease; APRI: Aspartate aminotransferase/platelet ratio index.

spectrometry (LC-MS/MS).

Non-BA parameters
The performance of potential biomarkers from the urinary BA profile was also 
compared with and existing markers of liver function including ALT, AST, serum 
creatinine, albumin, protime, INR, bilirubin, AST/ALT ratio, and AST/platelet ratio 
index (APRI). These markers were monitored using the patients’ medical records. Bile 
acid quantification by liquid chromatography–tandem mass spectrometry

Urine samples were extracted using solid phase extraction as described 
previously[8,22,23]. BA concentrations were quantified by LC-MS/MS, as we 
described previously.

Calculation of BA indices
BA profile in urine was characterized using BA “indices”, which describe the 
composition, hydrophobicity, toxicity, and metabolism of total and individual BA as 
we have described previously[8,22,23].

Statistical analysis
All statistical analysis was performed using the Statistical Product and Service 
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Solutions software, version 25 (IBM corporation, Armonk, NY, United States) and R 
software, version 3.6.3 (R Foundation for statistical Computing). A P value of 0.05 was 
considered significant for all the statistical tests described below.

Survival model development
Cox proportional hazards (PH) regression was used to develop survival models to 
predict the prognosis of hepatobiliary diseases in terms of progressing specifically into 
the end points/adverse events of death.

For the “death” models, the only endpoint/adverse event recorded was death at 3 
and 5 years. We only had 7 and 17 deaths occurring within earlier time points 
including 1 and 2 years, respectively, which was not enough to develop survival 
models. Patients who underwent liver transplant (LT) were censored with the date of 
transplantation. Patients still alive at the end of each period (3 and 5 years) were 
considered as censored at that time. The term ‘‘censored’’ indicates that the patient 
was alive at that date and that was the end of the follow-up[22]. Patients dropped off, 
not due to the occurrence of adverse event, i.e. death, before the end of the follow-up 
period, were censored at the last day they were seen in the clinic.

In addition to the “death only” models above, we also constructed models to predict 
death and/or LT. We followed the same approach as the “death” models, with the 
exception that the endpoint was the occurrence of the adverse events of either death or 
LT. Patients whom did not have either of the adverse events at the end of each period 
(3 and 5 years) were censored at that time.

Individual BA and non-BA variables were analyzed as possible predictors of 
survival in a univariate Cox regression analysis. Values of these variables included in 
the statistical analysis were obtained at the time of patients’ first visits. Significant 
variables (P < 0.05), which were identified from the univariate analysis were included 
in the multivariate analysis. To build the multivariate model a backward elimination 
regression method was used to retain the most significant variables with retention 
criteria of P < 0.05.

Model performance, goodness of fit and validation
Goodness of fit was performed by testing PH assumption for each covariate included 
in the final Cox model and for the global model as a whole. We used the bootstrapping 
for model validation.

Receiver operating characteristic (ROC) curve analyses was performed on the scores 
from the various multivariate Cox models to determine their cut-off values in differen-
tiating patients with vs without the adverse event. The cut-off values with optimum 
specificity and sensitivity were selected and the areas under the ROC curve (AUC) 
values were calculated.

Survival prediction
The average survival probability [S0 (t)] for a patient with an average score were 
calculated for different time points. To obtain the probability of survival for t years [S (
t)], first the score e.g. bile-acid score (BAS) is calculated, and finally S (t) is calculated 
using this equation: Survival probability for t years: S (t) = S0(t)exp(BAS - BAS0).

Where, BAS0 is the average score from all patients in this study.
Kaplan-Meier plots were used to display survival curves. We have divided patients 

into two categories of high vs low risk and compared their survival with the Log-rank 
test and Breslow test[22]. We have tried the median cut-off values of the model scores 
to define high vs low risk.

Models comparison
We have used multivariate cox regression analyses to build various models for the 
prediction of death. The performance of the different models in predicting the 
occurrence of death within 3- and 5-year periods were compared between the different 
models using the statistic outcomes from the Bootstrapping, Schoenfeld residuals, 
AUC, and Kaplan-Meier analyses.

RESULTS
Patient population characteristics
Table 1 shows a summary of the characteristics of the patient population in our study. 
The demographic variables were (age, BMI, gender, and race). Subjects were divided 
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into five race groups (White, Black, Asian, Hispanic, and others). During the 7-year 
follow-up period of 257 patients with cholestatic liver diseases, 27 patients (10.5%) 
died and 25 patients (9.7%) underwent liver transplantation.

We were interested in predicting the occurrence of adverse events of death within 3- 
and 5-year periods. During a 3-year follow-up period, 21 patients (8.2%) died and 19 
patients (7.4%) underwent liver transplantation. While during a 5-year follow-up 
period, 25 patients (9.7%) died and 21 patients (8.2%) underwent liver transplantation.

Univariate Cox regression analysis for death prediction 
Supplementary Table 1 shows the results of univariate Cox regression analyses for 
death prediction by BA Indices. Cox regression detects the risk of death associated 
with changes in BA indices. Positive regression coefficients imply that the risk of death 
increases with increasing the values of BA indices, while negative coefficients imply 
the risk of death increases with a decrease in the values of BA indices. We found 
correlation between the risk of death and many BA indices (P < 0.05).

