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INTRODUCTION
The advancing footprint of artificial intelligence (AI) in 
medicine and more so in modern radiation oncology 
(RO) indicates that it stands to impact all aspects of RO 
in near future, mandating that we are adequately prepared 
to interact with AI-driven RO.1 Last few years have seen 
many deliberations on the topic at great length.1–4 While it 
is believed that akin to its projected role in external beam 
radiotherapy (EBRT), AI will also influence the process of 
brachytherapy (BT), the data and discussions on its role in 
BT have been limited. The authors have tried to summarize 
the contemporary research on AI in BT and its potential 
utility across diverse sites and indications. We understand 
that machine learning (ML) and deep learning (DL) are 
incrementally more advanced and effective modalities of 
AI; however, to keep things simple, we have refrained from 
delving into technical details of complicated algorithms and 
limited the discussion to clinical domains.

Through this manuscript, the reader will navigate through 
several studies where AI or ML has been used in the field 
of BT and get a sense of how purposefully the available data 
and potential applications thereof can fall in line toward the 
common goal of improving treatment quality.

METHODS
A PubMed search was performed for English language 
publications (till March 2020) in humans using the 
MeSH terms “artificial intelligence,” “machine learning”, 
or “deep learning” in combination with “neoplasms” and 
“brachytherapy”. The retrieved abstracts were hand-sorted 
for relevance. Cross-references from the relevant articles 
were also retrieved from non-PubMed sources after elimi-
nating duplicates. Full texts of all selected publications were 
screened for inclusion. In case of multiple similar publica-
tions pertaining to a particular disease site, sub-topic or 
modality, the most recent publications or the ones with the 
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ABSTRACT

Artificial intelligence (AI) applications, in the form of machine learning and deep learning, are being incorporated into 
practice in various aspects of medicine, including radiation oncology. Ample evidence from recent publications explores 
its utility and future use in external beam radiotherapy. However, the discussion on its role in brachytherapy is sparse. 
This article summarizes available current literature and discusses potential uses of AI in brachytherapy, including future 
directions. AI has been applied for brachytherapy procedures during almost all steps, starting from decision-making 
till treatment completion. AI use has led to improvement in efficiency and accuracy by reducing the human errors and 
saving time in certain aspects. Apart from direct use in brachytherapy, AI also contributes to contemporary advance-
ments in radiology and associated sciences that can affect brachytherapy decisions and treatment. There is a renewal 
of interest in brachytherapy as a technique in recent years, contributed largely by the understanding that contemporary 
advances such as intensity modulated radiotherapy and stereotactic external beam radiotherapy cannot match the 
geometric gains and conformality of brachytherapy, and the integrated efforts of international brachytherapy socie-
ties to promote brachytherapy training and awareness. Use of AI technologies may consolidate it further by reducing 
human effort and time. Prospective validation over larger studies and incorporation of AI technologies for a larger 
patient population would help improve the efficiency and acceptance of brachytherapy. The enthusiasm favoring AI 
needs to be balanced against the short duration and quantum of experience with AI in limited patient subsets, need for 
constant learning and re-learning to train the AI algorithms, and the inevitability of humans having to take responsibility 
for the correctness and safety of treatments.
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largest number of subjects were chosen for discussion. The avail-
able data were summarized in the form of a narrative review with 
focus on developments related to role of AI pertinent to each step 
of brachytherapy process.

