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Abstract
Artificial neural networks (ANNs) are one of the primary types of artificial 
intelligence and have been rapidly developed and used in many fields. In recent 
years, there has been a sharp increase in research concerning ANNs in 
gastrointestinal (GI) diseases. This state-of-the-art technique exhibits excellent 
performance in diagnosis, prognostic prediction, and treatment. Competitions 
between ANNs and GI experts suggest that efficiency and accuracy might be 
compatible in virtue of technique advancements. However, the shortcomings of 
ANNs are not negligible and may induce alterations in many aspects of medical 
practice. In this review, we introduce basic knowledge about ANNs and 
summarize the current achievements of ANNs in GI diseases from the perspective 
of gastroenterologists. Existing limitations and future directions are also proposed 
to optimize ANN’s clinical potential. In consideration of barriers to interdiscip-
linary knowledge, sophisticated concepts are discussed using plain words and 
metaphors to make this review more easily understood by medical practitioners 
and the general public.
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Core Tip: This review summarizes the current achievements and existing limitations of 
artificial neural networks (ANNs) used in gastrointestinal (GI) diseases. The future 
directions of ANNs are also discussed to provide references for promoting its clinical 
value. To make this review readable, we introduce the basic knowledge of ANN and 
illustrate the contents from the perspective of gastroenterologists. ANN is believed to 
play a critical role in clinical practice of GI diseases.
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INTRODUCTION
The concept of artificial intelligence (AI) was first proposed at Dartmouth Conferences 
in 1956. Although definitions of AI vary, it is universally accepted that AI is designed 
to perform tasks that were previously fulfilled only by human intelligence. The debate 
on future directions of AI continues today. In the past few decades, AI has only been 
used to construct complex mathematical models. With the concurrent advancement of 
hardware, data, operation, and algorithm, AI has exhibited incomparable significance 
in many fields, such as fingerprint identification, information retrieval, and language 
translation. From 2016 to 2017, Robot AlphaGo driven by AI continuously defeated 
two world class Go grandmasters, which improved the connatural cognizance towards 
computer functions and drove us to reconsider the relationship between AI and 
human beings in the future.

As a branch of computer science, the integration of the cross-curricular interests of 
AI provides a strong boost for medicine. Many studies have focused on AI-aided 
screening, prevention, diagnosis, treatment, and health management. Since the 
MYCIN system was invented for clinical decisions with regard to infectious diseases in 
the 1970s[1], multiple systems supported by AI have been produced to meet the needs 
of medical care. For example, the AlmeHealthCoach system can automatically arrange 
medication regimens for patients at home. MedicalGraph can analyze the medical 
records and relevant laboratory tests to predict patients’ disease risk. These 
productions also performed well in the field of medical robots, imaging diagnosis, and 
research on new drugs. Such progress has broken through unwavering predicaments 
of current medicine.

Artificial neural networks (ANNs) belong to a subtype of AI and have been used in 
many subspecialties of clinical medicine, including pathology[2], radiology[3], 
cardiovasology[4], neurology[5], orthopaedics[6], and gastroenterology[7]. Gastrointes
-tinal (GI) tract disorders are diseases of the human digestive system and the 
therapeutic regimens of GI diseases strongly rely on imaging examinations. Mass 
image data are burdensome to radiologists, potentially increasing the odds of 
inaccurate clinical decisions. Compelling evidence has suggested that ANNs could 
effectively solve this problem[7-9]. Conversely, the rapid improvement of ANNs 
demands that clinicians enrich their knowledge and fully understand the strengths 
and pitfalls of ANNs.

This review focuses on the application of ANNs in GI diseases. We first introduce 
the basic knowledge of ANNs to help readers with a foundation for learning. The 
current achievements of ANNs are systematically summarized based on their applic-
ations. The characteristics, limitations, and future directions of research are then 
proposed from the perspective of gastroenterologists.

OVERVIEW OF ANN
Machine learning 
Machine learning (ML) is a method that endows computers with the ability to actively 
analyze data. If AI is a metaphor for one person, ML is like the brain of that person. 
The birth of ML serves as the fruit of multidisciplinary crosstalk, including statistics, 
probability theory, approximation theory, and algorithm complexity. The intrinsic 
connection of variables can be deduced based on learning experiences, as with a 
reasoned detective to reconstruct the crime from known facts. The cultivation of a 
detective requires the accumulation of basic knowledge and experience in handling 
many experiences. The detective will be qualified to participate in cases only after he 
receives adequate training and passes exams. Similarly, ML algorithms receive many 
data with known answers, and the resulting operation formula can be constructed to 
manage specific problems. This process is defined as the training phase. Different from 
classical linear functions, ML is automatic and unobservable. After training, ML 
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algorithms will be tested with external datasets during validation phase, from which 
the test results are critical indicators of model efficiency and accuracy. Common 
algorithms for ML include ANNs, decision trees, naïve Bayes, support vector 
machines (SVMs), random forest, and expectation maximization.

Based on the learning approaches, ML can be typically divided into four 
subfamilies: (1) Supervised; (2) Unsupervised; (3) Semi-supervised; and (4) Rein-
forcement learning. Supervised ML is given a dataset with known correct output (i.e., 
labelled data), and the accuracy of the models is gradually optimized via feedback of 
labelled data. For example, to construct a model for pathological classification between 
gastric cancer (GC) and normal tissues, the diagnostic results in the internal datasets 
should be labelled. Supervised ML aims to solve two primary tasks: (1) Classification, 
such as rapid review of chest X-rays; and (2) Regression, such as predicting the 
recurrence risk of cancer patients based on clinical indices. These two tasks are based 
on the exploration of potential rules among variables. Logistic regression, back 
propagation neural networks (BPNNs), and K-nearest neighbors are common ML 
algorithms. Notably, most studies involved in this review are supervised models.

Unsupervised ML refers to a learning dataset without effective labels. This learning 
approach is typically used for disorderly and unsystematic data. Clustering is the 
representative use of unsupervised ML and can help uncover innate models and 
groups based on exploratory data. Taking next-generation sequencing as an example, 
tens of thousands of gene expression levels are listed. Genes will be clustered based on 
expression similarities and the process does not require prelabelled data. Additionally, 
unsupervised ML can be used to group and label datasets for next-step supervised 
algorithms.

Semi-supervised learning serves as an important helper for pattern recognition. It 
combines supervised and unsupervised approaches that flexibly use labelled and 
unlabeled data, thus integrating the advantages of both types. During semi-supervised 
learning, unsupervised parts can save the cost of human labor for labelling or 
classifying mass data, as well as decrease the difficulties of data handling, while the 
supervised part can guarantee model accuracy. Self-training, transductive learning, 
and transductive SVM are all types of semi-supervised learning.

Reinforcement learning is copied from the psychological process of acquired 
behaviors. Like training pets, any preset data are not required. Algorithms are 
gradually fed by signals in each layer and then receive “rewards” or “penalties” 
instantaneously after evaluating errors between true values and output data. The 
efficiency of algorithms can be adjusted during learning, and the core rules of 
reinforcement learning is maximizing rewards and minimizing penalties. How to 
obtain optimal balances and reliability allocation remains the most challenging 
problem for investigators. Currently, computers can independently solve complex 
problems based on reinforcement learning, as in Robot AlphaGo.

ANN history and fundamentals
The concept of ANN was first proposed in 1943. The development of ANN models has 
complicatedly approached from then on. In the 1980s, the rapid progress of ANN 
algorithms boosted a modern revolution (Figure 1). The design of ANNs is based on 
the human brain’s neural network. An ANN is primarily composed of many neurons. 
The data flow (i.e., the signal) is passed and programmed across neural nodes. 
Neurons in the different layers have their own missions to solve problems, which can 
be analogous to factory production lines. The deconstruction of missions for data 
analysis provides the ability to find the optimal solution within the shortest time. As a 
type of parallel distributed system driven by mass data, ANNs are free from the 
requirements of logical or mathematical associations known beforehand.