The hazard ratio (HR) from Cox regressions analysis quantifies the magnitude of the 
risk of death per unit change in BA indices. Because BA concentrations and indices 
have different scales and units, we performed the same calculation per 10% and 20% of 
the mean value of each variable instead of per absolute unit. For example, for a 20% 
increase in the %CDCA, the risk of death increases 1.26-fold (HR: 1.26; P < 0.05).

We performed the same univariate cox regression analysis for demographics and 
non-BA parameters as well (Supplementary Table 2). Notably, the risk of death was 
significantly higher in males than females from this univariate analysis. Increasing 
levels of INR, protime, bilirubin, AST/ALT, APRI, and MELD also significantly 
increased the risk of death, whereas decreasing levels of albumin significantly 
increased the risk of death.

Multivariate Cox regression analysis for death prediction 
In multivariate analysis, a backward elimination regression was used to retain the 
most significant BA variables. The only BA variables retained in the multivariate 
model were %CDCA and %Tri-OH, which were independently predictive of survival 
(Table 2). For example, a 20% increase in the %CDCA and %Tri-OH increases the risk 
of death by 1.34-fold (HR: 1.34; P < 0.05) and 1.14-fold (HR: 1.14; P < 0.05), 
respectively. The BAS for individual patients can be calculated from this equation: 
BAS for death = 0.039 × %CDCA + 0.052 × %Tri-OH.

For example, for a patient with %CDCA of 20%, and a %Tri-OH of 50%, the BAS 
would be 3.38.

We performed the same multivariate Cox regression analysis for demographics and 
non-BA parameters as well. For demographic variables, gender was significant in 
univariate analysis, but did not retain in multivariate analysis when included in the 
BA model building. In contrast, gender retained in the multivariate analysis for the 
non-BA model, but with minimal improvement of model goodness of fit and 
validation (the Bootstrapping, Schoenfeld residuals, AUC, and Kaplan-Meier 
analyses). Therefore, we did not include gender in the multivariate Cox models and 
AST/ALT ratio was the only significant predictive variable of death (Table 2). For 
example, a 20% increase in the AST/ALT, increases the risk of death by 1.36-fold (HR: 
1.36; P < 0.05). The non-BAS for individual patients can be calculated from this 
equation: non-BAS for death = 1.236 × AST/ALT.

In addition, we used the same methodology to develop other models including: (1) 
mixed BA and non-BA variables including demographics to test how the performance 
of a global BA- and non-BA mixed model compares to the BA-only and non-BA-only 
models; (2) MELD variables with coefficients from our data set to create a model with 
the original MELD variables, but with model coefficients derived from our data set; 
and (3) original MELD modified with BA and/or non-BA variables including 
demographics, to test if the performance of the original MELD can be improved by 
adding significant BA and non-BA parameters from the univariate analysis and vice 
versa (Supplementary Table 3). Overall, none of these strategies produced any statist-
ically significant models neither they did improve the BA or non-BA-only model; 
therefore, were not further evaluated or validated.

Model performance, goodness of fit and validation 
Goodness of fit was performed by testing PH assumption for all the covariates of the 
final Cox model as well as for the global model as a whole, using a statistical test and a 
graphical diagnostic based on Schoenfeld residuals. A graphical diagnostic that shows 
a non-random pattern against time is evidence of violation of the PH assumption. The 

http://f6publishing.blob.core.windows.net/ba4b659e-012f-49bf-ad6d-d61e8e07a166/WJH-13-543-supplementary-material.pdf
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Table 2 Multivariate Cox regression analysis for death prediction

Hazard ratio: Exp (B)BA indices (%) and non-BA 
parameters

B-value (regression 
coefficient) Standard error P value

1 unit change 10% change 20% change

The BAS model 

%CDCA 0.039 0.010 0.000 1.040 1.159 1.344

%Tri-OH 0.052 0.016 0.001 1.053 1.069 1.142

The non-BAS model

AST/ALT 1.236 0.303 0.000 3.442 1.165 1.357

Using the regression coefficients from this table: The bile-acids score (BAS) equation is: the non-BAS equation is: BAS: Bile acids score; AST: Aspartate 
aminotransferase; ALT: Alanine aminotransferase.

PH assumption is supported by a non-significant relationship between residuals and 
time. The Schoenfeld residual plots and P values supported the validity of the BA and 
non-BA models (Supplementary Figure 1).

We also used the bootstrapping validation. Bootstrapping validation results for the 
BA and non-BA models indicate that our regression coefficients were in the range of 
the 95%CI, P values were statistically significant for each covariate, bias values and 
standard error values were very small (Supplementary Table 4). We can conclude that 
the Bootstrapping validation results supported the validity of the BA and non-BA 
models.

