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Abstract 

Background:  To investigate the performance of diffusion-weighted (DW) MRI with mono-, bi- and stretched-expo-
nential models in predicting pathologic complete response (pCR) to neoadjuvant chemotherapy (NACT) for breast 
cancer, and further outline a predictive model of pCR combining DW MRI parameters, contrast-enhanced (CE) MRI 
findings, and/or clinical-pathologic variables.

Methods:  In this retrospective study, 144 women who underwent NACT and subsequently received surgery for 
invasive breast cancer were included. Breast MRI including multi-b-value DW imaging was performed before (pre-
treatment), after two cycles (mid-treatment), and after all four cycles (post-treatment) of NACT. Quantitative DW 
imaging parameters were computed according to the mono-exponential (apparent diffusion coefficient [ADC]), 
bi-exponential (pseudodiffusion coefficient and perfusion fraction), and stretched-exponential (distributed diffusion 
coefficient and intravoxel heterogeneity index) models. Tumor size and relative enhancement ratio of the tumor were 
measured on contrast-enhanced MRI at each time point. Pre-treatment parameters and changes in parameters at 
mid- and post-treatment relative to baseline were compared between pCR and non-pCR groups. Receiver operating 
characteristic analysis and multivariate regression analysis were performed.

Results:  Of the 144 patients, 54 (37.5%) achieved pCR after NACT. Overall, among all DW and CE MRI measures, flow-
insensitive ADC change (ΔADC200,1000) at mid-treatment showed the highest diagnostic performance for predicting 
pCR, with an area under the receiver operating characteristic curve (AUC) of 0.831 (95% confidence interval [CI]: 0.747, 
0.915; P < 0.001). The model combining pre-treatment estrogen receptor and human epidermal growth factor recep-
tor 2 statuses and mid-treatment ΔADC200,1000 improved the AUC to 0.905 (95% CI: 0.843, 0.966; P < 0.001).
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Background
Neoadjuvant chemotherapy (NACT) has been estab-
lished as one of the standard therapies for locally 
advanced (inoperable) or large (operable) breast cancers 
[1, 2]. NACT enables tumor downstaging, thus render-
ing inoperable tumors operable or even allowing breast-
conserving surgeries. Moreover, NACT makes it possible 
to monitor the tumor response in vivo during treatment 
when compared with adjuvant chemotherapy. In particu-
lar, a pathologic complete response (pCR) after NACT 
has been associated with lower distant recurrence and 
better disease-free survival [3]. Therefore, prediction 
of response to NACT is crucial to optimizing treat-
ment plan and improving individual patient-tailored 
management.

Noninvasive MRI plays an important role in the assess-
ment of treatment response to NACT in breast cancer 
patients [4, 5]. Contrast-enhanced (CE) MRI is known as 
the standard imaging modality for treatment monitoring 
due to its high resolution and high sensitivity in breast 
tissues. Currently, the most widely used metric for meas-
uring tumor change during NACT is morphologic size 
on CE MRI. However, changes in lesion size on breast 
MRI has been found to lag behind microstructural and 
functional alterations [6, 7].

Diffusion-weighted (DW) MRI, a functional imaging 
modality which reflects Brownian motion of water mol-
ecules in biologic tissues, has been extensively explored 
for the potential to predict therapy outcome for respond-
ers. The apparent diffusion coefficient (ADC) measured 
at DW MRI is commonly used to represent the magni-
tude of diffusion by providing information related to cel-
lularity and the integrity of cell membranes in tumors 
[8–10]. Some studies have demonstrated the value of 
ADC in identifying responders to NACT in breast cancer 
patients [7, 11, 12]. However, some other studies failed 
to find the association between ADC and treatment 
response [13–15].

Many reported DW MRI studies in tissues includ-
ing breast tissues have found that for a certain range of 
b-values (degree of diffusion sensitization), the diffusion 
signal decay presents a non-mono-exponential behavior 
[8, 16–18]. Therefore, conventional ADC is insufficient 
to reflect the complete diffusion characteristics as it is 
assumed on the basis of the well-behaved mono-expo-
nential decay. Several advanced diffusion models have 

been proposed to reveal the complicated water molecule 
diffusion behavior beyond standard ADC measurements. 
Bi-exponential intravoxel incoherent motion (IVIM) 
model utilizes low b-values to extract the microcapillary 
perfusion component from the entire DW signal, while 
stretched-exponential model accounts for the intravoxel 
water diffusion heterogeneity related with microstruc-
tural complexity at high b-values [16]. Although bi- and 
stretched-exponential models have shown potential in 
the diagnosis and characterization of breast cancer in 
previous studies [19–22], their utility in predicting treat-
ment response to NACT has not been fully understood 
[23, 24].

