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Abstract

Tropomyosin receptor kinase B (Trk-B) belongs to the second largest family of membrane 

receptors, Receptor Tyrosine Kinases (RTKs). Trk-B is known to interact with three different 

neurotrophins: Brain-Derived Neurotrophic Factor (BDNF), Neurotrophin-4 (NT-4), and 

Neurotrophin-3 (NT-3). All three neurotrophins are involved in survival and proliferation of 

neuronal cells, but each induces distinct signaling through Trk-B. We hypothesize that the different 

biological effects correlate with differences in the interactions between the Trk-B receptors, when 

bound to different ligands, in the plasma membrane. To test this hypothesis, we use quantitative 

FRET to characterize Trk-B dimerization in response to NT-3 and NT-4 in live cells, and compare 

it to the previously published data for Trk-B in the absence and presence of BDNF. Our study 

reveals that the distinct Trk-B signaling outcomes are underpinned by both different configurations 

and different stabilities of the three ligand-bound Trk-B dimers in the plasma membrane.

Introduction

Receptors in the plasma membrane can bind multiple ligands, and can initiate multiple 

downstream signaling cascades that control cellular physiology in health and disease (1–3). 

Recent work has uncovered that different ligands can lead to different biological outcomes 

while acting through the same receptor. This phenomenon is known as “ligand bias” or 

“ligand functional selectivity,” and has been extensively characterized for the largest family 

of membrane receptors, the seven helix G-protein coupled receptors (GPCRs) (4–6). The 

mechanism of ligand bias in GPCR signaling is now established: different GPCR ligands 

stabilize different functional receptor conformations, and each of the conformations only 

efficiently triggers a subset of the possible downstream signaling cascades (7–9). The 

discovery and the mechanistic studies of GPCR bias have redefined fundamental concepts in 
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pharmacology, and have opened up new possibilities for the development of more effective 

and specific therapeutics (10–13).

While most ligand bias investigations have focused on the GPCRs, ligand bias has also been 

reported for the second largest family of membrane receptors, the receptor tyrosine kinases 

(RTKs) (1,3,14–16). RTKs are single-pass transmembrane proteins that control cell growth, 

differentiation, motility, and metabolism (17,18), by transducing biochemical signals via 

lateral dimerization or oligomerization in the plasma membrane. Their N-terminal 

extracellular (EC) ligand-binding regions are composed of characteristic structural domains 

(19). They also have single transmembrane helices and intracellular kinase domains (Fig. 1). 

The cross-phosphorylation of two kinase domains in the ligand-bound dimers and oligomers 

stimulates catalytic activity, triggering downstream signaling cascades that control cell 

behavior (18,20–22).

There are reports of ligand bias involving different RTKs (1), including the ERBB receptors 

(23), the fibroblast growth factor receptors (FGFRs) (24), the Eph receptors (25), and the 

insulin receptor (26,27). However, the mechanism behind this ligand bias is not well 

understood for the RTKs, and is a subject of debate. Some studies have proposed that RTK 

ligand bias occurs through a mechanism that is analogous to the one used by the GPCRs, 

i.e., different RTK ligands stabilize different RTK dimer configurations, leading to 

differential kinase domain activity (15). Others, however, argue that the mechanism is 

fundamentally different, as RTK kinase domains cannot sense the identity of the bound 

ligand because the linkers between the different RTK domains are flexible (16,28,29). 

Instead, these researchers propose that the stability of the RTK dimer is the important 

parameter that controls ligand bias (16,30).

Here, we investigate the biophysical basis behind biased signaling by Trk-B, an RTK that 

belongs to the three-member Tropomyosin receptor kinases (Trks) subfamily. This 

subfamily is characterized by extracellular domains that contain three tandem leucine rich 

repeats flanked by cysteine rich domains and two immuoglobulin-like domains (31–34). The 

Trk receptors initiate signaling cascades that control neuronal cell survival and proliferation, 

axonal and dendritic growth, as well as synaptic connections and synaptic plasticity (33,35–

37). Trk-B, studied here, is the most prominently expressed Trk receptor in the brain, and it 

plays a vital role in neural plasticity in early central nervous system development and in 

adulthood (38–42). Trk-B signals in response to three different neurotrophins, BDNF, NT-3 

and NT-4, which are small biological molecules with 50% sequence identity (43–45).