RESULTS
Decision-making regarding use of BT at initiation of 
cancer treatment
Clinicians are using AI with excellent results in qualitative anal-
ysis of oncological imaging. AI holds substantial promise in 
the field of radiomics, using radiographical features of tumors 
for volumetric delineation, and determining association of the 
tumor genotype and predicted biological path. Prediction of 
clinical outcome, and assessment of the impact of disease and 
treatment on adjacent organs by use of AI tools (such as clinical 
response and risk of pneumonitis from baseline imaging in lung 
cancer) is now being validated.5 AI-assisted automatic segmen-
tation helps improve efficiency, reproducibility and quality of 
tumor measurements. Whole-body imaging data can be eval-
uated rapidly, allowing identification of subclinical disease and 
organ dysfunction. Diagnostic modalities such as gastrointes-
tinal endoscopy, cystoscopy and laboratory settings are adopting 
AI to improve diagnostic yield.6,7 It helps in more accurate 
tumor identification and delineation, especially in identification 
of skip lesions or multicentric disease. Factors such as tumor 
size, extent, multicentricity, radiobiological behavior, radiation 
sensitivity, cure rates and toxicities arising from radiotherapy 
can be gleaned from AI-driven algorithms.5,8,9 These factors 
have a direct bearing on the role and scope of AI in clinical BT; 
at present, their role is limited to research but they may poten-
tially drive or guide tumor board discussions and decisions in 
future. Prostate cancer is one of the earliest malignancies where 
AI algorithms were used for risk categorization, treatment opti-
mization, toxicity prediction and follow-up. DL can help treat-
ment decision-making in prostate cancer treatment where BT 
can be one of the therapeutic options.10,11 Determination and 
validation of the risk of lymph nodal involvement and prediction 
of capsular invasion through artificial neural networks in large 
databases have helped select candidates who would benefit from 
radical BT as the sole treatment modality. Similar applications 
in breast cancer to identify low risk early disease may help more 
efficient selection of candidates for accelerated partial breast 
irradiation.12 However, it needs to be understood that while AI 
improves efficiency of the process, its benefits have been studied 
only in small cohorts. It is not fool-proof and needs constant 
learning, re-learning and validation across larger population 
subsets. In the aforementioned prostate cancer study, AI had a 
16% false-negative rate for prediction of capsular invasion.11 For 
toxicity prediction in a cohort of 321 prostate cancer patients, 
the overall accuracy was only 70% with both false-negatives and 
false-positives being reported. The AI algorithm demonstrated a 
decent sensitivity of 84.6% but the specificity was low at 58.8%.8

AI in pre-planning
Pre-planning is an essential component in BT that includes 
review of the clinical situation, assessment of volume to be 
treated, approach and technique to be used for implanting 
the tumor, choice of applicator and planning a prescription 

depending on the surrounding vital structures. AI can play a 
significant role here. We know that DL can perform fully auto-
matic segmentation of healthy and neuropathic sciatic nerves 
from standard magnetic resonance neurography (MRN) images 
with good accuracy and in a clinically feasible timespan.13 Simi-
larly, muscle compartments can be precisely delineated to aid 
planning of orthopedic and general surgical interventions.14 In 
a not-too-far foreseeable future, the physicians will have this 
information upfront and approach an intraoperative BT cath-
eter placement with far more confidence about their intended 
regions of implantation and avoidance for dose prescription. AI 
found one of its earliest uses in low dose rate (LDR) seed BT of 
prostate cancer. Nicole and colleagues used ML to extract dosi-
metrically optimal pre-plans which were comparable in quality 
to those by expert planners, but with a significant reduction 
in planning time (0.84 ± 0.57 minutes vs 17.88 ± 8.76 minutes, 
p = 0.020).15 There are preliminary reports that DL methods 
using previous experiences can guide selection of suitable 
applicators for high dose rate (HDR) BT in cancer cervix. This 
has been validated in the choice of interstitial over intracav-
itary applicators based on geometric characteristics of data 
such as shape and volume of high-risk clinical target volume. 
ML algorithms can help in decision-making and augmenting 
a physician’s judgment leading to more consistency, obviating 
many logistic issues and last-minute unwanted plan changes 
in the operating room, with no compromise in plan quality.16 
Clinical experience tells us that reirradiation can salvage nearly 
50% prostate cancer patients with post-irradiation recur-
rences; ML algorithms may help segregate and select patients 
with a better chance of control with salvage radiotherapy, thus 
sparing the other half from unnecessary re-exposure to radi-
ation.17 ML-based algorithms have helped yield prediction 
models of rectovaginal fistula formation in patients under-
going interstitial BT for advanced gynecological malignan-
cies.18 The information generated, at best, can be considered 
hypothesis-generating and need to be validated for clinical 
utility across large datasets (exceeding thousands of patients) 
over a long period or multiple institutions. This is a challenge 
since it requires universal standardization of data recording 
and reporting. Also, the model predictive accuracy is limited 
not only by small sample sizes but also a small number of events 
under investigation. The model is only able to predict based 
on factors incorporated and validated; information such as 
genetic susceptibility, if unavailable, is not used despite having 
a possible impact on outcome or number of events.