Therefore, the purpose of this study was to deter-
mine the capability of DW MRI with mono-, bi-, and 
stretched-exponential models in monitoring and pre-
dicting response to NACT in breast cancer patients, 
and further outline a model of pCR combining DW MRI 
parameters, CE MRI findings, and/or clinical-pathologic 
variables.

Methods
Study design and patient selection
This study was approved by the Ethics Committee of 
Renji Hospital, School of Medicine, Shanghai Jiao Tong 
University, with a waiver of the requirement to obtain 
patient informed consent owing to the retrospective 
design. Subjects were identified from a retrospective 
review of our medical and radiologic database from 
November 2015 to August 2018. One hundred seventy-
two women with histologically proven invasive breast 
cancer who received NACT as a first line of treatment 
were eligible for the study. The other eligibility criteria 
were as follows: (i) patients were aged at least 18  years 
old; (ii) patients were confirmed with primary breast 
cancer with no distant metastasis; (iii) surgical resection 
was preformed after completion of NACT; and (iv) MRI 
including multi-b-value DW imaging was conducted dur-
ing NACT. Of the 172 patients, 28 were excluded because 
(i) NCAT was not completed or nonstandard treatment 
was used (n = 12); (ii) tumors were less than 1 cm at pre-
treatment CE MRI (n = 11); and (iii) no pre-treatment 
multi-b-value DW MRI was available (n = 5). Therefore, 
144 patients constituted the final study population (mean 
age, 51.7 years; age range, 25–75 years) (Fig. 1).

Conclusion:  Mono-exponential flow-insensitive ADC change at mid-treatment was a predictor of pCR after NACT in 
breast cancer.

Keywords:  Breast cancer, Diffusion-weighted MRI, Pathologic complete response, Neoadjuvant chemotherapy, 
Predictive model
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Neoadjuvant chemotherapy
The treatment protocols have been previously described 
[25]. Each patient received intravenous administration 
of paclitaxel at 80  mg/m2 body surface area and cispl-
atin at 25  mg/m2 body surface area for four cycles last-
ing 16 weeks in duration. Patients with human epidermal 
growth factor receptor 2 (HER2)-positive findings were 
allowed concomitant treatment with trastuzumab, at a 
loading dose of 4 mg/kg body weight, followed by a main-
tenance dose of 2  mg/kg. Patients underwent surgery 
after the completion of NACT.

MRI
Breast MRI was performed before treatment, at mid-
treatment (after two cycles of NACT), and after treat-
ment (after four cycles of NACT), prior surgery. MRI 
was performed by using a 3-T scanner (Ingenia; Philips 
Medical Systems, Best, the Netherlands) with a dedi-
cated breast array coil. Patients were examined in the 
prone position. The standardized MRI protocol consisted 

of axial T1- and T2-weighted, sagittal fat-suppressed 
T2-weighted, axial fat-suppressed multi-b-value DW, and 
axial fat-suppressed dynamic CE MRI. DW images with 
spectral attenuated inversion recovery for fat suppression 
were acquired by using the single-shot echo planar imag-
ing sequence with multiple b-values (0, 10, 30, 50, 100, 
150, 200, 500, 800, 1000, 1500, 2000, and 2500  s/mm2). 
Other imaging parameters were: repetition time (TR), 
4500  ms; echo time (TE), 85  ms; matrix, 108 × 128; in-
plane resolution, 2.6 × 2.6 mm; section thickness, 3 mm; 
16 sections; parallel acquisition with acceleration factor 
of two; and acquisition time, 8  min 40  s. Diffusion gra-
dients were applied in three orthogonal directions. After 
DW imaging, dynamic CE MRI was performed by using 
the three-dimensional fat-suppressed T1-weighted gradi-
ent echo sequence before and after an intravenous bolus 
injection of 0.1  mmol/kg body weight of dimeglumine 
gadopentetate contrast agent (Magnevist; Bayer Health-
care, Berlin, Germany), with following parameters: TR, 
4.7  ms; TE, 2.3  ms; flip angle, 10°; matrix, 320 × 340; 

Fig. 1  Flowchart describes inclusion and exclusion criteria
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in-plane resolution, 1.0 × 0.9  mm; section thickness, 
1 mm; four or six post-contrast dynamics; and temporal 
resolution, 75 s.