The structure of an ANN can be divided into three parts (Figure 2). First, input 
layers are responsible for receiving signals from specific datasets and serve as the 
“eye” of ANN to view the external environments. Second, hidden layers are 
predominant stages of ANNs and hinge on associations between input and output 
data. Raw data from input layers will be processed by neurons, and the numbers of 
hidden layers are always more than one. Missions for ANNs can be subtly 
disassembled and distributed into several layers. The multilayer structure promotes 
the efficiency of data analysis. Neurons in layers have serial connections based on 
settled sequences rather than parallel or parallel-series connections. Last, output layers 
make the final decisions and output results.

Common terms that describe shapes and capabilities of ANNs are listed (Table 1). 
The depth determines the efficiency of ANNs. The simplest ANN is a single-layer 
network (i.e., a perceptron neural network) and has one input layer, one output layer, 
and one hidden layer. A single-layer network can only be used to describe a single 
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Table 1 Terms commonly used to describe artificial neural network structures

Term of ANN Specific meaning

Size Number of neurons in the whole model

Width Number of neurons in the one layer

Depth Number of layers

Framework Arrangement methods of layers and neurons

Capability The reflection contents of reality by the specific model

ANN: Artificial neural networks.

Figure 1 In the 1980s, the rapid progress of artificial neural network algorithms boosted a modern revolution. ANN: Artificial neural network; 
BPNN: Back propagation neural network; CNN: Convolutional neural network.

dichotomy based on a single factor, thus making most problems beyond its 
capabilities. Amplifying ANN depth can geometrically augment competence of fitting 
complicated features. Researchers began to create ANN models with multiple layers. 
Even in 2016, He et al[10] reported an ANN model with over 1000 layers[10]. However, 
excessive ANN depth may lead to system instability and loss of superficial learning 
abilities.

Each layer has a definite mission if the dataset volume and ANN depth are set. 
Width can be compared to the number of workers in a production line. Adequate 
workers will improve the qualities of tasks, while labor redundance will yield negative 
effects. A broad ANN width enhances the access to different data features, while a 
narrow width leads to low efficiency of feature extraction and excessive hardware 
burden. The concept of size describes the accumulation of both depth and width, 
which is an important index when evaluating an ANN’s capability.

Additionally, ANNs can be divided into two major categories based on the 
directions of signal flow between hidden layers. There are many differences between 
the two types of ANNs (Table 2). In the feedforward neural network (FNN), data flow 
is unidirectional from the upper levels to the lower levels without feedback; no 
connections exist between neurons in any given layer. In terms of system learning, 
FNN is convenient for reprogramming and can process non-linear questions. The 
other one is feedback neural network. One neuron in feedback neural network can 
pass its output data to the other neurons in the same or upper layers. The algorithms 
will be simultaneously adjusted by signals from other neurons based on a pre-
knowledge dataset. Repeated calibration contributes to the excellent robustness and 
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Table 2 Comparisons between feedforward and feedback neural network

Category Feedforward neural network Feedback neural network

Signal direction Unidirectional Unidirectional/bidirectional

Operation time Short Long

Feedback by output 
signal

No Yes

Structural complexity Simple Complicated

Memory time Short-term or none Long-term

Applied ranges in 
medicine

Wide Limited

Application Perceptron network, back propagation network, radial basis 
function network

Recurrent neural network, Hopfieid network, Boltzmann 
machine

Figure 2  Structure of an artificial neural network.

accuracy of the ANN. A feedback neural network is typically used for image analysis, 
diagnosis, and outcome prediction.

Approaches of data processing in neurons can be defined as activation functions, 
and are like “all-or-none” principles of brain neurons. Activation functions primarily 
include sigmoid, relu, and tanh operations. Linear functions are excluded from 
activation functions because multiple overlays of linear functions can be compressed 
into one function. Accumulating studies have demonstrated that the nonlinear 
mapping ability of ANNs compensates for the boundedness of linear discriminant 
analysis. Otherwise, the “one-to-many” relationship between neurons guarantees the 
learning efficiency of the ANN. One neuron layer can simultaneously pass signals to 
more than one neuron. Importantly, signal flow is unequally allocated to each neuron 
in the next layer. The flow inequality makes the ANN adjustable to external 
environments. Before the computation of activation functions, data will be adjusted 
according to weight factors, each of which has a corresponding relationship with a 
specific neuron. Weight factors serve as the controllers of data flow. Larger weight 
factors have a greater influence on the output results. Conversely, setting a weight 
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factor equal to 0 can abrogate the functions of the corresponding neuron.

Categories of ANN 
There are a wide range of ANN categories used in basic and clinical medicine, and 
each contains a specific algorithm that has distinct advantages over the others. 
Comprehension and discrimination of ANN categories can provide a good command 
of research frontiers, and ensure that ANNs are used in the correct situations. Brief 
introductions of common ANN methods are as follows.

Convolutional neural network: Convolutional neural networks (CNNs) are the most 
popular type of neural network nowadays due to their additional convolutional layers 
and pooling layers. Convolution and pooling are complex concepts in computer 
science. Briefly, convolutional layers can extract features from a dataset because 
neurons in this layer are responsible for collecting and analyzing information located 
in specific areas. These neurons can be analogue to cells in the visual cortex of a 
human brain and act as windows that look out across the external environment. Data 
is then sent to the pooling layers after convolution, where the features of the dataset 
are filtered and compressed. Pooling layers reduce background and texture 
information at the cost of partial data loss. Then, the data will be processed in classic 
neural networks.

The number of CNN layers is relatively flexible. The accuracy and performance, 
however, are limited in CNNs with shallow structures. The majority of CNNs belong 
to deep CNNs. CNNs are applicable in numerous fields, such as image classification, 
objective recognition, and natural language processing. These applications require 
learning features from mass data and being able to generalize results. Also, fine-
grained recognition of medical images is the core difficulty of CNNs for feature 
extraction and can be finished using handcrafted or unsupervised CNNs. The 
extraction efficiency of unsupervised CNNs outperforms handcrafted CNNs[11].

BPNN: BPNN is a type of multi-layer FNN. BPNN algorithms can be divided into two 
stages: Forward propagation and back propagation. For forward propagation, signals 
are handled from input layers to hidden layers and then to output layers. If errors 
between the real output and expected output are not acceptable, the error values will 
undergo back propagation, where the error values will be reversely transmitted layer 
by layer and then equally split into all involved neurons. Neurons automatically use 
revisions based on feedback signals; thus, BPNN can learn and apply mapping 
relations without clarifying mathematical derivation beforehand. The simplicity and 
accuracy of BPNNs have allowed them to be widely used in medicine, particularly for 
the diagnosis and prediction of patient outcomes.

Bayesian neural network: The training phase of the ANN requires a certain amount of 
data, and small training datasets tend to impair the efficiency and practicability of 
most ANNs. However, sufficient sample size is not always available. Bayesian neural 
networks (BNNs) have been designed for such situations. BNNs are based on weight 
factors that describe probabilistic ranges that are subject to Gauss distribution instead 
of being constants. The parameters optimized by back propagation are the means and 
variances of the weight factors, and can increase the confidence of each item of data, 
increasing the dataset robustness. Recently, BNNs have exhibited great potential in 
analyzing image features and constructing disease models.

Recurrent neural network: Data are frequently independent in a dataset, and the 
input sequence makes no difference in neural networks. However, there are sometimes 
internally logical relations between input information. For example, a set of computed 
tomography (CT) images contain many layers, and the observation of images in order 
can dynamically describe the sizes and shapes of lesions. Thus, treating these images 
as independent data would lose much information. Recurrent neural network (RNN) 
was invented to overcome this limitation. As introduced before, the values in hidden 
layers are under the control of weight factors. In RNNs, weights are regulated by not 
only values of this time, both at the current time step and the last time step; thus, the 
output values of RNNs are affected by the input sequence of the dataset. RNNs have 
been widely used to manage datasets with successional subjects.