These three neurotrophin ligands have been reported to have similar binding affinities to 

Trk-B (44,46–48). However, they can lead to different cellular responses when signaling 

through Trk-B. BDNF has been shown to play a more substantial role than NT-4 in synaptic 

transmission and plasticity and in higher cognitive functions (49). On the other hand, NT-4 

has a larger role in inducing neuronal survival and synaptic maturation (50,51). Moreover, in 

NIH 3T3 cells, both BDNF and NT-4 initiate growth responses more strongly than NT-3 

(46,52,53). Based on the mechanism of ligand bias in GPCRs, it is possible that the 

conformations of the different neurotrophin-bound Trk-B dimers in the plasma membrane 
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are different. It is also possible that the stabilities of the three ligand-bound Trk-B dimers are 

different.

We have previously established a FRET assay that can yield RTK association constants and 

can report on the occurrence of conformational changes in the RTK dimer upon ligand 

binding (54–56). Using this assay, we have shown that Trk-B forms a dimer of high stability 

(Kdiss = 12 ± 2 rec/μm2), even in the absence of ligand (56). The binding of BDNF to the 

pre-formed Trk-B dimer triggers a conformational change in the dimer, and further enhances 

its stability (56). Here, we investigate the response of Trk-B to NT-3 and NT-4, in order to 

compare it to the response to BDNF and gain insight into the biophysical basis of ligand 

functional selectivity.

Materials and Methods

Plasmids

The pDNR-Dual Trk-B plasmid (# HsCD00022371) was purchased from DNASU Plasmid 

Respository. The Trk-B gene was cloned into the pcDNA 3.1+ vector, containing a (GGS)5 

linker followed by a fluorescent protein (either mTurquoise or YFP). Cloning was done 

using the Gibson assembly kit (NEBuilder HiFI DNA assembly, New England Biolabs, 

E5520S), as described previously (56). The extracellular + transmembrane (ECTM) (no 

kinase domain) version of Trk-B was cloned similarly (56).

Cell culture and transfection for HEK293T cells

Human embryonic kidney cells (HEK293T) were purchased from ATCC. HEK293T were 

kept at 370C in the presence of 5% CO2 and cultured in Dulbecco’s Modified Eagle Media 

(DMEM, ThermoFisher Scientific, 31600034) supplemented with 10% fetal bovine serum 

(FBS, Hylone, SH30070.03). Prior to imaging, the cells were seeded on collagen coated 

dishes (MatTek, P35GCOL-1.5-14-C) at a density of 2.5*105 cells/dish. For the FRET 

experiments, these cells were transfected approximately 24 hours after seeding with a total 

of 2 ug of DNA using Fugene HD (Promega, E2311) according to the manufacturer’s 

protocol. The medium was changed to serum free medium approximately 12 hours before 

image acquisition to remove all traces of endogenous ligands.

Cells that were singly transfected with either Trk-B-mTurquoise or Trk-B-YFP served as 

controls. For the FRET experiments, cells were co-transfected with 1:3 Trk-B-mTruquoise: 

Trk-B-YFP. The emission spectra of co-transfected cells were deconvoluted into the 

mTurquoise (donor) and YFP (acceptor) spectra, as determined using the singly transfected 

control cells (54). Purified soluble mTurquoise and YFP were used as solution standards to 

convert intensities of the fluorophores into concentrations (54). The soluble fluorescent 

proteins were purified from bacteria, as described previously (57).

Image acquisition and analysis for FSI-FRET

HEK293T cells were subjected to reversible osmotic stress in hypoosmotic media containing 

1:9 serum-free media: diH2O, 25mM HEPES. This procedure removes the “ruffles” or 

“folds” of the membrane (58), enabling accurate quantification of the donor and acceptor 
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concentrations (58). Human brain-derived neurotrophic factor (BDNF, Cell Signaling 

Technology, 3897S), human neurotrophin-3 (NT-3, Cell Signaling Technology, 5237SC), 

human neurotrophin-4 (NT-4, Peprotech) were added at a concentration of ~5ug/mL (380 

nM) in the hypotonic media, at the time of imaging. Cells were allowed to equilibrate for 10 

mins before imaging, and each dish was imaged for ~ 2 hours.