Image analysis
DW image analysis was performed by using custom 
software developed in MATLAB version R2019a (Math-
Works, Natick, Mass, USA). Parametric maps for bi- and 
stretched-exponential models were generated by means 
of a nonlinear least squares fitting procedure at low (0, 
10, 30, 50, 100, 150, 200, 500, and 800 s/mm2) and high 
(0, 500, 800, 1000, 1500, 2000, and 2500 s/mm2) b-values, 
respectively. Bi-exponential pseudodiffusion coefficient 
D* and perfusion fraction f, and stretched-exponential 
distributed diffusion coefficient DDC and intravoxel 
heterogeneity index α were calculated. For mono-expo-
nential modeling, all b-value were used to fit the ADCall 
maps. Standard ADC maps were also calculated using 
two b-values. Specifically, b values of 0 and 1000 s/mm2 
were included to obtain the routinely used standard ADC 
(ADC0,1000), and 200 and 1000 s/mm2 to obtain the flow-
insensitive ADC (ADC200,1000) [21, 26].

Region of interest (ROI) delineation was performed 
by a radiologist with 10 years of experience in interpre-
tation of breast MR images. ROIs encompassing the 
entire tumor were manually drawn on all sections of high 
b-value DW images. Tumor areas were defined as hyper-
intensity on DW images by avoiding T2 shine-through 
regions (eg, cystic and necrotic components). CE MRI 
was used for lesion localization and boundary verifica-
tion. ROIs were then transferred to corresponding para-
metric maps, and mean values of all voxels within the 
ROIs were calculated. Tumor ROIs at each treatment 
time point were identified by referencing the lesion loca-
tion on prior MRI examinations. If no residual enhanced 
tumor areas appeared on post-treatment CE MRI, ROIs 
were placed in the same region as the last positive MRI 
[27].

On CE MRI, the longest diameter (size) and relative 
enhancement ratio (RER) of the tumor was measured. 
RER was defined as 

[(

SIpost − SIpre
)

/SIpre
]

× 100 , where 
SIpre is the CE MRI signal intensity of the tumor before 
contrast injection and SIpost is the signal intensity of the 
first post-contrast dynamic acquisition [28].

Molecular biomarkers
Statuses for estrogen receptor (ER), progesterone recep-
tor (PR), HER2 and Ki-67 labeling index were determined 
from pre-treatment biopsy by immunohistochemistry 
(IHC). ER or PR positivity was defined as ≥ 1% nuclear 
immunostaining. HER2 expression was deemed as posi-
tive when membrane immunostaining was scored 3+ or 
2+ with an amplification of HER2 gene demonstrated by 

in situ hybridization assays. Ki-67 index was assessed as 
the percentage of immunoreactive tumor cells, and a cut-
off value of 20% was used to define the low- and high-
proliferation tumor groups [29].

Pathologic response analysis
The final histopathologic examination was performed 
after surgical resection following the last cycle of NACT, 
and the findings were considered as the reference stand-
ard for determining the reliability of DW MRI for pre-
dicting the treatment response in our study. Patients 
were categorized as having a pCR if no residual invasive 
tumor existed in the surgical specimen with the absence 
of axillary lymph node invasion, regardless of the pres-
ence of ductal carcinoma in situ (DCIS).

Statistical analysis
Continuous variables were expressed as means ± stand-
ard deviations, and categorical variables as numbers and 
percentages. Clinical-pathologic characteristics were 
compared according to response to NACT by using 
the t test, χ2 test, or Fisher exact test, where appropri-
ate. Quantitative MRI findings were initially screened 
for normality using the Shapiro Wilk test. Comparisons 
between pCR and non-pCR groups were made with inde-
pendent samples t test for normally distributed variables 
or Wilcoxon rank sum test for non-normally distributed 
variables. Receiver operating characteristic (ROC) curves 
were generated to test the predictive ability for pCR by 
using the area under the ROC curve (AUC) and its 95% 
confidence interval (CI). Youden index was used to iden-
tify the optimal threshold.