Figure 1 shows the ROC curves of the models for death prediction. For 5-year death 
prediction, the AUC for BAS, non-BAS, and MELD were 0.740, 0.653, and 0.683, 
respectively. For 3-year death prediction, the AUC for BAS, non-BAS, and MELD were 
0.761, 0.664, and 0.715, respectively. Potential cut-off values selected based on the 
optimum sensitivity and specificity for different models. The ROC-optimum scores for 
BA, non-BA, and MELD models for death prediction were 2.71, 1.72, and 10, 
respectively (Table 3).

Survival prediction 
Table 4 presents the estimated survival probability [S0 (t)] for a patient with an average 
BAS0 of 2.24 (the average BAS from all 257 patients in this study) for different time 
points. To obtain the survival probability for t years [S (t)], first BAS is calculated, S0 (t) 
is identified from Table 4, and finally S (t) is calculated using this equation: Survival 
probability for t years: S (t) = S0(t)exp(BAS - BAS0).

Where, BAS0 is the average BAS from all patients in this study; namely 2.24, while 
BAS is the BAS for that particular patient. For the same example patient discussed 
above, the probability of surviving for at least 3 years is: Survival probability for (3) 
years = 0.934 exp (3.38 - 2.24) = 0.81 = 81%

The relationship between estimated 5- and 3- year survival probability [S (t)] and 
the BAS in patients with liver disease are shown in Figure 2A. Survival probability 
decreases as a function of BAS. For example, the 5-year survival probability for 
patients with BAS of 1.2 (25th percentile of the population), 2.1 (50th percentile of the 
population i.e. median), and 3.1 (75th percentile of the population) are 97%, 93%, and 
82%, respectively. Similarly, the 3-year survival probability for patients with the same 
BAS above, are 98%, 94%, and 85%, respectively.

Table 4 presents the estimated survival probability [S0 (t)] for a patient with an 
average non-BAS0 of 1.58 for different time points. The survival probability for (t) 
years is calculated using this equation: Survival probability for t years: S (t) = S0(t)exp(non-

BAS - non-BAS0).
The relationship between estimated 5- and 3- year survival probability [S (t)] and 

the non-BAS in patients with liver disease are shown in Figure 2B. For example, the 5-
year survival probability for patients with non-BAS of 1.1 (25th percentile of the 
population), 1.4 (50th percentile of the population), and 1.9 (75th percentile of the 
population) are 92%, 90%, and 83%, respectively. Similarly, the 3-year survival 
probability for patients with the same non-BAS above, are 95%, 91%, and 86%, 
respectively.

By the end of the study, up to 7 years monitoring of 257 patients with cholestatic 
liver diseases, 27 patients (10.5%) have died. The Kaplan-Meier estimator was used to 
estimate subjects’ survival free of adverse events over time. We have tried the median 

http://f6publishing.blob.core.windows.net/ba4b659e-012f-49bf-ad6d-d61e8e07a166/WJH-13-543-supplementary-material.pdf
http://f6publishing.blob.core.windows.net/ba4b659e-012f-49bf-ad6d-d61e8e07a166/WJH-13-543-supplementary-material.pdf
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Table 3 Receiver operating characteristics analysis of bile-acids score, non- bile-acids score, and models for end stage liver diseases 
for death prediction

Models AUC (5-yr) AUC (3-yr) (Cutoff value; sensitivity, specificity)

BAS 0.740 0.761 (2.71; 74, 68)

non-BAS 0.653 0.664 (1.72; 67, 66)

MELD 0.683 0.715 (10; 62, 64)

AUC: Areas under the ROC curve; BAS: Bile acids score; MELD: Model for end-stage liver disease.

Table 4 Estimated survival probability [S0 (t)] for death prediction

t (mo) 5 7 14 24 36 60 76

The BAS

S0 (t) 0.993 0.985 0.971 0.948 0.934 0.916 0.901

The non-BAS

S0 (t) 0.989 0.978 0.958 0.924 0.902 0.876 0.855

BAS: Bile acids score.

of the BAS of the population (2.19) cut-off value to define high vs low risk of death 
(Figure 3A). The estimated mean survival time was 71 mo (5.9 years) for the high-risk 
group and 82 mo (6.8 years) for the lower risk group based on the median BAS of 2.19 
(Table 5). The P value of the log rank test and Breslow test were statistically significant 
(P value < 0.05), indicating the median cut-off of BAS, can differentiate low vs high risk 
of death.

Figure 3B shows the Kaplan Meier survival for the high vs low risk of death groups 
based on the median (1.44) for the non-BAS. The estimated mean survival time was 74 
mo (6.2 years) for the high-risk group and 79 mo (6.6 years) for the lower risk group 
based on the median non-BAS of 1.44. The P value from the log rank test and Breslow 
test was insignificant (P value > 0.05), indicating the median of non-BAS (1.44) cannot 
differentiate low vs high risk of death (Table 5).

Figure 3C shows the Kaplan Meier survival for the high vs low risk of death groups 
based on the median (11) for the MELD model. The estimated mean survival time was 
74 mo (6.2 years) for the high-risk group and 78 mo (6.5 years) for the lower risk group 
based on the median MELD of 11. The P value from the log rank test and Breslow test 
was insignificant (P value > 0.05), indicating the median of MELD (11) cannot differ-
entiate low vs high risk of death (Table 5).