AI in assisting procedure in BT operating room
Diagnostic ultrasonography (USG) is a powerful tool in real-
time BT for guiding interstitial needle insertion, but its use by 
RO professionals is limited by lack of experience and training.19 
Three-dimensional (3D) USG image analysis has shown great 
potential in USG-based clinical application of BT.19 Application 
of novel DL in automated imaging analysis tasks (lesion/ nodule 
classification, organ segmentation, object detection, registration, 
measurements, quality assessment) and image-guided interven-
tions, specific to BT in sites such as prostate, breast, tongue, etc., 
are areas of potential future research.20
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DL has proven itself useful in tasks such as classification, segmen-
tation, detection, registration, image-guided interventions, and 
therapy in real time. USG is being experimented and validated 
for use in real time interventions. Deep convolutional network 
may help identify critical nerves and blood vessels in USG 
images.21 This application in sites such as neck (due to complex 
neural and vascular architecture) may expand the indications 
of interstitial BT as well as instil confidence in the physician 
for complex procedures. AI application of USG in future may 
provide real-time guidance in operating room to identify target 
as well as avoid juxtaposed critical structures in patients under-
going implants for BT.

Besides USG, endoscopy is an underexplored modality for seed 
or catheter placement. There are case reports of using AI-driven 
navigation system for real-time localization of the airways and 
lung nodules using fluoroscopic images. The navigation catheter 
guided by AI could reach the suspicious nodule endoscopically 
where a computed tomography (CT)-guided biopsy had failed.22 
LDR seeds may be placed via endoscopic routes in several sites 
such as pancreas, esophagus, and lungs; usage of AI here may 
help in more accurate placement of radioactive seeds with greater 
therapeutic efficacy. Whether these anecdotal scenarios translate 
into real-world applications of AI in guiding BT procedures will 
become clear only with wider availability and time. At present, 
the limited experience with USG and endoscopy in the hands 
of RO professionals indicates that this AI approach, although 
promising, would be slow to be adopted.

AI in imaging with applicator
Almost all BT procedures require post-procedure imaging, and 
while most departments have their own protocols for imaging, 
the quality of images may vary with patient, site of application, 
and type and orientation of applicators. Advanced imaging 
techniques and personalized protocols for imaging acquisition, 
supported by ML can help us to acquire better images in this era 
of image-guided brachytherapy (IGBT); this in turn will aid in 
better delineation of targets and organs at risk.23

AI in applicator/ catheter reconstruction
Reconstruction of applicator, needles, and catheters needs expe-
rience, and is a time-consuming and tedious job; the digitiza-
tion process often takes more than half the treatment planning 
time.24 It also delays the first treatment session, thus necessi-
tating prolongation of the patient’s hospital stay. For HDR IGBT 
of cervical cancer, applicator digitization errors have a consid-
erable effect on dosimetric parameters of treatment planning.25 
DL can reliably help in automated applicator (tandem and ovoid) 
reconstruction in a computation time of about 25 seconds, while 
reducing observer-related errors and reducing planning time.26 
DL-enabled automation for digitization of interstitial needles 
has yielded a reconstruction time of under 5 minutes for an 
average of 20.7 interstitial needles.27 Furthermore, DL methods 
show promise in intraoperative magnetic resonance imaging 
(MRI)-based catheter reconstruction in complicated interstitial 
gynecological BT procedures with 10–35 catheters with compu-
tational time under 3 min.28 There was, however, the problem 
of identification due to similarity of intensity with blood vessels 

and plastic tubing such as urinary catheters in MRI leading to a 
false-positivity rate of 13.8% in this study; reconstruction was 
discontinuous since all voxels were defined as catheter or non-
catheter instead of the system attempting linear reconstruction 
in physical space according to shape and length of catheter. Also, 
at its current stage of development, the learning–relearning 
process involves only one MRI scanner at a time and a signif-
icant computational load. The authors believe that with more 
widespread implementation across centers, this problem may be 
overcome in the future.