ACHIEVEMENTS OF ANN RESEARCH IN GI DISEASES
GI diseases primarily refer to acute and chronic disorders in the stomach and intestinal 
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tract. The diagnosis and prevention of GI diseases remain challenging for clinical 
practice based on three aspects: Anatomy, symptoms, and pathogenesis. First, 
regarding anatomy, the digestive tract is exposed to the external environment all the 
time; however, most of the digestive tract is beyond our visual observation. Thus, the 
GI tract is vulnerable to various irritants, but pathologic deterioration cannot be easily 
detected. Second, the symptoms of GI diseases are atypical. Patients with early-stage 
GI tumors tend to underestimate their disease severity and miss the best opportunities 
for treatment. Concurrently, symptoms are not qualified as critical indicators of 
diagnosis and outcome. Clinicians must use imaging examinations to further clarify 
disease conditions. Imaging interpretation is somewhat subjective, relying on 
experiences of radiologists. The rates of missed and delayed diagnosis remain high. 
Last, in terms of pathogenesis, GI diseases are multifactor diseases including heredity, 
food, microbes, and neuropsychic factors. Single preventive methods are ineffective 
for the treatment of GI diseases. However, the application of AI has gradually broken 
through this dilemma.

Pathological diagnosis
Pathological diagnosis is the gold standard for GI diseases, which has significant 
implications for diagnosis, therapeutic directions, and outcome prediction. This work 
is highly dependent on the subjective judgement of pathologists. Accuracy is 
susceptible to recognitive capability, professional experience, and fatigue levels. The 
misdiagnosis of pathological images remains beyond clinical requirements. With the 
rapid development of digital pathological sections, the transformation from qualitative 
to quantitative analysis has become a research topic. ANN models are effective at 
computer-aided pathological diagnosis. Karakitsos et al[12] tried to explore the 
potential of ANNs to discriminate benign from malignant gastric cells, and their 
model accuracy reached 97%[12]. Despite concentrating on cellular morphology, the 
capability of interpreting pathological images has been revealed.

Haematoxylin-eosin (H&E) staining is the most common method for discriminating 
benign and malignant lesions. For GC, most studies used CNN models to construct 
diagnostic systems for H&E staining[13-17]. In 2017, Sharma et al[17] reported the first 
study about computer-aided classification in H&E staining of GC. Regretfully, their 
system exhibited an accuracy of only 69.9%, far from the clinical standard[17]. Rapid 
progress has been made during the past three years. A CNN model fed by over 2000 
H&E slide images achieved a near 100% sensitivity and 80.6% specificity[13]. Such 
optimal sensitivity showed that this model has potential in preliminary screening of 
H&E staining. Kosaraju et al[14] developed a novel CNN model called Deep-Hipo, 
which could extract and capture features at both high and low magnification levels. 
The overall accuracy of Deep-Hipo was 93.7%[14]. Deep learning model was also 
constructed for the prediction of microsatellite instability in colorectal cancer. The 
model significantly outperformed pathologists[18]. Importantly, models detecting 
multiscale receptive fields can be extended for survival prediction, subtype classi-
fication of GC, and selection of sensitive drugs.

Most studies concerning colorectal cancer (CRC) have also focused on distin-
guishing between benign and malignant tissues. Based on existing results, the 
accuracies or area under the curve (AUC) values of ANN-based models all exceed 
80%[19-25]. Colon glands are important structures and indicators for pathological 
assessment[26]. However, the variation of glands in slides has been a barrier both for 
pathologists and algorithms. CNN models invented for it got excellent results about 
gland segmentation and classification[27-30]. Sirinukunwattana et al[31] showed a 
CNN model that automatically detects cell nuclei in CRC. The combination of spatially 
constrained CNN and softmax CNN might become a useful tool for exploring the 
tumor microenvironment[31]. Interestingly, a study investigated the correlation 
between genomic and epigenetic alterations in CRC. CNN algorithms were used to 
predict RNA expression classifiers from H&E images. This work lays the foundation 
for a comprehensive integration of morphology and molecular features[32]. Immuno-
histochemical staining and fluorescence microscopy belong to members of 
pathological examinations, and ANNs distinctly improved their diagnostic perfor-
mance in GI tumors[33-35].

In addition to the auxiliary role of ANNs in pathological images, Wei et al[19] 
compared the accuracy of their model with that of pathologists and there was no 
significant difference between them[19]. The process from image input to result output 
could be finished within 2 s[20,36,37], and the time for ANN handling single image is 
evidently shorter than that for pathologists. ANNs can also complete repetitive 
processes with high-quality results. Based on the report of Yoon et al[20], the training 
time was only approximately 10 d[20], while the training time of a skilled pathologist 



Cao B et al. ANN application in gastrointestinal diseases

WJG https://www.wjgnet.com 2688 June 7, 2021 Volume 27 Issue 21

was based on the order of years. Thus, all evidence indicates the great potential of 
ANNs in fast pathological diagnosis.

Radiological examinations
X-ray, CT, and magnetic resonance imaging (MRI) are common radiological examin-
ations. CT is accepted as first choice for GI diseases due to its high image quality, 
convenience, and price[38,39]. The increasing clinical demand for examinations places 
great burdens on radiologists. Experience-based diagnosis has innate limitations in 
accuracy and efficiency. This dilemma requires novel computer-aided models with the 
support of new techniques. Compelling evidence indicates that ANNs can provide 
outstanding values in auxiliary diagnosis[40,41], and are not limited to this field.

At the end of the last century, an Austrian group investigated the potential of ANNs 
in single-photon emission CT[42]. Despite the lack of further validation, this 
innovative research launched a sharp increase in related studies. Many of them aimed 
to detect primary lesions in CT images[43-47]. For example, a CNN-based model was 
trained with 288 CT images for polyp detection and achieved a sensitivity of 97%[47]. 
Studies published in earlier years used multiple types of ANNs, including BPNNs, 
massive-training ANNs, and BNNs[45,48-50]. In recent years, investigators have 
collectively turned to using CNNs[43,51,52]. This tacit alteration suggests that CNNs 
have fewer complications in automatic CT interpretations. The combination of ANNs 
and CT has also been used in the diagnosis of cancer metastasis and invasion 
depth[53-56], which are also important indicators of patient prognosis. A study even 
reported that CNN-based systems could distinguish benign and malignant lesions by 
CT[57]. More possible development directions of CT were discussed. In brief, the 
diagnostic value of CT has been tremendously strengthened with the support of 
ANNs.

MRI has a superior definition of abdominal viscera and presents more information 
to radiologists than CT. Most studies focused on the promotion of MRI in CRC. A 
CNN-based system created by Trebeschi et al[58] reached up to an AUC of 99% for 
advanced rectal cancer[58], and other recent studies all performed well in this 
field[59-61]. Certain studies have tried to explore new applications of MRI. CNNs 
could increase the diagnostic capabilities of 3D reconstruction[62]. Faster Region-based 
CNN was trained with 240 cases for evaluation of circumferential resection margins 
and achieved a 95.6% specificity[63]. Chemosensitivity prediction by MRI was also 
achieved with the support of algorithms[64,65]. KRAS mutation is an important 
biomarker of CRC targeted therapy[66,67]. Genetic testing is the gold standard of 
detecting KRAS mutation. Two Chinese groups demonstrated that deep radiomics 
signature serves as a promising tool for the prediction of KRAS mutations[68,69]. The 
progression of algorithms could also elevate the sensitivities of 3D Stomach MRI[70]. 
These achievements suggested the feasibility of non-invasive detection for medication 
guidance of GI tumors. Otherwise, the importance of ANNs in inflammatory bowel 
disease (IBD) diagnosis has been shown[71].