Death and/or LT model
We have developed similar BAS and non-BAS multivariate cox models for the 
prediction of the adverse events of death and/or LT instead of death only (Supple-
mentary Table 5). Both models were also validated using the same criteria (data not 
shown). For both 3 and 5-years prediction, AUC was > 0.74 for both models (Supple-
mentary Figure 2 and Supplementary Table 6). Similar to the “death only” models, 
there were direct relationship between BAS and non-BAS and liver transplant-free 
survival (Supplementary Figure 3). The estimated mean liver transplant-survival time 
was 60 mo (4.9 years) for the high-risk group and 79 mo (6.6 years) for the lower risk 
group based on the median BAS (0.45), which were statistically different (Supple-
mentary Figure 4 and Supplementary Table 7).

DISCUSSION
We developed a survival model based on BA indices to predict the prognosis of 
hepatobiliary diseases in terms of progressing into the end point/adverse event of 
death over a 3- and 5-year period of time. Using the multivariate Cox regression 
analysis, we have constructed these final models for death prediction: (1) The BAS 

http://f6publishing.blob.core.windows.net/ba4b659e-012f-49bf-ad6d-d61e8e07a166/WJH-13-543-supplementary-material.pdf
http://f6publishing.blob.core.windows.net/ba4b659e-012f-49bf-ad6d-d61e8e07a166/WJH-13-543-supplementary-material.pdf
http://f6publishing.blob.core.windows.net/ba4b659e-012f-49bf-ad6d-d61e8e07a166/WJH-13-543-supplementary-material.pdf
http://f6publishing.blob.core.windows.net/ba4b659e-012f-49bf-ad6d-d61e8e07a166/WJH-13-543-supplementary-material.pdf
http://f6publishing.blob.core.windows.net/ba4b659e-012f-49bf-ad6d-d61e8e07a166/WJH-13-543-supplementary-material.pdf
http://f6publishing.blob.core.windows.net/ba4b659e-012f-49bf-ad6d-d61e8e07a166/WJH-13-543-supplementary-material.pdf
http://f6publishing.blob.core.windows.net/ba4b659e-012f-49bf-ad6d-d61e8e07a166/WJH-13-543-supplementary-material.pdf
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Table 5 Kaplan-Meier analysis for survival

Cutoff Total n n of events Estimated mean (mo) Standard error 95%CI

BAS

Median cutoff of 2.19

Low risk < 2.19 128 4 81.68 1.14 79.44-83.93

High risk > 2.19 129 23 70.72 2.5 65.81-75.62

Non-BAS

Median cutoff of 1.44

Low risk < 1.44 118 9 78.68 1.70 75.34-82.02

High risk > 1.44 139 18 73.97 2.21 69.64-78.29

MELD 

Median cutoff of 11

Low risk < 11 133 11 78.06 1.71 74.71-81.42

High risk > 11 124 16 73.91 2.35 69.29-78.52

BAS: Bile acids score; MELD: Model for end-stage liver disease.

model for death prediction: BAS for death = 0.039 × %CDCA + 0.052 × %Tri-OH; (2) 
The non-BAS model model for death prediction: non-BAS (non-BAS) for death = 1.236 
× AST/ALT. BAS in this population ranged from 0-4, while the non-BAS ranged from 
0.44-4.98.

Cholestatic diseases are associated with impaired bile flow to the intestine, which is 
expected to translate into reduced transformation of primary BA including CDCA and 
CA into secondary BA by intestinal bacteria. Therefore, accumulation of primary BA in 
the blood may indicate further impairment in bile flow and worsening of the liver 
diseases[8,22,23]. This is in agreement with the BAS model, where increased %CDCA 
and %Tri-OH BA (primarily consists of CA) were the most significant predictors of 
liver disease prognosis into death. Another interpretation for the accumulation of 
CDCA could be related to the fact that CDCA is the best substrate for bile salt export 
pump (BSEP), which is responsible for the efflux transport of BA across the canalicular 
membrane from hepatocytes into bile. Therefore, loss of BSEP function could be 
associated with the progression of the liver disease[8,22], which leads to CDCA 
accumulation in the liver and eventually into the systemic circulation.

Goodness of fit was performed by testing PH assumption using a statistical test and 
a graphical diagnostic based on Schoenfeld residuals. For death prediction, the PH 
assumption was met in both BA and non-BA models supporting their validity (Supple-
mentary Figure 1). In addition, we used the bootstrapping method for model 
validation. Bootstrapping validation results supported the validity of both the BA and 
non-BA models for death prediction (Supplementary Table 4). Further validation 
efforts are also ongoing to build internal and eventually external data sets for more 
rigorous model validation.