AI in target delineation/ image registration/ 
radiomics
Dose escalation to dominant intraprostatic nodules identified 
on multiparametric MRI is possible in prostate HDR BT if this 
information can be incorporated into real-time USG to guide 
catheter placement. Reliable registration of MRI-USG images 
is a challenging task due to different gray-level intensity and 
image field size between MRI and USG. Zeng et al29 devised a 
weakly supervised learning DL-based model for performing 
automatic MRI-US registration. This system suffered, however, 
from inability to verify if the system-generated prostate defor-
mations for matching indeed matched the actual deformability 
of prostate, in addition to the limited dataset size. An algorithm 
of AI, residual learning of convoluted neural network (CNN) 
appreciably decreases metal artefacts in cervical cancer CT 
images, thus improving critical organ visualization and confi-
dence of treating physician in delineation of target.30 Similar AI 
applications have been explored in prostate BT for target volume 
and normal tissue segmentation on transrectal USG images.31 
The available results are encouraging, but need larger volume of 
training datasets to have more generalizability. The accuracy is 
lower in prostate apical and base regions.

AI in planning/ dose prescription
Extraction and analysis of rigidly defined radiomic features can 
transform medical imaging data into quantifiable variables to 
predict survival, other failure modes, and response to therapeutic 
agents.9 A recent study on 142 patients with locally advanced 
cervical cancer shows a DL model can assist early prediction 
of local and distant failures from positron emission tomogra-
phy-CT (PET-CT) and diffusion-weighted MRI data.32 These 
data when widely available may help individualize treatment and 
follow-up; those predicted for distant failures may need to incor-
porate some form of systemic therapy or undergo more rigorous 
follow-up, while those with higher chances of local failure may 
merit dose escalation with advanced BT techniques.33 Prelimi-
nary reports indicate that deep CNN can be used to predict rectal 
toxicity in patients with locally advanced cervical cancer.34 This 
information may help in dose prescription and plan evaluation 
when we need to trade-off between toxicity and cure. AI use is 
likely to change the paradigm of radiotherapy planning prac-
tice, including BT, in next two decades.35 Deep reinforcement 
learning-based iterative weight-tuned inverse planning algo-
rithms in cervical cancer BT are able to give inputs mimicking 
weight adjustments by a human planner with equivalent plan 
quality albeit in a much shorter planning time.36 Most avail-
able interpretations are from single center retrospective studies 
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evaluating small patient numbers, similar scanning equipment 
(PET or MRI), and their inherent bias. Capability of interpreta-
tion or computing may be affected by the interslice gap in MR 
images, leading to potential misreading of data.

AI in adaptive planning/ treatment monitoring
AI is increasingly assuming a greater role in EBRT planning 
process. BT is, in our opinion, the most accurate form of treat-
ment delivery due to direct contact of radiation source with 
target; however, catheter displacement may happen between 
treatments and there may be movement of surrounding critical 
organs. Ideally, the treatment (source position and dwell time) 
should adapt to catheter movements and the adaptive anatomy of 
surrounding organs. Electromagnetic tracking (EMT) may deter-
mine the spatial position and dwell time of a radiation source 
within the implanted volume, in reference to planning CT data. 
Automated analysis of EMT datasets has helped to ensure concor-
dance of the source movement with treatment plan after elimi-
nation of movement artifacts in breast BT. This tool combines 
ML techniques to precisely detect and quantify mismatches 
between the treatment plan and actual EMT measurements and 
can quantify deviations before a treatment session is started.37 
We need fast and practical models to correct the treatment plan 
for new anatomical positions or shapes of organ at risk before 
dose delivery. After determining the deformation-related intra-
fractional rectum and bladder dose variations, CNNs help in 
plan optimization in gynecological cancers.38

AI in routine clinical physics workflow and quality 
checks
AI may assist clinical physicists in treatment planning, sched-
uled quality assurance (QA) procedures and periodic chart 
verification, considerably reducing time spent by them in these 
activities. However, several non-routine activities which require 
interface with other professionals such as dosimetrists and clini-
cians, cannot be adequately handled by AI technology yet and 
continue to be performed solely by physicists.39

As experience with AI in BT grows, we will have ways to incor-
porate it in several other steps. AI is already showing promise 
in assessment of implant quality in prostate seed BT. Typically, 
post-implant dosimetry is performed at day 30 of the procedure 
to evaluate the implant quality. Traditionally, CT with its limited 
soft tissue resolution is used; MRI can give better organ delinea-
tion, but has its own uncertainties. To circumvent this problem, 
Nosrati et al40 devised a technique that utilizes unsupervised ML 
in specialized MRI sequencing. Their findings suggest that the 
technique is accurate and robust for localizing seeds’ position 
and orientation, and can replace the current widely practiced 
CT-based workflow.