Endoscopic detection
Endoscopy is universally accepted as a revolutionary application in gastroenterology. 
Due to the unique advantages of the GI tract, endoscopists can visually observe 
diseased regions, obtain biopsies, and excise small lesions. The extensive application of 
endoscopy has effectively reduced mortality and economic burdens worldwide[72,73]. 
However, artificial discrimination and classification lead to a relatively high incidence 
of misdiagnosis. Conversely, endoscopy is widely used to screen and exclude 
diagnosis for health checks and suspected cases. Endoscopic sensitivity, therefore, 
must be improved. Thus, numerous studies have focused on the application of ANNs 
in endoscopy, and occupy the largest proportion of existing research.

The detection of GI tumors has become the mainstream direction of endoscopy. 
Many studies have developed endoscopic ANN-based systems. Like other methods of 
image analysis, investigators prefer CNNs to construct computer-aided models when 
managing endoscopic results[74-78]. For example, Hirasawa et al[74] trained a CNN 
model with 13584 endoscopic images and effectively captured GC lesions with a 
diameter of > 6 mm as well as all invasive GC[74]. Bagheri et al[79] proposed a CNN-
based system to analyze the color levels during colonoscopies. The stratification of 
color levels significantly promoted diagnostic values, achieving a 93% precision and 
an 82% Dice score[79]. Otherwise, the fast speed is another advantage of ANN. Models 
can analyze thousands of images in a short time[74,80-83], which benefits from 
retrospective checks of images and facilitates real-time endoscopic diagnosis. For 
example, Zhang et al[80] developed a CNN model for the detection of gastric precan-
cerous diseases in 2017[80]. After 2 years, they developed a novel CNN-based system 
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used for gastric polyps. This model achieved real-time analysis with 50 frames per 
second without a decline in diagnostic precision[84]. Intraoperative guidance and 
correction are urgently required. A deep CNN trained by 704 cases of colorectal 
adenomas, called ENDOANGEL, was published to help endoscopists monitor 
detection operations and avoid blind spots in real time[85]. This study is significant for 
computer-aided refinement of endoscopy.

Early screening has received much attention as people gradually attach importance 
to routine examinations. The atypical textures of lesions at an early stage pose a 
challenge for endoscopists. Numerous studies have aimed to improve the detection of 
GI polyps, precancerous lesions, and tumors at early stage using ANNs[9,78,86-92]. 
Interestingly, most research groups are from China and Japan, likely due to the 
regional characteristics of GI tumor incidence. The best performance of early detection 
was reported by Gao et al[78]. Their CNN system reached an overall accuracy of 98.7% 
and a specificity of 100%. ResNet50 stood out of five CNN models and performed the 
best in detecting CRC precancerous lesions with an accuracy of 93%[78]. Moreover, 
ANNs could assist in diagnosing Helicobacter pylori infection using the combination of 
blue laser imaging and linked color imaging[93-95]. This breakthrough undoubtedly 
expands the application ranges of endoscopy.

ANN application is not confined to traditional white-light endoscopy. Narrow-band 
imaging (NBI) is a new type of technique that can filter out broad-band spectrum in 
red, green, and blue colors, respectively. The concentrated layers of the GI mucosa can 
be altered by switching filtered wavelengths, endowing NBI endoscopy with unique 
strengths in detecting minor cancerous and even precancerous lesions. The integration 
of NBI and ANN has made amazing progress in early screening. Three studies 
respectively reported their models for the diagnosis of early GC[81,86,87]. For instance, 
Horiuchi et al[87] trained a CNN system that could differentiate between early GC and 
gastritis. This model achieved a high sensitivity but low specificity, yielding undesired 
accuracy[87]. In consideration of these fields of study, bias towards sensitivity is 
accepted. Trails concerning NBI colonoscopy were also performed and exhibited 
expectable results[7,96-98].

In recent years, wireless capsule endoscopy (WCE) has been developed for patient 
acceptance and the extension of detection zones. The small bowel, which is known as 
the blind spot of classical endoscopy, can be virtually examined only by WCE[99,100]. 
Thus, investigators use ANNs to enhance the capability of WCE diagnosis. A decade 
ago, Barbosa et al[101,102] began to develop an automatic detection system using a 
multilayer perceptron neural network[101,102]. Despite the limited size of the training 
dataset, this study proposed a novel direction for forthcoming models with great 
performance. With the development of WCE and algorithms, CNNs were shown to 
have sufficient potential to detect lesions in small-bowel WCE[8,83]. Particularly, Ding 
et al[8] trained a model with a large-sample dataset, achieving a sensitivity of 
99.88%[8]. These achievements have changed the belief that the small bowel is the 
dead zone of GI tract examinations. However, two shortcomings of WCE still exist. 
First, WCE goes through a natural orifice, and its photograph angles are affected by GI 
peristalsis, body position, and contents within GI tract, presenting the possibility of 
losing sights. Second, during WCE movement, secreted mucus and chyme are likely to 
stick to WCE, decreasing image quality. ANNs may serve as an effective approach to 
solve these problems[103].

In addition to GI tumors, ANNs play an important role in the diagnosis of other 
acute and chronic GI diseases. Many studies concerning GI bleeding focused on WCE. 
The imaging features of serious GI bleeding are relatively distinct, while small lesions 
with bleeding are likely to be missed, particularly in WCE. The authors used CNN, 
BPNN, and probabilistic neural network (PNN) to optimize the WCE capabilities of 
instant diagnosis, which covered the stomach, small bowel, and colorectum. These 
ANN models were all reported to perform well[104-109]. Different from GI bleeding, 
progress on using ANNs to diagnose chronic atrophic gastritis is slow, likely because 
of atypical features and low rates of early screening. Two recent studies indicated the 
tremendous potential of CNNs in this field and showed that CNNs outperformed the 
expert endoscopists in identifying GI bleeding[110,111]. IBD is another indication of 
colonoscopy, and ANN was also used to improve the diagnostic value of endo-
scopy[112,113].

Prediction of risks and survival
A research group conducted a retrospective study of 521 GC patients in 2005. Three 
mining techniques, including ANN, decision tree, and Logistic regression, were used 
to analyze clinical information and predict postoperative complications. ANN outper-
formed the other two methods[114]. Since then, many studies have focused on the 
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clinical potential of ANNs in risk prediction. In particular, a large number of relevant 
reports have emerged in recent years, which is reflected in the rapid improvement of 
ML algorithms. ANN models for predicting cancer risks commonly include dozens of 
categorical variables, such as age, sex, oncology indicators, radiological tests, and 
therapeutic regimens[115-118]. Two Japanese groups combined clinical indicators and 
endoscopic images using CNNs to predict GC risks[94,119]. Genetic and microbial 
factors function as important regulators in carcinogenesis. Genomics and microbiome 
can exhibit the deep roots of GI tumors. Dadkhah et al[120] trained ANN models with 
the gut microbiome of 218 subjects to identify risks for colorectal polyps. Classification 
accuracy exceeded 75% based on home stool samples[120], which is expected as a 
novel method for convenient screening of colorectal polyps. mRNA profiles also have 
referential value in predicting the odds of malignant transformation[121,122]. The 
fruits of high-throughput screening techniques combined with deep analysis can 
depict the landscape of carcinogenesis. Subsequent etiology-based tests will contribute 
to revolutionary progress in precise prediction.

Metastasis is a critical index of therapeutic regimens and long-term prognosis. CT 
and MRI have detective limitations and only positive lymph nodes with swelling 
shapes can be observed, as well as distantly metastatic lesions. The results, however, 
always fall behind the real condition, misguiding surgical strategies and reducing 
survival benefits. Investigators have tried to use the advantages of ANNs to elevate 
the accuracy of the metastatic conditions in GI cancer. A German group used an FNN 
to predict lymph node metastasis of GC early in 2005[123], but the performance is 
poor, partly due to unadvanced algorithms and computers. With the development of 
ANNs, models included larger amount and more subtypes of clinical indicators. Their 
predictive efficiency has been augmented to reach clinical standards[124-127]. Two 
studies investigated ANNs used in identifying metastatic risks of CRC patients at T1 
stage[128]. Although cases with metastatic T1 tumors are rare, the underlying 
mechanisms may be uncovered with the support of ANN. Kurokawa et al[128] first 
used BNN to construct a predictive model that involved a novel molecular target from 
basic medicine and showed great potential value[128]. The growth of novel 
biomarkers has recently provided more choices for GI diagnosis and prediction; 
however, few studies have emphasized the integration between these newly found 
targets and classical tumor biomarkers. Future development requires more invest-
igation of ANNs to maximize the significance of existing fruits.