We used ROC analysis to compare the accuracy of our prognostic models. The 
higher the AUC under the ROC curve, the greater the overall accuracy of the marker in 
distinguishing between groups. For prognostic models, AUC of 0.9 or greater is rarely 
seen, AUC between 0.8 and 0.9 indicates excellent diagnostic accuracy, and any AUC 
over 0.7 may be considered clinically useful[23,24]. ROC curves are also used to 
determine cut-off values which quantify the normal ranges of biomarkers. The 
selection of optimum cut-off values is a tradeoff between sensitivity and specificity. 
Accordingly, scores for the BA, non-BA, and MELD models for death prediction of 
2.71, 1.72, and 10, respectively, were identified as cut-off values with optimum 
sensitivity vs specificity (Table 3).

For 5-year death prediction, the AUC for BAS was 0.74 compared to 0.65 for non-
BAS and 0.68 for MELD models (Figure 1A). Similarly, for 3-year death prediction, the 
AUC for BAS was 0.76 compared to 0.66 for non-BAS and 0.71 for MELD models 
(Figure 1B). In addition, BAS sensitivity in death prediction (74% vs 67% and 62%) was 
7% and 12% higher than non-BAS and MELD, respectively. BAS specificity was also 
higher than non-BAS and MELD (68% vs 66% and 64%). Therefore, ROC analysis show 

http://f6publishing.blob.core.windows.net/ba4b659e-012f-49bf-ad6d-d61e8e07a166/WJH-13-543-supplementary-material.pdf
http://f6publishing.blob.core.windows.net/ba4b659e-012f-49bf-ad6d-d61e8e07a166/WJH-13-543-supplementary-material.pdf
http://f6publishing.blob.core.windows.net/ba4b659e-012f-49bf-ad6d-d61e8e07a166/WJH-13-543-supplementary-material.pdf
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Figure 1 Receiver operating characteristics curves of bile-acids score, non- bile-acids score, and model for end stage liver diseases for 
death prediction. A: The area under the receiver operating characteristic curves (AUC) for bile-acids score (BAS), non-BAS, and model for end stage liver 
diseases (MELD) for 5-year death prediction; B: The AUC for BAS, non-BAS, and MELD for 3-year death prediction. AUC: Area under the receiver operating 
characteristic curves; BAS: Bile-acids score; MELD: Model for end stage liver diseases.

that BAS is more accurate and results in higher true-positive and true-negative 
prediction of death compared to both non-BAS and MELD.

The Cox survival model can be used to predict the survival probability at any time 
point. The survival probability for t years [S (t)] was calculated for every subject using 
both BAS and non-BAS models, as: Survival probability for (t) years: S (t) = S0 (t) 
exp (BAS -2.24), survival probability for (t) years: S (t) = S0 (t) exp (non-BAS -1.58).

Where S0 (t) presents the estimated survival probability for a patient with an average 
BAS of 2.24 or non-BAS of 1.58 for different time points (Table 4).

As shown in Figure 2, both 5- and 3-year survival probabilities decrease as a 
function of both BA and non-BAS. For example, the 3-year survival probability for 
patients with BAS of 1.2 (25th percentile of the population), 2.1 (50th percentile of the 
population i.e. median), and 3.1 (75th percentile of the population) are 98%, 94%, and 
85%, respectively. While, the 3-year survival probability for patients with equivalent 
non-BAS (25th, 50th, and 75th population percentiles) are 95%, 91%, and 86%, 
respectively.
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Figure 2 Estimated 5- and 3-year survival [S (t)] from the bile-acids score and non- bile-acids score models. A: The relationship between 
estimated 5- and 3- year survival probability [S (t)] as a function of bile-acids score (BAS); B: The relationship between estimated 5- and 3- year survival probability [S 
(t)] as a function of non-BAS. Q1, Q2, and Q3 are 25th, 50th, and 75th percentiles of the population, respectively. BAS: Bile-acids score.

The Kaplan-Meier estimator was used to estimate subjects’ survival free of adverse 
event over time. Median cut-off for BAS (2.19) was able to differentiate low vs high risk 
of death. While the median cut-offs for non-BAS and MELD were not able to differ-
entiate low vs high risk of death (Figure 3 and Table 5).

Twenty-three patients with high BAS (> the median BAS of 2.19) died vs four 
patients with low BAS (< the median BAS of 2.19) for the entire study. Therefore, 19 
more patients died with high compared to low BAS. In contrast, nine and five more 
subjects with high non-BAS and high MELD have died compared to low non-BAS and 
low MELD, respectively. Also, patients with low BAS lived for an average of 82 mo, 
while patients with high BAS lived for an average of 71 mo since their diagnosis with 
the liver diseases. Therefore, patients with low BAS lived 11 mo longer than patients 
with high BAS. On the other hand, patients with low non-BAS or low MELD (< 
median score), lived, in average, for only five or four months longer, compared to the 
high non-BAS or high MELD (high score), respectively (Table 5). Consequently, the 
shortening of lifespan between patients with high vs low BAS was 6-7 mo more 
compared to high non-BAS or high MELD. Also, the number of deaths with high BAS 
is 2-4-fold higher than that with high non-BAS or high MELD. Therefore, it can be 
concluded that in this patient population, patients with high BAS are at a much higher 
risk of death compared to patients with high MELD or high non-BAS.

