Skip to main content
. 2021 Jun 7;27(21):2681–2709. doi: 10.3748/wjg.v27.i21.2681

Table 4.

Summary of existing studies of artificial neural networks applied in inflammatory bowel disease

Ref.
Disease
Aim
Number of samples
ANN technique
Included variables
Outcome
Ahmed et al[169], 2017 CD Diagnosis 144 CD patients; 243 HC individuals BPNN 103 variables Accuracy 97.67%; sensitivity 96.07%; specificity 100%
Ananthakrishnan et al[154], 2017 UC and CD Predicting treatment response to vedolizumab 43 UC patients; 42 CD patients vedoNet Gut microbiome AUC of CD 88.1%; AUC of UC 85.3%
Anekboon et al[201], 2014 CD Predicting single nucleotide polymorphisms 144 CD patients; 243 HC individuals Multi-layer perceptron network 103 SNPs Accuracy 90.4%; sensitivity 87.5%; specificity 92.2%
Dong et al[173], 2019 CD Predicting the risk of surgical intervention in Chinese patients 83 patients with surgery; 83 patients without surgery ANN 131 variables Accuracy 90.89%; precision 46.83%; F1 score 0.5757
Fioravanti et al[202], 2018 IBD Classification of metagenomics data 222 IBD patients; 38 HC individuals CNN Gut microbiota -
Hardalaç et al[203], 2015 IBD Predicting the effect of azathioprine on mucosal healing 129 IBD patients BPNN Age, age at diagnosis, usage of other medications prior to azathioprine use, smoking, sex, UC-CD Accuracy 79.1%
Kirchberger-Tolstik et al[170], 2020 UC Diagnosis 227 Raman maps with 567500 spectra CNN Images of Raman spectroscopy sensitivity of 78%; specificity 93%
Klein et al[204], 2017 CD Predicting the clinical phenotype 47 B1 patients; 19 B2 patients; 39 B3 patients Two-layer FNN H&E B1 vs B2 phenotype: sensitivity 81%, specificity 74%, accuracy 75%, AUC 0.74; B1 vs B3 phenotype: sensitivity 69%, specificity 76%, accuracy 70.5%, AUC 0.78; B2 vs B3 phenotype: sensitivity 67%, specificity 72.5%, accuracy 69%, AUC 0.72
Lamash et al[71], 2019 CD Visualization and quantitative estimation of CD 23 pediatric CD patients CNN MRI DSCs of 75 ± 18%, 81 ± 8%, and 97 ± 2% for the lumen, wall, and background, respectively
Le et al[174], 2020 IBD Predicting IBD and treatment status 68 CD patients; 53 UC patients; 34 HC individuals Neural encoder-decoder (NED) network Gut microbiota CD vs HC: 95.2% AUC; UC vs HC: 92.5% AUC; CD vs UC: 81.8% AUC
Morilla et al[175], 2019 UC Predicting treatment responses to infliximab for patients with acute severe UC 47 patients with acute severe ulcerative colitis Deep neural network MicroRNA profiles 84% accuracy; 0.82 AUC
Ozawa et al[112], 2019 UC Identification of endoscopic inflammation severity 841 patients CNN (GoogLeNet) Colonoscopy images 0.86 AUC of Mayo 0; 0.98 AUC of Mayo 0-1
Peng et al[205], 2015 IBD Predicting the frequency of relapse 569 UC patients; 332 CD patients ANN Meteorological data High accuracy in predicting the frequency of relapse of IBD (MSE = 0.009, MAPE = 17.1 %)
Shepherd et al[171], 2014 IBD Differential diagnosis between IBD and IBS 59 UC patients; 42 CD patients; 34 IBS patients; 46 HC individuals Multi-layer perceptron neural network Gas chromatograph coupled to a metal oxide sensor in stool samples 76% sensitivity, 88% specificity, 76% accuracy
Takayama et al[132], 2015 UC Predicting treatment response to cytoapheresis 90 UC patients Multi-layer perceptron neural network 13 clinical variables 96% sensitivity; 97% sensitivity
Tong et al[172], 2020 CD, UC and ITB Differential diagnosis between CD, UC and ITB 5128 UC patients; 875 CD patients; ITB 396 patients CNN Differential features of endoscopic images between UC, CD and ITB The precisions/recalls of UC-CD-ITB when employing the CNN were 0.99/0.97, 0.87/0.83, and 0.52/0.81, respectively

IBD: Inflammatory bowel disease; UC: Ulcerative colitis; CD: Crohn's disease; ITB: Intestinal tuberculosis; IBS: Irritable bowel syndrome; CNN: Convolutional neural network; BPNN: Back propagation neural network; FNN: Feedforward neural network; MSE: Mean square error; MAPE: Mean absolute percentage error; HC: Healthy control; AUC: Area under the curve; ANN: Artificial neural networks; SNPs: Single nucleotide polymorphisms; MRI: Magnetic resonance imaging; H&E: Haematoxylin-eosin.