Complete emission spectra were acquired with a two photon microscope equipped with the 

OptiMiS detection system. The microscope has line-scan excitation capabilities, and yields 

fluorescence spectra for each pixel in the image (59). Image analysis was performed using 

the Fully Quantified Spectral Imaging FRET (FSI-FRET) method (54). This method allows 

us to determine the two-dimensional donor and acceptor concentrations in the membrane, 

along with the FRET efficiency. The measured FRET efficiency is corrected for proximity 

FRET as previously described (60). A monomer-dimer equilibrium model is fit to the data, 

to determine the two-dimensional dissociation constant (Kdiss) and the structural parameter 

intrinsic FRET (E).

The dimeric fraction is determined from the corrected FRET efficiency, E:

fD = E
xAE (1)

The constant E depends on the separation, orientation, and dynamics of the two fluorescent 

proteins in the dimer (not on the dimerization propensity), and xA is the acceptor fraction. 

The dependence of E on the distance between the fluorescent proteins in the dimer, d, is 

given by (60,61)

E = 1
1 + d

R0
6 (2)

where R0 is the Forster radius for the mTurquoise-eYFP FRET pair, 54.5 Å. This equation 

assumes free rotation of the fluorescent proteins, an assumption that is justified because the 

fluorescent proteins are attached to long flexible linkers.

Based on the law of mass action, the dimeric fraction can be written as a function of the total 

receptor concentration, T, and Kdiss:

fD = 1
T T − Kdiss

4 1 + 8T /Kdiss − 1 (3)

We use equations (1) and (3) to fit the measured dimeric fractions while optimizing for the 

two adjustable parameters: Kdiss and E.

The stability of the dimer is related to the dissociation constant according to
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ΔG = RTln Kdiss/106
(4)

with Kdiss reported in units of receptors per μm2, and the standard state for the ΔG 

calculation defined as Kdiss
0 =  1 rec/nm2 (61).

When the receptors are 100% dimeric (fD=1), equation (1) reduces to

E = xAE (5)

Image acquisition and analysis for N&B

HEK293T cells were prepared in an identical fashion as for the FRET experiments, except 

that the cells were transfected with 1-2 μg of either LAT-mTurquoise, E-cadherin-

mTurquoise, or Trk-B-mTurquoise using Lipofectamine 3000 (Invitrogen, L3000008) 

according to the manufacturer’s protocol; the LAT and E-cadherin constructs have 

previously been described (62,63). The cells were imaged in the starvation media, and 2.5 

μg/mL of ligand was added 10 minutes prior to imaging; each dish was imaged for no more 

than two hours. Imaging was performed using the photon counting mode of a Leica8 

confocal microscope. The basolateral membrane of the cells was imaged in order to ensure 

that the membrane being measured had a relatively flat topology. An image stack of 150 

images (256 by 256 pixels each) was collected over approximately 90 seconds (5.4 μs pixel 

dwell time) using an 18x optical zoom (40.2 nm pixel length). A 488 laser at .1% of max 

power was used to excite the cells, using the default CFB setting for the emission window.

The image stack of each cell was examined as a video, and cells which were visibly 

expanding, contracting, or exhibiting membrane deformation were excluded from the 

analysis. Image analysis was performed in MATLAB using well established protocols (54). 

In brief, the image stack was aligned to correct for movement using MATLAB’s 

“dftregistration” function (54). A region of interest was then manually selected for analysis, 

and the brightness value (i.e., the ratio of the variance to the mean fluorescence intensity 

across the image stack) was calculated for each pixel in the region of interest. If there was 

any remaining movement or photobleaching, boxcar averaging was instead used to calculate 

the brightness value (64,65). The mean brightness value for all the pixels in the region of 

interest was determined, and it was taken as the brightness value for that cell. Since the 

imaging was performed in a photon counting mode, the molecular brightness, ε, was 

obtained from the brightness value by subtracting one. Oligomer size scales linearly with ε, 

and accordingly, the oligomer size was determined by dividing the experimental ε by the ε 
of the monomer control, LAT.

RESULTS

We use quantitative FRET to characterize the lateral interactions between Trk-B receptors, 

labeled with fluorescent proteins at the C-terminus (either mTurquoise or YFP, a FRET pair) 

via flexible (GGS)5 linkers, in the presence of two ligands, NT-3 and NT-4. Experiments 
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were conducted in the presence of ~5μg/mL (380nM) NT-3 or NT-4, well above the reported 

ligand-receptor dissociation constants, which are in the pM to low nM range (44,46–48). 