Similar conclusions can be made regarding the death and/or LT prediction models. 
Patients with high BAS lived without need for LT 2-5 mo less than patients with high 
non-BAS or high MELD. Therefore, patients with high BAS are at a higher risk of 
death and/or LT compared to patients with high MELD or high non-BAS (Supple-
mentary Figures 2-4) and (Supplementary Tables 5-7).

CONCLUSION
In summary, we have developed and validated a survival model based on BA (the 
BAS model) indices to predict the prognosis of cholestatic liver diseases. Our results 
demonstrate that the BAS model is more accurate and results in higher true-positive 

http://f6publishing.blob.core.windows.net/ba4b659e-012f-49bf-ad6d-d61e8e07a166/WJH-13-543-supplementary-material.pdf
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Figure 3 Kaplan-Meier survival plots for high vs low bile-acids score, non- bile-acids score, and models for end stage liver diseases. aP 
value < 0.05 from the Log rank and Breslow tests. A: The median cutoff value of the bile-acids score (BAS) was used to define high vs low risk of death; B: The 
median cutoff value of the non-BAS was used to define high vs low risk of death; C: The median cutoff value of the model for end stage liver diseases was used to 
define high vs low risk of death. BAS: Bile-acids score; MELD: Model for end stage liver diseases.

and true-negative prediction of death compared to both non-BAS and MELD models. 
Both 5- and 3-year survival probabilities markedly decreased as a function of BAS. 
Moreover, patients with high BAS had a 4-fold higher rate of death and lived for an 
average of 11 mo shorter than subjects with low BAS. The increased risk of death with 
high vs low BAS was also 2-4-fold higher and the shortening of lifespan was 6-7-mo 
lower compared to MELD or non-BAS. Similarly, we have shown the use of BAS to 
predict the survival of patients with and without LT. Therefore, BAS could be used to 
define the most seriously ill patients, who need earlier intervention such as LT. This 
will help provide guidance for timely care for liver patients.

ARTICLE HIGHLIGHTS
Research background
Most cholestatic diseases progress toward end stage liver failure, which likely requires 
liver transplantation. Numerous clinical and preclinical studies have shown up to a 
100-fold increase in bile acids (BA) concentrations in urine with various hepatobiliary 
diseases. However, due to their high inter-and intra-individual variability, BA has not 
been used in clinic as markers for the diagnosis and prognosis of liver diseases. To this 
end, we have developed the concept of BA indices and utilized it to build a survival 
model to predict the prognosis of liver diseases.

Research motivation
Biomarkers currently used in the clinic for the diagnosis and prognosis of liver 
diseases are primarily serum liver enzymes. Model for end-stage liver disease (MELD) 
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was developed to predict three-month mortality of patients with end-stage liver 
disease. MELD is based on three objective laboratory variables that are not necessarily 
liver specific. The potential use of BA as a marker for liver diseases has never 
translated into a widespread use in the clinic. To this end, we have developed the 
concept of BA indices and utilized it to build a survival model to predict the prognosis 
of liver diseases.

Research objectives
The objective of this project was to discover and validate prognostic biomarkers of 
cholestatic liver diseases based on the urinary BA profile. We investigated the use of 
the urinary BA profile to develop survival models to predict the prognosis of hepato-
biliary diseases. One application for BAS could be to define the most seriously ill liver 
patients, who may need earlier intervention such as liver transplantation.

Research methods
Sample analysis: Liquid chromatography-tandem mass spectrometry. Statistical 
analysis: univariate and multivariate Cox proportional hazards regression, testing 
proportional hazards assumption, receiver operating characteristic curve, survival 
probability, and Kaplan-Meier plots.

Research results
The bile-acid score (BAS) model (a survival model based on BA indices) was more 
accurate and results in higher true-positive and true-negative prediction of death 
compared to both non-BAS and MELD models. Both 3- and 5-year survival probab-
ilities markedly decreased as a function of BAS. Patients with high BAS had a 4-fold 
higher rate of death and lived for an average of 11 mo shorter than subjects with low 
BAS. The increased risk of death with high vs low BAS was also 2-4-fold greater and 
the shortening of lifespan was 6-7-mo lower compared to MELD or non-BAS.

Research conclusions
We have developed and validated a survival model (the BAS model) based on BA 
indices to predict the prognosis of cholestatic liver diseases.

Research perspectives
BAS could be used to define the most seriously ill patients, who need earlier 
intervention such as liver transplant. This will help provide guidance for timely care 
for liver patients.

ACKNOWLEDGEMENTS
The authors wish to thank the nurses of the CRC (Mary Ann Martin, Cindy Cowarden, 
Caroline Peterson, Claire Haier, and Mary Phillips) and the staff for their valuable 
contributions to managing the health control arm of the study, recruiting subjects, and 
collecting samples.