DISCUSSION
BT has the geometric advantage of better conformity compared 
to even stereotactic EBRT techniques, owing to the proximity of 
radiation source to target, and rapid peripheral dose fall-off.41 
Akin to surgical techniques, BT skills are also physician-
dependent and require a long-learning curve before confi-
dent applications. Within BT techniques as well, interstitial 

procedures demand more practice and precision than luminal 
or surface applications. For these reasons, it is likened to an 
art form that needs passion for precision in addition to being 
a skill-based technical field. Since acquisition of skill is an 
ongoing process on individual basis, technological advance-
ments have had a lesser impact in BT than in other branches 
of medicine and EBRT. There are institutional innovations 
and modifications of the art to adjust with logistics leading to 
differing practices across institutions.42 Such variable practice 
will delay and defer incorporation of AI in BT. Although AI 
technologies may help in the pre-planning steps, the eventual 
plan will depend heavily on how applicators, interstitial needles 
or catheters are inserted by the clinician rather than all other 
technical factors combined. A higher focus on technological 
advancements such as intensity modulation (IMRT), image 
guidance and stereotactic body radiotherapy (SBRT) in EBRT, 
in addition to economic (better reimbursement for EBRT over 
BT) and logistic (higher personnel time per treatment session 
for BT over EBRT, lesser training opportunities) factors, has led 
to decreased enthusiasm and willingness to spend time to gain 
BT skills; this is evident in the declining trend of BT in the last 
decades.43,44 In prostate cancer, despite better outcomes with BT 
boost in high-risk disease, dose escalated EBRT is more widely 
practiced.45 Combined with decreased overall utilization of RT 
in prostate cancer due to decreased prostate cancer screening, 
this has led to decrease in number of high volume centers for 
BT as well as reduction in annual BT procedures per center. The 
decline in BT in carcinoma cervix (96.7% to 86.1% from 2004 
to 2011) was accompanied by a proportionate increase in use 
of IMRT and SBRT (3.3% to 13.9% over the same duration), 
and resulted in a survival detriment with a hazard ratio of 1.86, 
according to National Cancer Database.46,47 These findings have 
strengthened the realization that BT is irreplaceable by EBRT 
in a variety of clinical situations and led to a renewal of interest 
in BT, and several national brachytherapy societies are now 
enhancing their focus on improving incorporation of BT into 
national treatment guidelines, increasing awareness and oppor-
tunities for training among young radiation oncologists, and 
well as promoting inter-institutional and inter-societal collabo-
rations, besides advocacy for cost-effectiveness and equal reim-
bursements as an incentive to practicing physicians.48 BT stands 
a chance of benefiting from advancements in radiology, modern 
procedural techniques, treatment planning, QA and delivery to 
survive and rather flourish in this era of conformal radiotherapy 
and particle therapy. The global BT seeds market (HDR and 
LDR) is set to post a compound annual growth rate of 9% during 
2019–2023. This growth is propelled by several technological 
innovations, which include the recent advances in pulsed dose 
rate BT, IGBT, advancement in real-time imaging for proce-
dures and.49 Seed BT with innovations of robotic handling for 
added safety, 3D templates for accurate positioning, and lower 
cost has yielded tumor coverage and normal tissue sparing 
similar to SBRT in sites such as lung tumors.50 Modern BT 
procedures with increasing complexities and steps will require 
more technical resources and skilled manpower. It is impera-
tive that we encourage novel BT technologies that will enhance 
speed, popularity, and acceptance of BT both for patient and 
physician, simultaneously retaining its safety, accuracy, and 
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evidence-based efficacy. Current research discussed here under-
lines the need of encouragement for new technologies involving 
AI platforms.

Researchers from Sunnybrook cancer hospital have published a 
phase 1 trial for prostate LDR BT day-30 dosimetry comparing 
ML-based treatment planning system with conventional plan-
ning by experts, concluding that the ML module produces non-
inferior postoperative dosimetry but offers significant gains in 
procedure time and efficiency.51 Investigators at University of 
Texas have used AI techniques to automatically segment organs, 
perform a fully automated planning process, including appli-
cator digitization, radioactive source placement, and dwell time 
determination; the whole process completed in significantly 
lesser time than a conventional manual planning process with 
desired safety and efficacy, and better time efficiency.52

Figure 1 illustrates a hypothetical case of cancer cervix where AI 
assists each step from decision making to treatment (Figure 1).