The FRET method that we use has been described in detail previously (54,66–68), and is 

briefly described in Materials and Methods. The experiments yield three parameters: FRET 

efficiency, donor (TrkB-mTurquoise) concentration, and acceptor (TrkB-YFP) concentration, 

in small patches of the plasma membrane of live cells. Hundreds of individual cells, all 

expressing different amounts of Trk-B-mTurquoise and Trk-B-YFP, are analyzed and 

combined to produce binding curves.

Figures 1A and 1C show the FRET efficiencies in single cells as a function of the acceptor 

concentration in the presence of NT-3 and NT-4, respectively, while Figures 1B and 1D 

show the donor concentration as a function of the acceptor concentration in the presence of 

the two ligands. In Figures 1A and 1C, we also include the proximity FRET, which occurs 

due to the random close approach (within 100 Å) of the donors and acceptors (60,69,70). 

The measured FRET has a substantial contribution from proximity FRET due to the 

receptors being confined to the two-dimensional plasma membrane. The measured FRET is 

corrected for this proximity contribution following an established protocol that has been 

previously verified (60).

The corrected FRET, which is due to specific interactions between Trk-B molecules, is 

shown in Figure 1E as a function of the total concentration. We see that the corrected FRET 

does not depend on the concentration, which indicates that Trk-B is a constitutive oligomer 

over the concentration range sampled in our experiments. Similar results were obtained 

previously in the presence of 380 nM BDNF (56).

It is known that most RTKs signal as dimers, but higher order oligomers have been proposed 

to form as well (71). We therefore investigated the possibility that the different ligands 

promote the formation of different size oligomers using Number and Brightness (N&B), a 

fluorescence fluctuations technique which directly reports on oligomer size (72–74). Results 

are shown for Trk-B in the absence of ligand and in the presence of the three ligands, as well 

as for a monomer control, LAT (63), and a dimer control, Ecadherin (62). The mean 

oligomer size for Trk-B in the absence of ligand is 1.8 ± 0.1. It is 2.2 ± 0.2, 2.1 ± 0.3, and 

2.3 ± 0.3 in the presence of NT-3, NT-4, or BDNF, respectively. Thus, we see no indication 

for the presence of higher order oligomers, and we conclude that ligand-bound Trk-B is 

always a dimer.

Figure 1E shows the binned dimeric fractions in the presence of the three ligands, as well as 

the dimeric fraction measured previously in the absence of ligand for Trk-B (dimerization 

parameters shown in Table 1). In the case of a dimer, the measured FRET in each cell region 

is proportional to the value of Intrinsic FRET (E), a structural parameter which depends on 

the positioning and dynamics of the fluorescent proteins attached to the C-termini of the 

receptors (61,75). E is calculated using equation (5), and the histograms of Intrinsic FRET 

values, measured in the individual cells for each receptor/ligand pair, are shown in Figure 

1F. Also included in Figure 1E are previously measured E values for Trk-B in the presence 

of 380 nM BDNF (56). The three histograms are fit to Gaussians, and the mean and standard 

errors are shown in Table 1.
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There are highly statistically significant differences in the measured E values in the presence 

of the three ligands in Table 1, as determined using ANOVA (p<0.001). Note that for all 

ligands, we are interrogating 100% dimeric receptors (Figure 1E), and thus the only 

difference in the experiments is the identity of the ligand that is bound to the EC domains. 

Therefore, the results directly demonstrate that there are differences in the conformations of 

the intracellular domains when the different ligands are bound, resulting in different relative 

positioning and/or dynamics of the attached fluorescent proteins. In Table 1, we calculate the 

distance between the fluorescent proteins in the dimers, under the assumption of free 

fluorescent protein rotation. These distances help us visualize the results, as shown in Figure 

1I.

To gain additional insights into the effect of the three ligands on Trk-B dimerization, we 

performed FRET experiments with a truncated Trk-B construct with deleted kinase domains. 

This construct contains the extracellular and transmembrane domains of Trk-B (and is thus 

called “ECTM”), a 15 amino acid flexible (GGS)5 linker, and the fluorescent proteins. In 

Figure 2A and 2C, we show the FRET efficiencies for the ECTM Trk-B construct in the 

presence of 380 nM of NT-3 and NT-4, along with the proximity FRET contribution. Figure 

2B and 2D show the donor concentration versus the acceptor concentration for each of these 

cells, in the presence of NT-3 and NT-4. Figure 2E shows the corrected FRET efficiency that 

is due to specific interactions between the ECTM Trk-B molecules, as a function of the total 

Trk-B concentration.