REFERENCES
Hofmann AF. The continuing importance of bile acids in liver and intestinal disease. Arch Intern 
Med 1999; 159: 2647-2658 [PMID: 10597755 DOI: 10.1001/archinte.159.22.2647]

1     

Monte MJ, Marin JJ, Antelo A, Vazquez-Tato J. Bile acids: chemistry, physiology, and 
pathophysiology. World J Gastroenterol 2009; 15: 804-816 [PMID: 19230041 DOI: 
10.3748/wjg.15.804]

2     

Khurana S, Raufman JP, Pallone TL. Bile acids regulate cardiovascular function. Clin Transl Sci 
2011; 4: 210-218 [PMID: 21707953 DOI: 10.1111/j.1752-8062.2011.00272.x]

3     

Thomas C, Pellicciari R, Pruzanski M, Auwerx J, Schoonjans K. Targeting bile-acid signalling for 
metabolic diseases. Nat Rev Drug Discov 2008; 7: 678-693 [PMID: 18670431 DOI: 
10.1038/nrd2619]

4     

Maillette de Buy Wenniger L, Beuers U. Bile salts and cholestasis. Dig Liver Dis 2010; 42: 409-418 
[PMID: 20434968 DOI: 10.1016/j.dld.2010.03.015]

5     

Pauli-Magnus C, Meier PJ. Hepatocellular transporters and cholestasis. J Clin Gastroenterol  2005; 
39: S103-S110 [PMID: 15758645 DOI: 10.1097/01.mcg.0000155550.29643.7b]

6     

Palmer RH. Bile acids, liver injury, and liver disease. Arch Intern Med 1972; 130: 606-617 [PMID: 
4627840]

7     

http://www.ncbi.nlm.nih.gov/pubmed/10597755
https://dx.doi.org/10.1001/archinte.159.22.2647
http://www.ncbi.nlm.nih.gov/pubmed/19230041
https://dx.doi.org/10.3748/wjg.15.804
http://www.ncbi.nlm.nih.gov/pubmed/21707953
https://dx.doi.org/10.1111/j.1752-8062.2011.00272.x
http://www.ncbi.nlm.nih.gov/pubmed/18670431
https://dx.doi.org/10.1038/nrd2619
http://www.ncbi.nlm.nih.gov/pubmed/20434968
https://dx.doi.org/10.1016/j.dld.2010.03.015
http://www.ncbi.nlm.nih.gov/pubmed/15758645
https://dx.doi.org/10.1097/01.mcg.0000155550.29643.7b
http://www.ncbi.nlm.nih.gov/pubmed/4627840


Alamoudi JA et al. BA indices as prognostic biomarkers

WJH https://www.wjgnet.com 556 May 27, 2021 Volume 13 Issue 5

Bathena SP, Thakare R, Gautam N, Mukherjee S, Olivera M, Meza J, Alnouti Y. Urinary bile acids 
as biomarkers for liver diseases II. Signature profiles in patients. Toxicol Sci 2015; 143: 308-318 
[PMID: 25344563 DOI: 10.1093/toxsci/kfu228]

8     

Makino I, Hashimoto H, Shinozaki K, Yoshino K, Nakagawa S. Sulfated and nonsulfated bile acids 
in urine, serum, and bile of patients with hepatobiliary diseases. Gastroenterology 1975; 68: 545-553 
[PMID: 1112456]

9     

Summerfield JA, Cullen J, Barnes S, Billing BH. Evidence for renal control of urinary excretion of 
bile acids and bile acid sulphates in the cholestatic syndrome. Clin Sci Mol Med 1977; 52: 51-65 
[PMID: 606464 DOI: 10.1042/cs0520051]

10     

Takikawa H, Beppu T, Seyama Y. Urinary concentrations of bile acid glucuronides and sulfates in 
hepatobiliary diseases. Gastroenterol Jpn 1984; 19: 104-109 [PMID: 6735068 DOI: 
10.1007/bf02806931]

11     

van Berge Henegouwen GP, Brandt KH, Eyssen H, Parmentier G. Sulphated and unsulphated bile 
acids in serum, bile, and urine of patients with cholestasis. Gut 1976; 17: 861-869 [PMID: 1001976 
DOI: 10.1136/gut.17.11.861]

12     

LaRusso NF, Shneider BL, Black D, Gores GJ, James SP, Doo E, Hoofnagle JH. Primary sclerosing 
cholangitis: summary of a workshop. Hepatology 2006; 44: 746-764 [PMID: 16941705 DOI: 
10.1002/hep.21337]

13     

Dueland S, Reichen J, Everson GT, Davis RA. Regulation of cholesterol and bile acid homoeostasis 
in bile-obstructed rats. Biochem J 1991; 280 (Pt 2): 373-377 [PMID: 1747109 DOI: 
10.1042/bj2800373]

14     

Kawai H, Kudo N, Kawashima Y, Mitsumoto A. Efficacy of urine bile acid as a non-invasive 
indicator of liver damage in rats. J Toxicol Sci 2009; 34: 27-38 [PMID: 19182433 DOI: 
10.2131/jts.34.27]

15     

Geuken E, Visser D, Kuipers F, Blokzijl H, Leuvenink HG, de Jong KP, Peeters PM, Jansen PL, 
Slooff MJ, Gouw AS, Porte RJ. Rapid increase of bile salt secretion is associated with bile duct injury 
after human liver transplantation. J Hepatol 2004; 41: 1017-1025 [PMID: 15582136 DOI: 
10.1016/j.jhep.2004.08.023]