As discussed earlier, this enthusiasm in advocating AI for BT 
stemming from the success of pioneering efforts is counter-
balanced by low BT patient volume, as well as the fact that the 
current literature for AI practices is limited to small datasets in 
mono-institutional retrospective studies that need process stan-
dardization and validation across larger patient populations and 
multiple institutions. ML capacity and development of such algo-
rithms depend on correlations of the input and outcome data. 
Hence, the use of such algorithms becomes restrictive in clinical 

science as the data itself has many constraints and observational 
errors, as well as biases that creep in due to age-old practices and 
prejudices of clinicians.53 Besides the inherent limitations of data 
quality, the quantity of data also matters. RO datasets are smaller 
and more limited compared to what other professions are using to 
tune their predictive algorithms. BT suffers from even more scar-
city of data. Treatment decisions and practices are customized 
and physician-specific. BT practices vary widely across institu-
tions and even among practitioners in same institution. All these 
factors pose a barrier in formulating predictive AI algorithms. 
The resultant faulty outputs can lead to clinical catastrophe espe-
cially in HDR BT where treatment precision is paramount and 
side effects of these errors potentially debilitating; this is owing to 
the fact that HDR BT traditionally employs higher dose per frac-
tions and lower number of fractions, leading to higher impact of 
dose errors per fraction compared to conventionally fractionated 
EBRT.

There is an effort by responsible organizations to introduce 
uniformity in practice across the world; standard guidelines for 
common sites such as prostate, cervix and soft tissue sarcomas 
are now in place.54–56 Hopefully, generation of more standard-
ized and carefully complied data in future practices of BT will 
ensure inter-institutional homogeneity and this will generate 
more consistent inputs for AI algorithms and thus more reliable 
outputs as well. The ensuing long term results and their appli-
cations eventually may be incorporated to aid and strengthen 
routine clinical practice. In addition to strengthening of 
training for BT, familiarity with basics of AI will also need to be 

Figure 1. A conceptual block diagram showing possible use of AI in every step of cancer cervix brachytherapy. ( in last block of 
the diagram “FU with investigations and period....and toxicities early” be replaced by “Deciding investigations and period of Fu to 
detect early recurrence and toxicities”
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incorporated into resident training programs, so that clinicians 
may work more fruitfully as a team with physics and engineering 
peers for generation of clinically useful algorithms.

CONCLUSION
In contrast to EBRT and its technological advancements including 
contribution of AI, BT is still dependent more on the skills and 
technique of the physician than technological advances. That 
said, there is a huge potential for incorporation of AI in BT tech-
nology; it may be used to refine skills and well as save time and 
effort in applying already defined rules and variations thereof. 
Just like in EBRT, AI-driven planning in BT is likely to improve 
process efficiency, consistency, and quality but human interven-
tion and quality checks for validation would still take the central 
place for quite a while as they will need to shoulder the responsi-
bility for plan approval and treatment safety despite any number 
of automation inputs. We are still at the nascent stage of AI 
application to add value to the existing clinical workflow; it will 
require a great deal of understanding, input of large patient data-
bases (imaging, treatment plans, genetic information, follow up 
imaging and clinical data) from varied institutions and imaging/
treatment sources to improve the accuracy of the learning and 
training processes as well as possibility of generalization across 
different populations. This also means relatively unrestricted 
access to patient data which may interfere with privacy, data 
security, and regulatory issues. Prospective studies with multi-
center collaborations and standardization of nomenclature as 

well as QA, planning, and reporting processes are an idealist but 
humongous undertaking. There needs to be a great deal of inter-
action between clinical users and industrial developers/engineers 
to find solutions that drive future research. Attempts to explore 
and adopt the contemporary developments in BT with the added 
advantages of efficiency and cost-effectiveness may make it more 
attractive for young radiation oncologists, thereby enhancing its 
use and acknowledging its equal or greater utility vis-a-vis other 
modalities, including particle therapy.
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