Survival time and quality of life are important factors that both patients and doctors 
consider. No efficient approaches have been developed to date, which is typically 
explained by disease heterogeneity, subpopulation differences, and medical 
experiences. These problems are likely based on one reason: Deficiency of data 
integration. Investigators rest their hopes for an accurate diagnosis on the excellent 
capabilities of information screening and automatic decision making. They used 
ANNs to weight many kinds of factors to quantify the survival outcome of cancer, GI 
bleeding, and IBD patients[106,129-133]. For GI cancer, certain studies compared ANN 
with TNM stage and models constructed by other ML methods. ANN typically 
exhibited better performance than Logistic regression, TNM stage, and even 
clinicians[134-136]. Competitions between different types of ANNs were also 
performed and the results were not consistent[137-139].

In addition to classical types of clinical information, certain novel biomarkers 
combined with ANNs have potential value in the prediction of GI disease risks and 
prognosis. Altomare et al[140] created a panel composed of exhaled volatile organic 
compounds (VOCs) from CRC patients. A PNN was used to synthetically analyze the 
levels of exhaled VOCs. This model could effectively identify CRC patients and predict 
the survival benefits from curative CRC surgery[140,141], which was a quantum leap 
in non-invasive screening. Several immune markers, including CD8, CD20, and CD68, 
combined with the proliferation marker Ki-67 by CNN showed great prognostic value 
in GC[135]. DNA aneuploidy, tumor-stroma ratio, and RNA sequencing were also 
proven to have great value in clinical prediction that were evacuated by 
ANN[142-144]. Otherwise, the guiding capabilities of ANNs in the prediction of both 
inpatient and outpatient services have been gradually revealed[145-148]. With the 
deep crosstalk between ANNs and medical needs, clinical tasks that were previously 
regarded as impossible or difficult are becoming feasible and easy.

Clinical decision support
Clinical decision making plays a conclusive role in the process. Numerous clinicians 
and scientists have been striving to promote standardized, precise, and individualized 
treatment. As the primary adjuvant regimens of GI cancer, chemotherapy should 
consider many factors, such as patient tolerance, pathological sensitivity, concrete 
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dosage, and regimens. Accumulating evidence has showed that ANNs could help 
overcome the therapeutic limitations caused by individual differences and mass data. 
Evaluation of chemotherapeutic sensitivity with ANN models is a hot topic. To 
establish reliable prediction systems for locally advanced and metastatic CRC, several 
ANN models have been used to integrate clinical indicators[149,150]. Their accuracies 
were significantly better than those of clinicians. Moreover, deep learning of 
radiological images exhibited its potential value in assessing chemosensiti-
vity[64,65,151]. For example, a CNN system was trained using 202 cases with 
colorectal cancer liver metastases and was validated to have good accuracy for 
predicting responses to FOLFOX combined with bevacizumab regimens based on CT 
information[151]. The practicability of radiotherapy, anti-integrin therapy, traditional 
Chinese medicine, and immunotherapy could also be improved with the support of 
ANNs[152-155].

The quality control of surgical guidance and supervision is highly dependent on the 
skills of clinical teachers. It is difficult to cultivate doctors who receive normalized 
training and guarantee surgical processes free from interference of uncertainties. 
Kitaguchi et al[156,157] created a novel CNN-based deep learning approach fed by 
intraoperative videos. It could automatically recognize the surgical phase and action 
with high accuracies of 81% and 83.2%, respectively[156,157]. These achievements will 
initiate a novel field of ANN application. Clinicians, especially young surgeons, will 
reap benefits from these technological innovations. Regretfully, few studies have been 
reported due to ethic restriction and complicated surgical situations. More attention 
and investment should be paid for developing efficient guiding systems that precisely 
match skills and customs of surgeons.

Translation of basic medicine
Basic research is the frontier where ANNs have been widely used. Inherent logic and 
correlation between variables can be easily shown by ANNs, which may be too 
difficult for human intelligence. Many repetitive tasks can be finished within a short 
time. In the past 10 years, the rapid progress of ANNs has launched another wave of 
research (Table 3). Existing studies can be divided into three aspects: (1) Elucidation of 
mechanisms of GI carcinogenesis; (2) Guidance of drug selection; and (3) Integration of 
fundamental research data. First, high-throughput screening is the fundamental 
method for selecting critical molecules and pathways of GI cancer. High-throughput 
techniques will produce extremely large amounts of raw data. It is impossible to 
precisely choose potential targets only by manpower. Bidaut et al[158] began to use 
ANNs to characterize stomach stem cells based on microarray experiments[158]. This 
technique showed great value in the basic research of GI physiology. A protein-based 
ANN classifier was successfully constructed to identify the origins of tumor 
samples[159], which may promote the application of mass spectrometry in precise 
tumor diagnosis. Cell counting serves as a fundamental task in basic and clinical 
research. The low efficiency of classical manual detection cannot meet the requirement 
of many experiments. CNNs can significantly improve cell counting technology on 
their own merits[160]. A CNN-based cell counter has already been commercialized. 
Moreover, CNN showed great performance in discovering lncRNA-disease 
associations[161,162].

Development of new drugs is an important direction of research. Computer-aided 
target selection has gradually replaced inefficient artificial experiments. Joo et al[163] 
aimed to screen compounds targeting dysfunction proteins to find new drugs for CRC. 
Preliminary selection was performed using ANN, and then a benzimidazolone 
compound was selected out for further cell toxicity tests. This study provides a good 
example for subsequent studies that explore novel medications. A CNN-based model, 
DeepIC50, was trained with 27756 features at molecular levels. It was proven to 
effectively predict three drug responsiveness classes for GC patients[163]. Further 
validation is required to determine whether the applicable ranges of DeepIC50 can 
extend to other types of tumors. Furthermore, tankyrase inhibitors have been verified 
as potential anticancer drugs. To confirm the activity ranking of tankyrase inhibitors in 
CRC treatment, Berishvili et al[164] developed an affinity prediction model based on 
CNN. The Spearman correlation of the model achieved 0.73, which was superior to 
those of the other three virtual screening approaches[164].

With the development of molecular biology, many types of high-throughput 
screening techniques have been widely used, including RNA-seq, protein mass 
spectrometry, metabolomics, microbiome, and noncoding RNA chips. Diverse types of 
ANN were employed to evacuate efficient targets from sequenced data-
sets[120,144,165,166]. Most studies have focused on their diagnostic value. Bao 
et al[167] constructed an ANN model to identify expression profiles of a microsatellite 
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Table 3 Summary of studies concerning artificial neural network translation of basic achievements

Ref. Disease Type of data ANN technique Application direction Outcome

Bao et al[167], 
2020

CRC Microsatellite instability 
from TCGA database

Multi-layer 
perceptron 
network

Prognostic prediction 100% accuracy

Coppedè
et al[189], 2015

CRC DNA methylation AutoCM Identification of connections 
between DNA methylation and 
CRC

A strong connection 
between the low 
methylation levels ofthe 
five CRC genes

Liu et al[190], 
2004

CRC Gene signature from 
GEDatasets

Multi-layer 
network

Identification of latent marker 
genes of CRC

91.94% accuracy

Berishvili 
et al[164], 2019

CRC Approximately 4000 
complexes for which the 
data on the target binding 
constants

CNN Screening filter for 
compoundprioritization

73% Spearman rank 
correlation coefficient

Bloom et al[159], 
2007

CRC and GC MS Multi-layer 
network

Differentiation between 6 
common tumor types

87% accuracy

Dadkhah 
et al[120], 2019

colorectal polyp Gut microbiome ANN developed by 
Orange data 
mining tool

Early screening using collected 
stool

> 75% accuracy

Chang et al[166], 
2011

CRC miRNA profile Not mentioned Exploration of association 
between specific miRNAs and 
clinicopathological features