16     

Buis CI, Geuken E, Visser DS, Kuipers F, Haagsma EB, Verkade HJ, Porte RJ. Altered bile 
composition after liver transplantation is associated with the development of nonanastomotic biliary 
strictures. J Hepatol 2009; 50: 69-79 [PMID: 19012987 DOI: 10.1016/j.jhep.2008.07.032]

17     

Ramaiah SK. A toxicologist guide to the diagnostic interpretation of hepatic biochemical parameters. 
Food Chem Toxicol 2007; 45: 1551-1557 [PMID: 17658209 DOI: 10.1016/j.fct.2007.06.007]

18     

Ozer J, Ratner M, Shaw M, Bailey W, Schomaker S. The current state of serum biomarkers of 
hepatotoxicity. Toxicology 2008; 245: 194-205 [PMID: 18291570 DOI: 10.1016/j.tox.2007.11.021]

19     

Huang WM, Seubert DE, Donnelly JG, Liu M, Javitt NB. Intrahepatic cholestasis of pregnancy: 
detection with urinary bile acid assays. J Perinat Med 2007; 35: 486-491 [PMID: 18052835 DOI: 
10.1515/JPM.2007.128]

20     

Muraji T, Harada T, Miki K, Moriuchi T, Obatake M, Tsugawa C. Urinary sulfated bile acid 
concentrations in infants with biliary atresia and breast-feeding jaundice. Pediatr Int 2003; 45: 281-
283 [PMID: 12828581 DOI: 10.1046/j.1442-200x.2003.01710.x]

21     

Bathena SP, Thakare R, Gautam N, Mukherjee S, Olivera M, Meza J, Alnouti Y. Urinary bile acids 
as biomarkers for liver diseases I. Stability of the baseline profile in healthy subjects. Toxicol Sci 
2015; 143: 296-307 [PMID: 25344562 DOI: 10.1093/toxsci/kfu227]

22     

Bathena SP, Mukherjee S, Olivera M, Alnouti Y. The profile of bile acids and their sulfate 
metabolites in human urine and serum. J Chromatogr B Analyt Technol Biomed Life Sci 2013; 
942-943: 53-62 [PMID: 24212143 DOI: 10.1016/j.jchromb.2013.10.019]

23     

Pagano M, Gauvreau K.   Principles of Biostatistics. 2nd ed. Brooks/Cole: Duxbury, 2000: 259-33124     

http://www.ncbi.nlm.nih.gov/pubmed/25344563
https://dx.doi.org/10.1093/toxsci/kfu228
http://www.ncbi.nlm.nih.gov/pubmed/1112456
http://www.ncbi.nlm.nih.gov/pubmed/606464
https://dx.doi.org/10.1042/cs0520051
http://www.ncbi.nlm.nih.gov/pubmed/6735068
https://dx.doi.org/10.1007/bf02806931
http://www.ncbi.nlm.nih.gov/pubmed/1001976
https://dx.doi.org/10.1136/gut.17.11.861
http://www.ncbi.nlm.nih.gov/pubmed/16941705
https://dx.doi.org/10.1002/hep.21337
http://www.ncbi.nlm.nih.gov/pubmed/1747109
https://dx.doi.org/10.1042/bj2800373
http://www.ncbi.nlm.nih.gov/pubmed/19182433
https://dx.doi.org/10.2131/jts.34.27
http://www.ncbi.nlm.nih.gov/pubmed/15582136
https://dx.doi.org/10.1016/j.jhep.2004.08.023
http://www.ncbi.nlm.nih.gov/pubmed/19012987
https://dx.doi.org/10.1016/j.jhep.2008.07.032
http://www.ncbi.nlm.nih.gov/pubmed/17658209
https://dx.doi.org/10.1016/j.fct.2007.06.007
http://www.ncbi.nlm.nih.gov/pubmed/18291570
https://dx.doi.org/10.1016/j.tox.2007.11.021
http://www.ncbi.nlm.nih.gov/pubmed/18052835
https://dx.doi.org/10.1515/JPM.2007.128
http://www.ncbi.nlm.nih.gov/pubmed/12828581
https://dx.doi.org/10.1046/j.1442-200x.2003.01710.x
http://www.ncbi.nlm.nih.gov/pubmed/25344562
https://dx.doi.org/10.1093/toxsci/kfu227
http://www.ncbi.nlm.nih.gov/pubmed/24212143
https://dx.doi.org/10.1016/j.jchromb.2013.10.019


Published by Baishideng Publishing Group Inc 

7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA 

Telephone: +1-925-3991568 

E-mail: bpgoffice@wjgnet.com 

Help Desk: https://www.f6publishing.com/helpdesk 

https://www.wjgnet.com

© 2021 Baishideng Publishing Group Inc. All rights reserved.

mailto:bpgoffice@wjgnet.com
https://www.f6publishing.com/helpdesk
https://www.wjgnet.com