Unlike in the case of full-length Trk-B, here the specific FRET increases as a function of the 

concentration. This indicates that Trk-B monomers and dimers coexist in the plasma 

membrane, and that the dimer population increases with the concentration as dictated by the 

law of mass action. A model of monomer-dimer equilibrium, given by equations (1) and (3), 

was fit to the data in Figure 2E. The two unknown parameters in the fit were the dissociation 

constant, Kdiss, a measure of the strength of Trk-B interactions in the presence of 380 nM 

ligand, and the structural parameter Intrinsic FRET. The best-fit Kdiss and Intrinsic FRET 

values for ECTM TrkB in the presence of the different ligands are shown in Table 1, along 

with previous results for the ligand BDNF. Figure 2F shows experimental binned dimeric 

fractions in the presence of the three ligands, along with the best-fit. For comparison, we 

also show the ECTM TrkB dimeric fraction in the absence of ligand.

As seen in Figure 2F and in Table 1, the stabilities of the three ligand-bound Trk-B dimers 

(at 380 nM ligand) are different. Furthermore, the Intrinsic FRET values measured in the 

presence of the three ligands are different, as determined with ANOVA (p<0.001). As the 

fluorescent proteins are attached to the TM domain C-termini via flexible linkers, these 

results suggest that the distance between the C-termini of the TM helices are different when 

different ligands are bound to the EC domain (Figure 2G), indicating that the conformations 

of the Trk-B TM domain dimer are different. Thus, both the structures and stabilities of the 

ECTM Trk-B dimers are different when the three different ligands are bound to them.
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DISCUSSION

Two hypotheses have been discussed in the literature to explain the occurrence of RTK 

ligand bias. According to one hypothesis, ligand bias arises because the conformations of the 

kinase domain dimers are different when different ligands are bound to the EC domains (76). 

This hypothesis is based on the assumption that the conformational changes in the EC 

domain in response to the bound ligand are transmitted along the length of the RTK and 

reach the kinase domain (77). In support of this view, it has been shown that different 

ligands, bound to the same RTK, can induce different TM domain dimer conformations, or 

different conformations of the linker connecting the TM and kinase domains (the 

juxtamembrane domain) (55,78–80). Yet, there have been no direct demonstrations that the 

kinase domains can adopt distinct configurations when different ligands are bound to the EC 

regions. In part, this is due to experimental challenges to assess the conformation of the 

kinase domains inside cells when different ligands are bound to the EC domain. Here, we 

overcome the challenges by quantifying the Intrinsic FRET between the fluorescent proteins 

in the Trk-B dimer (56). We observe differences in the presence of NT-3, NT-4, and BDNF. 

These observed differences in Intrinsic FRET suggest differences in the relative positioning 

and/or dynamics of the fluorescent proteins, and therefore of the Trk-B domains to which 

the fluorescent proteins are attached.

RTKs first cross-phosphorylate each other on tyrosines in the activation loops of the kinases, 

which significantly increases the activity of the kinases. Afterwards, the kinases 

phosphorylate additional tyrosines in the intracellular domains, which serve as binding sites 

for effector proteins. For phosphorylation to occur, the kinase domains must interact with 

each other such that each of these tyrosines finds itself in close proximity to the active site of 

the neighboring kinase. Since multiple phosphorylation events need to take place, the two 

kinases in the dimer presumably interact through several different interfaces. There are 

crystal structures of isolated kinase domain dimers that are believed to be snapshots of 

specific phosphorylation events (81–85); these structures attest to the fact that different 

kinase dimers can form to enable phosphorylation of different tyrosines. Each different 

kinase dimer configuration likely positions the fluorescent proteins attached to the C-

terminus of full-length TrkB at a certain average distance from each other. If the kinases 

explore multiple dimer configurations, the measured FRET efficiency in our experiments 

will be a weighted average of the FRET for each specific dimer configuration. The weights 

will be determined by the relative amounts of time spent in each of these configurations.

If the hypothesis that different ligands differentially stabilize different kinase dimer 

configurations holds true, then the weights with which the different ligand-bound 

configurations contribute to FRET will be different, and so will be the measured FRET for 

full-length TrkB, when bound to different ligands. This is exactly what we observe here. 