Univariate and multivariate logistic regression analyses 
were performed to screen the independent clinical-path-
ologic and imaging predictors of pCR. Variables with a P 
value < 0.05 at univariate analysis were fed into multivari-
ate backward stepwise logistic regression analysis. Logis-
tic regression coefficients were exponentiated to obtain 
odds ratios and 95% Cls. ROC curve was constructed 
to calculate AUC along with its 95% Cl for the predic-
tive model. The method of DeLong et  al. [30] was used 
for statistical comparison of AUCs between the multi-
variate model and univariate predictors. Leave-one-out 
cross-validation was applied to evaluate the performance 
of the predictive model, and the corresponding sensitiv-
ity, specificity and accuracy were determined. P value 
< 0.05 was considered statistically significant, except for 
those in which a Bonferroni correction was performed 
for multiple comparison. Bonferroni-adjusted signifi-
cance level was set at P value < 0.0024 (0.05/21) for DW 
imaging variables (seven variables and three time points) 
and at P value < 0.0083 (0.05/6) for CE MRI variables 
(two variables and three time points). Statistical analyses 
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were carried out using SPSS version 21 (IBM SPSS Sta-
tistics, Armonk, New York, USA) and GraphPad Prism 5 
(GraphPad Software, La Jolla, California, USA).

Results
Patient characteristics
Patient characteristics are listed in Table  1. Of the 144 
patients, 54 (37.5%) achieved pCR at final histopathologic 
examination. In terms of molecular biomarkers, the pCR 
group showed a significant higher proportion of ER nega-
tivity (35 of 54 patients [64.8%]; P < 0.001), PR negativity 
(24 of 54 patients [44.4%]; P = 0.005), HER2 positivity (33 
of 54 patients [61.1%]; P = 0.001), and Ki-67 ≥ 20% (52 
of 54 patients [96.3%]; P < 0.001). No significant differ-
ence was observed in age (P = 0.876), menopausal status 
(P = 0.334), or tumor histologic type (P = 0.535) between 
the pCR and non-pCR groups.

DW MRI findings
All pre-treatment DW imaging measures showed 
no significant differences between patients with and 
those without pCR (Table  2). The time courses of dif-
fusion-related imaging measures including ADC0,1000, 
ADC200,1000, ADCall, and DDC represented a generally 

increasing trend as treatment progressed, and the extent 
of changes during treatment differed between the pCR 
and non-pCR groups (Fig.  2). Examples of dynamic 
changes of DW imaging measures in the pCR and non-
pCR groups during NACT are shown in Figs.  3 and 4. 
Statistical results showed that ΔADC0,1000, ΔADC200,1000, 
ΔADCall, and ΔDDC were greater in patients with pCR 
than in patients without pCR at mid-treatment or post-
treatment (P ≤ 0.001). However, there were no significant 
differences in ΔD*, Δf, or Δα between the two groups at 
any time point (adjusted P > 0.0024). Among the signifi-
cant measures, ΔADC200,1000 at mid-treatment exhibited 
the highest diagnostic performance for predicting pCR, 
with an AUC of 0.831 (95% CI: 0.747, 0.915; P < 0.001) 
(Table 2).   

CE MRI findings
Similarly, pre-treatment tumor size or RER on CE MRI 
did not differ significantly between patients with and 
those without pCR (adjusted P > 0.0083). By mid-treat-
ment, tumor size and RER showed greater changes 
in patients with pCR than in patients without pCR 
(P ≤ 0.001), with predictive AUC of 0.698 (95% CI: 
0.591, 0.804; P = 0.001) and 0.706 (95% CI: 0.603, 0.809; 

Table 1  Patient characteristics

Unless otherwise noted, values are numbers of patients, with percentages in parentheses. Percentages may not add up to 100% because of rounding

IDC: invasive ductal carcinoma; pCR: pathologic complete response

Characteristic All patients Patients with pCR Patients with non-pCR P value

No. of patients 144 54 (37.5) 90 (62.5)

Age (y)

 Mean ± standard deviation 51.7 ± 11.8 51.5 ± 12.0 51.9 ± 11.7 0.876

 Range 25–75 26–73 25–75

Menopause

 Premenopausal 58 (40.3) 19 (35.2) 39 (43.3) 0.334

 Postmenopausal 86 (59.7) 35 (64.8) 51 (56.7)

Histologic type

 IDC 132 (91.7) 51 (94.4) 81 (90.0) 0.535

 Non-IDC 12 (8.3) 3 (5.6) 9 (10.0)