100% accuracy of miRNA 
panel

Chen et al[191], 
2004

CRC MS of serum protein 
pattern

Multi-layer 
perceptron 
network

Differentiation between CRC 
and healthy control

91% sensitivity; 93% 
specificity; 0.967 AUC

He et al[121], 2020 CRC and 
gastroesophageal 
cancer

Gene signature from 
TCGA database

Multi-layer 
network

Differentiation between types 
of cancer

CRC: 98.06% sensitivity; 
96.88% precision. 
Gastroesophageal cancer: 
94.89% sensitivity; 96.33% 
precision

Hu et al[192], 
2015

CRC Gene signature from 
database of NCBI NLM 
NIH

S-Kohonen neural 
network

Prediction of recurrence using 
gene expressions

91% accuracy

Kurokawa 
et al[128], 2005

CRC Gene signature of nodal 
metastasis

BNN Prediction of metastatic 
potential of CRC at stage I

88.0% sensitivity; 86.6% 
specificity; 0.904 AUC

Liu et al[160], 
2019

Cancer cell Synthetic microscopic 
images from two publicly 
datasets

CNN Automated counting of cancer 
cells

-

Ronen et al[193], 
2019

CRC Gene signature from 
TCGA database

BNN Stratification of CRC subtypes -

Bilsland 
et al[194], 2015

CRC A virtual library of 
compounds

Perceptron 
network

Screen of Benzimidazolone 
inhibitors for CRC treatment

CB-20903630 was selected 
out for further validation of 
CRC treatment

Maniruzzaman 
et al[195], 2019

CRC Gene signature from 
patients

Fuzzy neural 
network

CRC classification 99.84% sensitivity; 99.75% 
specific; 99.81% accuracy; 
0.9995 AUC

Inglese et al[196], 
2017

CRC 3D MS Deep neural 
network 
(unsupervised)

Identification of metabolic 
heterogeneity

Up to 0.6991 Pearson's 
correlation

Shi et al[197], 
2020

CRC with liver 
metastasis

CT ANN Prediction of KRAS, NRAS and 
BRAF status

0.95 AUC 

Jiang et al[198], 
2020

GC Two drug datasets deep neural 
network

Prediction of drug-disease 
associations

17 kinds of drugs that were 
screened out by ANN had 
been confirmed as anti-
tumor drugs

Bidaut et al[158], 
2009

Stomach stem cell Stemness signature Perceptron 
network

Characterization of stem cells -

Jing et al[168], 
2019

Calibration of 
laboratory markers

CA-724 Radial basis 
function neural 
network

The effects of geographic 
factors on CA-724

CA724 reference values 
show spatial 
autocorrelation and 
regional variation
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Xiao et al[122], 
2018

GC RNA-seq Probabilistic neural 
networks (semi- 
supervised)

Diagnosis of cancer 96.23% accuracy; 99.08% 
precision

Hang et al[144], 
2018

GC MSI Multi-layer 
perceptron 
network

Prognostic prediction 0.81 AUC

Xuan et al[161], 
2019

GC LncRNA profile CNN Prediction of GC 0.977 AUC

Joo et al[163], 
2019

GC Potential drugs from 
databases

CNN Exploration of new drugs 
targeting

ANN-based model 
accurately predicts drug 
responsiveness as models 
previously reported

Liu et al[165], 
2010

GC MS from GC patients Supervised neural 
network

Early screening 100% sensitivity; 75% 
specificity

Que et al[199], 
2019

GC MS from GC patients and 
clinicopathological 
parameters

Single-layer neural 
network

Prediction of long-term 
survival

0.82 AUC

Li et al[200], 2021 GC Gene Expression Omnibus 
database

ANN Differentiation between GC 
and healthy tissues

0.946 AUC

TCGA: The Cancer Genome Atlas; CRC: Colorectal cancer; GC: Gastric cancer; CNN: Convolutional neural network; BNN: Bayesian neural network; AUC: 
Area under the curve; MS: Mass spectroscopy; MSI: Microsatellite instability; ANN: Artificial neural networks; CT: Computed tomography; IHC: 
Immunohistochemistry; NCBI: National Center for Biotechnology Information; BRAF: V-raf murine sarcoma viral oncogene homolog B; NLM: Nonlinear-
mirror.

status–related gene signature, which showed an accuracy of 100% in predicting the 
prognosis of CRC patient response to immunotherapy[167]. In addition to these novel 
targets, ANNs can optimize the diagnostic efficiency of clinical tumor biomarkers. 
According to the validation results of ANN, CA724 reference values are susceptible to 
geographical environmental factors, such as temperature, sunshine, and humi-
dity[168]. This study suggested that indicators require precise calibration and ANN 
may become an effective tool. Briefly, ANNs have promising functions to integrate 
classical biomarkers and novel targets with optimum diagnostic weights.

ANN and GI noncancerous diseases
Although most studies paid their attentions to ANNs in GI cancer, the functions of 
ANNs in noncancerous GI diseases were also revealed. IBD is a collective name, 
covering ulcerative colitis and Crohn’s disease. Recent studies manifested the potential 
value of ANNs applied in clinical practice of IBD (Table 4), which preliminarily 
focused on the following two parts: (1) Differential diagnosis. ANNs could help 
distinguish between IBD, irritable bowel syndrome, and healthy controls. The sensit-
ivities reported by the studies were all over 75%[169-172]. The data suggested the 
translational potential in diagnostic assistance of ANNs; and (2) Prediction of 
therapeutic efficacy. Surgery, hormone therapy, immunosuppressors, and targeted 
drugs are alternative regimens for IBD therapy. ANN models were proved to predict 
the efficacies of classical drugs, infliximab, vedolizumab, and enterectomy by 
analyzing huge numbers of clinicopathological variables[154,173-175].

Moreover, ANNs exhibited remarkable detective abilities for GI bleeding and 
atrophic gastritis. These two distinct diseases have one similarity: Early detection has 
critical value while delayed diagnosis can lead to a poor prognosis. However, the rates 
of missed diagnosis for GI bleeding and atrophic gastritis are relatively high. ANNs 
may overcome this dilemma. According to the existing evidence, the detection 
accuracies of endoscopy were significantly elevated under the assistance of ANN 
models[111,176-178]. Collectively, these studies indicate the role of ANN in the clinical 
practice of GI noncancerous diseases.

FEATURES, LIMITATIONS, AND FUTURE PERSPECTIVES 
Features of ANN
As mentioned above, accumulating studies have demonstrated that ANNs might have 
remarkable potential in diagnosis and treatment of GI diseases (Figure 3). ANN-based 
models commonly have optimal accuracies and AUC values. Some evaluation indexes 
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Table 4 Summary of existing studies of artificial neural networks applied in inflammatory bowel disease

Ref. Disease Aim Number of 
samples

ANN 
technique Included variables Outcome

Ahmed et al[169], 
2017

CD Diagnosis 144 CD 
patients; 243 
HC individuals

BPNN 103 variables Accuracy 97.67%; sensitivity 96.07%; 
specificity 100%

Ananthakrishnan 
et al[154], 2017

UC and 
CD

Predicting treatment 
response to 
vedolizumab

43 UC patients; 
42 CD patients

vedoNet Gut microbiome AUC of CD 88.1%; AUC of UC 85.3%

Anekboon 
et al[201], 2014

CD Predicting single 
nucleotide 
polymorphisms

144 CD 
patients; 243 
HC individuals

Multi-layer 
perceptron 
network

103 SNPs Accuracy 90.4%; sensitivity 87.5%; 
specificity 92.2%

Dong et al[173], 
2019

CD Predicting the risk of 
surgical intervention 
in Chinese patients

83 patients with 
surgery; 83 
patients 
without surgery

ANN 131 variables Accuracy 90.89%; precision 46.83%; 
F1 score 0.5757

Fioravanti 
et al[202], 2018

IBD Classification of 
metagenomics data

222 IBD 
patients; 38 HC 
individuals

CNN Gut microbiota -

Hardalaç 
et al[203], 2015

IBD Predicting the effect 
of azathioprine on 
mucosal healing

129 IBD patients BPNN Age, age at diagnosis, 
usage of other 
medications prior to 
azathioprine use, 
smoking, sex, UC-CD