Thus, our data support the idea that the information about the identity of the bound ligand is 

transmitted from the EC domain to the kinase domain.

Since the TM domain provides the structural link between the EC ligand-binding domain 

and the intracellular kinase domain, it has been hypothesized that the TM domains sense the 

identities of the bound ligands and, as a result, adopt different dimer configurations 
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(55,77,78). Our data are consistent with this view, as we measure different Intrinsic FRET 

values for the ECTM TrkB dimers bound to the three different ligands. As the fluorescent 

proteins are attached to the TM C-termini via flexible linkers, we interpret the different 

Intrinsic FRET values as an indication that the separation between the TM C-termini is 

different when different ligands are bound. Taken together, the different Intrinsic FRET 

values measured for full-length TrkB and ECTM TrkB suggest that NT-3, NT-4, and BDNF 

differentially stabilize different TrkB dimer configurations. The exact structural differences, 

however, are unknown.

A second hypothesis has been proposed in the literature to explain the occurrence of ligand 

bias, prompted in part by observations that the EC and IC domains in RTKs can change 

conformations independent of each other, and thus are not strongly coupled (16,28,29). It 

states that the differential engagement of signaling cascades in response to different ligands 

is correlated with the thermodynamic stabilities of the ligand-bound RTK dimers in the 

plasma membrane (16,30). To test this hypothesis, we sought to compare the thermodynamic 

stability of Trk-B dimers at saturating concentrations of NT-3, NT-4, and BDNF. While we 

could not measure the thermodynamic stability for full-length ligand-bound Trk-B because it 

was 100% dimeric in our experiment, the stability of the ECTM Trk-B dimer was 

measurable due to the loss of favorable stabilizing contacts between the Trk-B kinase 

domains (as demonstrated previously (56)). We were thus able to compare the 

thermodynamic stabilities of the three ECTM Trk-B dimers, and we observed distinct 

differences among them. Accordingly, our data are consistent with the idea that the biased 

ligands differentially stabilize RTK dimers.

Taken together, our results demonstrate that the ligands NT-3, NT-4, and BDNF stabilize 

dimers with different conformations and different stabilities. Thus, our data support both 

hypotheses outlined above. Noteworthily, there is no a priori reason for the two hypotheses 

to be mutually exclusive, and in fact, different structures usually have different stabilities. It 

is possible that the differences in structure and stability of the ligand-bound dimers observed 

here underlie previously reported differences in the downregulation of Trk-B in response to 

BDNF and NT-4 (86). BDNF induces more efficient ubiquitination of Trk-B, as compared to 

NT-4, and targets Trk-B more efficiently to degradative pathways. Our results suggest that 

the BDNF-bound Trk-B dimer is the most stable one of the three ligand-bound Trk-B 

dimers. Interestingly, dimers of high stability have been proposed to engage negative 

feedback mechanisms more efficiently that dimers of lower stabilities (16). This scenario has 

been proposed for EGFR, and now our results suggest that it may apply to Trk-B as well. 

Furthermore, it is possible that differences in RTK dimer structure underly the efficiency of 

its ubiquitination.

This work gives new insights into the biophysical principles that underlie RTK ligand bias. 

GPCRs transduce biochemical signals across the plasma membrane via conformational 

changes, and ligand bias occurs when different ligands induce different types of 

conformational changes. For a long time, RTKs were believed to signal via a fundamentally 

different mechanism involving ligand-induced lateral dimerization (19). Recently it has 

become clear, however, that the role of the ligand in RTK activation is more complex, as it 

also induces conformational changes that are required for efficient RTK signaling 
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(56,77,87,88). Thus, both dimerization and conformational changes are required for RTK 

activation in the plasma membrane. Likewise, as shown here, ligand bias can be linked to 

both ligand-specific dimerization propensities and ligand-specific conformational changes.
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Figure 1. 
Dimerization of full-length Trk-B in the presence of saturating concentrations (380 nM) of 

the three ligands. (A) FRET as a function of acceptor concentration for Trk-B in the 

presence of 380 nM NT-3. The solid black line shows the proximity FRET, which is FRET 

due to the random close approach of donor and acceptor fluorophores in the membrane. (B) 

Trk-B-mTurquoise (donor) concentration versus Trk-B-YFP (acceptor) concentration in the 

presence of NT-3. (C) FRET as a function of acceptor concentration for Trk-B in the 

presence of NT-4. The proximity FRET is shown with the solid black line. (D) Trk-B-
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mTurquoise (donor) concentration versus Trk-B-YFP (acceptor) concentration in the 

presence of NT-4. (E) FRET, after the correction for proximity FRET (correction procedure 

described in (60)). The corrected FRET does not depend on the concentration. (F) Number 

and Brightness measurements of oligomer size of LAT (monomer control), Ecadherin (dimer 

control), Trk-B in the absence of ligand and in the presence of BDNF, NT-3, and NT-4. (G) 

Histogram of Trk-B Intrinsic FRET values in the presence of BDNF, NT-3 and NT-4. (H) 

Trk-B dimerization curves (fraction of dimers as a function of total receptor concentration) 

in the absence of ligand and in the presence of BDNF, NT-3 and NT-4. The dimerization 

parameters measured for Trk-B in the presence of the three ligands are reported in Table 1. 

Data in the absence of ligand and in the presence of BDNF are from (56). (I) Summary of 

findings. Not drawn to scale, and meant to emphasize measured differences in average 

distance between fluorescent proteins (see Discussion).
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Figure 2. 
Dimerization of truncated ECTM Trk-B in the presence of saturating concentrations (380 

nM) of the three ligands. (A) FRET as a function of acceptor concentration in the presence 

of 380 nM NT-3. The solid black line shows the proximity FRET. (B) ECTM Trk-B-

mTurquoise (donor) concentration versus ECTM Trk-B-YFP (acceptor) concentration in the 

presence of NT-3. (C) FRET as a function of acceptor concentration in the presence of 380 

nM NT-4, along with the proximity FRET contribution. (D) ECTM Trk-B-mTurquoise 

(donor) concentration versus ECTM Trk-B-YFP (acceptor) concentration in the presence of 
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NT-4. (E) FRET, after the correction for proximity FRET (correction procedure described in 

(60). The corrected FRET increases with concentration. (F) ECTM Trk-B dimerization 

curves (fraction of dimers as a function of concentration) in the absence of ligand and in the 

presence of 380 nM BDNF, NT-3, and NT-4. The dimerization parameters measured for 

ECTM Trk-B in the presence of the three ligands are reported in Table 1. Data in the 

absence of ligand and in the presence of 380 nM BDNF are from (56). (G) Summary of 

findings. Not drawn to scale, and meant to emphasize measured differences in average 

distance between fluorescent proteins (see Discussion).
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Table 1.

Dimerization parameters for full-length and truncated ECTM Trk-B receptors, in the absence of ligand and in 

the presence of 380 nM NT-3, NT-4, or BDNF. Kdiss is the two-dimensional dissociation constant, a 

thermodynamic parameter, which is related to the stability of the Trk-B dimers, ΔG, according to equation (4). 

E is the Intrinsic FRET, which depends on the positioning of the fluorescent proteins within the Trk dimers. 

Differences in Intrinsic FRET in the presence of the three ligands are highly statistically significant (p<0.001 

from ANOVA). The average distance between the fluorescent proteins, d, is calculated from E using equation 

(4), under the assumption for free rotation of the fluorescent proteins.

Full length Kdiss (rec.μm−2) ΔG (kcal/mol) Intrinsic FRET (E) d(Å)

Trk-B* 12 ± 2 −6.72 ± 0.10 0.35 ± 0.04 60 ± 2

Trk-B+NT-3 100% dimer n.d. 0.22 ± 0.02 67 ± 1

Trk-B+NT-4 100% dimer n.d. 0.57 ± 0.02 52 ± 1

Trk-B+BDNF* 100% dimer n.d. 0.30 ± 0.02 63 ± 1

ECTM Trk-B* 2018 ± 134 −3.68 ± 0.04 0.82 ± 0.02 42 ± 1

ECTM Trk-B+NT-3 710 ± 40 −4.30 ± 0.07 0.85 ± 0.02 41 ± 1

ECTM Trk-B+NT-4 150 ± 36 −5.22 ± 0.15 0.68 ± 0.02 48 ± 1

ECTM Trk-B+BDNF* 23 ± 2 −6.33 ± 0.06 0.50 ± 0.01 55 ± 1

a
n.d.: not determined.

*
Data in the absence if ligand and in the presence of BDNF are from (56).
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