Accuracy 79.1%

Kirchberger-
Tolstik et al[170], 
2020

UC Diagnosis 227 Raman 
maps with 
567500 spectra

CNN Images of Raman 
spectroscopy

sensitivity of 78%; specificity 93%

Klein et al[204], 
2017

CD Predicting the 
clinical phenotype

47 B1 patients; 
19 B2 patients; 
39 B3 patients

Two-layer 
FNN

H&E B1 vs B2 phenotype: sensitivity 81%, 
specificity 74%, accuracy 75%, AUC 
0.74; B1 vs B3 phenotype: sensitivity 
69%, specificity 76%, accuracy 70.5%, 
AUC 0.78; B2 vs B3 phenotype: 
sensitivity 67%, specificity 72.5%, 
accuracy 69%, AUC 0.72

Lamash et al[71], 
2019

CD Visualization and 
quantitative 
estimation of CD

23 pediatric CD 
patients

CNN MRI DSCs of 75 ± 18%, 81 ± 8%, and 97 ± 
2% for the lumen, wall, and 
background, respectively

Le et al[174], 2020 IBD Predicting IBD and 
treatment status

68 CD patients; 
53 UC patients; 
34 HC 
individuals

Neural 
encoder-
decoder (NED) 
network

Gut microbiota CD vs HC: 95.2% AUC; UC vs HC: 
92.5% AUC; CD vs UC: 81.8% AUC

Morilla et al[175], 
2019

UC Predicting treatment 
responses to 
infliximab for 
patients with acute 
severe UC

47 patients with 
acute severe 
ulcerative colitis

Deep neural 
network

MicroRNA profiles 84% accuracy; 0.82 AUC

Ozawa et al[112], 
2019

UC Identification of 
endoscopic 
inflammation 
severity

841 patients CNN 
(GoogLeNet)

Colonoscopy images 0.86 AUC of Mayo 0; 0.98 AUC of 
Mayo 0-1

Peng et al[205], 
2015

IBD Predicting the 
frequency of relapse

569 UC 
patients; 332 
CD patients

ANN Meteorological data High accuracy in predicting the 
frequency of relapse of IBD (MSE = 
0.009, MAPE = 17.1 %)

Shepherd 
et al[171], 2014

IBD Differential 
diagnosis between 
IBD and IBS

59 UC patients; 
42 CD patients; 
34 IBS patients; 
46 HC 
individuals

Multi-layer 
perceptron 
neural network

Gas chromatograph 
coupled to a metal 
oxide sensor in stool 
samples

76% sensitivity, 88% specificity, 76% 
accuracy

Takayama 
et al[132], 2015

UC Predicting treatment 
response to 
cytoapheresis

90 UC patients Multi-layer 
perceptron 
neural network

13 clinical variables 96% sensitivity; 97% sensitivity

Tong et al[172], 
2020

CD, UC 
and ITB

Differential 
diagnosis between 
CD, UC and ITB

5128 UC 
patients; 875 
CD patients; 
ITB 396 patients

CNN Differential features of 
endoscopic images 
between UC, CD and 
ITB

The precisions/recalls of UC-CD-ITB 
when employing the CNN were 
0.99/0.97, 0.87/0.83, and 0.52/0.81, 
respectively
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IBD: Inflammatory bowel disease; UC: Ulcerative colitis; CD: Crohn's disease; ITB: Intestinal tuberculosis; IBS: Irritable bowel syndrome; CNN: 
Convolutional neural network; BPNN: Back propagation neural network; FNN: Feedforward neural network; MSE: Mean square error; MAPE: Mean 
absolute percentage error; HC: Healthy control; AUC: Area under the curve; ANN: Artificial neural networks; SNPs: Single nucleotide polymorphisms; 
MRI: Magnetic resonance imaging; H&E: Haematoxylin-eosin.

Figure 3 Artificial neural networks might have remarkable potential in diagnosis and treatment of gastrointestinal diseases. ANN: Artificial 
neural networks; GI: Gastrointestinal; CT: Computed tomography; MRI: Magnetic resonance imaging; IHC: Immunohistochemistry; WCE: Wireless capsule 
endoscopy; H&E: Haematoxylin-eosin.

of ANN models even achieved an accuracy of 100%[81,179]. For further validation of 
ANN metrics, comparisons were also performed and can be divided into three aspects 
based on the compared objects. First, regarding experts, studies involving comparisons 
with experts aimed at showing ANN superiority over artificial diagnosis[8,86,136]. The 
majority of ANNs exhibited faster speed and better accuracy than expert clinicians. 
Therefore, certain authors claimed that ANNs would become excellent tools for 
clinicians and scientists, perhaps even replacing humans in this capacity. Second, 
different ANN models have been studied. Researchers used several ANN algorithms 
that were trained with the same dataset and underwent validation phases 
[144,150,180]. The models with the best fitting degree were then selected out to process 
for further exploration. The comparisons exhibited the capabilities of different models 
in handling with clinical problems. Last, other reported data have shown that 
literature learning is another approach to determine the efficiency of developed 
models[106,181]. However, this type of comparative method is not reliable due to the 
inconsistency of research baselines, such as differences in datasets, hardware 
performance, and running time. These undefined bias may also affect comparative 
results. This method is thus not recommended for follow-up studies to further verify 
the advantages of their models. Generally, compelling evidence indicated that ANNs 
can lead the classification and deep analysis of GI clinical practice compared to linear 
statistical models and human labor.

Computers outperform humans in data processing, as shown in medical studies. 
The comprehensive diagnosis of GI diseases requires many types of examinations. GI 
clinicians must integrate clinical indicators to make diagnosis. However, existing 
guidelines and expert consensus cannot help GI clinicians manage the majority of 
complex diseases. ANNs can mitigate this limitation. Many types of patient character-
istics and clinical indicators can be included in predictive models. Data stored in 
pictures is geometrically above that of textual data. CNNs can interpret radiological 
and endoscopic images. The analytic speed of CNNs is even fast enough to make real-
time detection achievable. Some studies simultaneously included clinical indicators 
and picture information to analyze patient situations. This novel combination exceeds 
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the limitations of human capacity and provides optimal diagnostic and predictive 
accuracies.

Cost is also an important factor for clinical practice. Cultivating a qualified doctor 
demands considerable time and economic and social costs. However, ANN learning is 
a relatively simple process. Based on current reports, training ANN models with large-
sample databases requires only several days[20]. ANNs can comprehensively analyze 
data features and adjust the weight values within an extremely short time. 
Furthermore, hardware is the basic requirement to run ANN algorithms, specifically 
graphics cards and central processing units, the two important data-processing 
elements. High-performance hardware costs a few thousand dollars, which is far 
cheaper than training a doctor. Collectively, the time and economic cost of training 
ANN models is much smaller than that of training doctors. It is believed that ANN 
will play a critical role in clinical practice in the near future.

Limitations and challenges
The application of ANNs appears to be a way to overcome existing problems for GI 
doctors. However, certain limitations should be taken seriously. First, training 
methods affect the efficiency of ANN models. Most research groups have performed 
small-sample studies with fewer than 1000 cases. For endoscopic detection, although 
the number of freezing frames could reach ten thousand, some were from the same 
video[8,182]. Thus, frame repeatability impaired their representativeness. The small 
size of dataset led to a higher likelihood of overfitting, which refers to models that 
receive too much training and overly fit the characteristics of internal datasets. Rigid 
observation of internal datasets will naturally reduce the model’s flexibility to manage 
external data. For example, if the model is trained with a dataset of patients from 
country A, patients from country B may not be well described by this model due to 
various factors. Otherwise, retrospective datasets should be used as the primary 
sources of ANN training. Similar to common retrospective studies, biases also exist 
and affect the application of models. Selection bias is the most important factor. Patient 
data from medical histories could be selected based on research programmes. 
However, some studies used public databases to train their models[167,183]. The 
information of registered cases is inflexible, which means that researchers cannot 
exclude potential bias as they expected.

Second, the compromise between interpretability and accuracy should be 
emphasized. Models with optimal accuracy typically lack interpretability (i.e., explain-
ability). Conversely, models with nearly perfect interpretability are less accurate, like 
linear regression. During ANN training, algorithm modulation and data feedback are 
blind. Researchers do not know the activation functions in hidden layers, which are 
similar to a machine that hides its circuit in the box and places only switches and 
displayers outside; this feature is called as “black box”. For important medical 
decisions, doctors and patients both have the right to know how decisions were made. 
An inability to understand how the model makes decisions will naturally reduce the 
patients’ and doctors’ confidence. Conversely, lack of explainability makes researchers 
unable to describe the deduction processes of ANN models, decreasing their 
referential value.

Third, sociological issues should be carefully considered for ANN applications, 
which could be divided into three aspects. First, regarding medical liability, mistakes 
and medical negligence are likely, despite the outstanding ANN performance in the 
validation phase. Thus, who should be responsible for decisions and how to distribute 
liability to pay for compensation are difficult to determine. Doctors, patients, and 
programmers are all seemingly innocent, and accidents primarily result from inherent 
shortcomings, not human carelessness. Second, regarding confidentiality, the 
operation of ANN models requires many types of data, some of which concern patient 
privacy. Doctors who betray privacies will receive punishment. However, ANN 
models are connected to the Internet or company intranets. It is difficult to distinguish 
the origins of a privacy disclosure. Furthermore, the capabilities of data extraction by 
ANNs are incomparable. The ranges of consent exemption thus require further 
argument. The balance between ANN research and patient privacy remains a 
challenge. Last, regarding legislation, multiparty participation is an important charac-
teristic of ANNs, which should include hospitals, patients, product providers, and 
insurance companies. Regretfully, the rules of ANNs used in medical practice are still 
obscure. Existing legal norms cannot support the application and prospective studies 
of ANNs.
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Future directions
The goal of ANN applications is to maximize medical benefits for patients, doctors, 
and society. To provide GI diagnosis and recommended treatment, ANNs must be 
further improved to bring them in line with clinical standards and inherent character-
istics. Future directions are described below.

Enlargement of application ranges: ANNs have been used for GI diagnosis, prognosis 
and risk prediction, and therapeutic guidance, achieving relatively high accuracies. 
Significance is limited to constructing more models that have been proposed in the 
same fields[184,185]. Future studies should focus on expanding ANN application 
ranges. Treatment decisions and surgical guidance are two representative aspects of 
future development. They require including more factors and presupposing more 
complex situations. ANNs may become a promising tool to overcome the difficulties. 
Epidemiology is another field burdened with large quantities of data. Training ANN-
based models will help investigators have a deep and quick command of epidemi-
ologic features.

Development of unsupervised learning: Supervised learning is the mainstream 
direction of medical research. ANN models are primarily based on labelled datasets, 
which require considerable time and manpower. Future studies should try to use 
unsupervised and semi-supervised learning to reduce the training cost and develop 
comprehensive decision-making models. The unique advantages of unsupervised 
learning can break classical thoughts of clinical trials. It can automatically reveal the 
internal structures of mass data without grouping and statistical analysis. Also, 
unsupervised learning is “clear box” and can produce visual information that can be 
comprehended by humans, providing more convenient parameter adjustment and 
systematic optimization. Unsupervised ANN-based models should be created for data 
pre-treatment and association screening. Mature unsupervised systems for basic 
research are also required to find more diagnostic biomarkers and therapeutic targets.

Improvement of datasets: Large-sample prospective studies and real-world studies 
are encouraged. However, these studies will require high-quality datasets, including 
normalized inclusion criteria, number of cases, detailed degree, and rigorous check. 
Optimal sources of data can reduce the bias of ANN systems. Otherwise, larger 
sample sizes do not mean that enrolled cases should cover as many races and 
countries as possible. Heterogeneity is ubiquitous in medical care. There remains a 
lack of evidence that ANNs, perhaps even all AI algorithms, have the potential to 
generalize disease features throughout the world. It should be temporarily accepted to 
construct ANN models with functional, regional, or subpopulation characteristics 
rather than wide application. The qualities of the datasets determine the performance 
of the constructed models. More efforts should be paid to build full equipped registry 
systems and provide complete data for model training, which is typically neglected by 
constructors.

Emphasis on legislation: The nature of AI is totally different from human intelligence. 
It cannot accept liability by its own. Decision-making methods are still based on 
learning and experience. Also, ANNs are unable to correctly address problems that are 
beyond their knowledge. That is why commercial AI products are slightly clumsy 
when managing complex situations. The “black box” feature of ANNs means that all 
participants are precluded from the decision-making process. Once ANN models 
make mistakes, how to rationally distribute responsibilities should be carefully 
answered by legislation. The absence of reasonable rules also slowed clinical trials. 
Judgment criteria must be outlined to allow clinical trials to be launched. Problems 
that emerge will then guide legislation. Positive feedback will promote the progress of 
ANN application.

Progress in ethics: ANNs have been created to solve the specific problems, which 
naturally forms result-oriented operation patterns. However, this process is not always 
suitable for making decisions independently, particularly for GI diseases. For example, 
for an old patient who had severe ulcerative colitis and underwent many partial 
enterectomies, ANN models may show that he can benefit from the next surgery. 
Conversely, doctors will persuade patients to accept expectant treatment due to their 
tolerance, age, and emotion. The absence of empathy will make an ANN’s decision 
“perfect” but impersonal, which is partially why ANNs cannot become a substitute for 
human decision makings. Regarding the substitutability of human labor, arguments 
on this topic have never been stopped. ANNs have gradually taken over simple tasks. 
Similar to the aforementioned statement, many models outperformed experts in 
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endoscopy, radiology, pathology, and gastroenterology[8,19,56,186]. Then, concerns 
about ANNs taking jobs from gastroenterologists in the future become more common. 
We hold the opposite view: The development of ANN techniques can reverse the 
transmission of pressure to improve the competence of gastroenterologists. Only in 
this way can pressure and injustice fundamentally be solved. Some issues of ethics and 
society will be answered by further application of ANNs.

Avoidance of overestimation: A misleading saying is that ANNs automatically 
produce analytic results after being fed raw data. Many studies emphasize 
construction methods but neglect the importance of data cleaning and conversion. 
Insufficient data pre-processing has serious impacts on the qualities of models. 
Rigorous criteria of data pre-processing should thus be developed. Coincidentally, 
ANNs have advantages regarding data labelling and classification. ANN models 
should be developed to help construct other ANN models for decision making. 
Although results showed that ANNs outperformed other AI methods, certain studies 
also highlighted their limitations[187,188]. An internal comparison between different 
ML methods is required.

CONCLUSION
The relationship between AI and medicine has received much attention. In this review, 
we introduced the basic knowledge of ANN, a primary method of AI and its 
application in the diagnosis, risk prediction and treatment of GI diseases. Considering 
interdisciplinary difficulties, the contents of this review were written from the 
perspective of gastroenterologists. Many vivid metaphors and brief conclusions 
reduced the comprehension threshold of GI clinicians and scientists. The character-
istics, current limitations, and future directions were then illustrated. Undoubtedly, 
ANNs provide excellent value in clinical practice and even outperform GI experts and 
other types of AI techniques. However, there are still certain problems that hinder 
ANN applications, which require additional exploration in many fields. It is believed 
that ANN will become one of the most efficient tools for GI clinicians and benefit all 
participants in the future.
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