Estrogen receptor

 Negative 53 (36.8) 35 (64.8) 18 (20.0) < 0.001

 Positive 91 (63.2) 19 (35.2) 72 (80.0)

Progesterone receptor

 Negative 44 (30.6) 24 (44.4) 20 (22.2) 0.005

 Positive 100 (69.4) 30 (55.6) 70 (77.8)

Human epidermal growth factor receptor 2

 Negative 81 (56.3) 21 (38.9) 60 (66.7) 0.001

 Positive 63 (43.8) 33 (61.1) 30 (33.3)

Ki-67

 < 20% 26 (18.1) 2 (3.7) 24 (26.7) < 0.001

 ≥ 20% 118 (81.9) 52 (96.3) 66 (73.3)
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P = 0.001), respectively. ΔRER at post-treatment also 
predictive of pCR (AUC = 0.734; 95% CI: 0.633, 0.836; 
P < 0.001) (Table 3).

Logistic regression modeling
Pre-treatment clinical-pathologic and mid-treatment 
imaging variables were used to construct a predictive 
model by logistic regression analysis (Table  4). Mid-
treatment ΔADC200,1000, ΔSize, and ΔRER were strati-
fied into binary categorical variables using the optimal 
threshold of 0.33 × 10–3 mm2/s, -26.6 mm, and -87.5%, 
respectively, according to the ROC curve analysis. In the 
univariate regression analysis, ER negativity (P < 0.001), 
HER2 positivity (P < 0.001), Ki-67 ≥ 20% (P = 0.012), 
ΔADC200,1000 > 0.33 × 10–3 mm2/s (P < 0.001), ΔSize 
≤ − 26.6 mm (P < 0.001), and ΔRER ≤ -87.5% (P < 0.001) 

were found to be associated with a higher probability 
of achieving pCR. In the multivariate analysis, however, 
only ER negativity (odds ratio, 11.433; 95% CI: 3.363, 
38.874; P < 0.001), HER2 positivity (odds ratio, 5.469; 
95% CI: 1.631, 18.339; P = 0.006), and ΔADC200,1000 
> 0.33 × 10–3 mm2/s (odds ratio, 9.074; 95% CI: 2.847, 
28.917; P < 0.001) remained significant independent 
factors for pCR (Table  4). The regression model com-
bining these three variables resulted in an overall pre-
dictive performance of AUC = 0.905 (95% CI: 0.843, 
0.966; P < 0.001), which was greater than the AUC of 
ΔADC200,1000 alone, with a near-significant difference 
(P = 0.060) (Fig.  5). By using leave-one-out cross vali-
dation, the multivariate model achieved a sensitivity of 
81.1%, a specificity of 87.5%, and an accuracy of 85.1% 
for predicting pCR. 

Table 2  Diffusion-weighted MRI findings according to response at each time point

a f and α have no units
* P < 0.0024 (0.05/21) is defined as the Bonferroni-corrected significance level

ADC: apparent diffusion coefficient, D*: pseudodiffusion coefficient, f: perfusion fraction, DDC: distributed diffusion coefficient, α: intravoxel heterogeneity index, pCR: 
pathologic complete response, AUC: area under the receiver operating characteristic curve, CI: confidence interval

Variable (× 10–3 mm2/s) Patients with pCR Patients with non-pCR P value* AUC​ 95% CI P value*

Pre-treatment

 No. of patients 54 90

 ADC0,1000 0.86 ± 0.16 0.85 ± 0.21 0.324 0.549 0.455, 0.644 0.324

 ADC200,1000 0.79 ± 0.15 0.77 ± 0.20 0.115 0.579 0.484, 0.673 0.115

 ADCall 0.67 ± 0.10 0.67 ± 0.16 0.302 0.551 0.458, 0.645 0.302

 D* 15.62 ± 4.18 15.44 ± 3.70 0.794 0.502 0.402, 0.601 0.974

 f a 9.27 ± 3.66 9.27 ± 2.98 0.729 0.517 0.417, 0.618 0.729

 DDC 1.00 ± 0.83 0.98 ± 0.80 0.478 0.535 0.440, 0.630 0.478

 αa 0.68 ± 0.08 0.67 ± 0.08 0.306 0.551 0.452, 0.650 0.306

Mid-treatment

 No. of patients 37 64

 ΔADC0,1000 0.46 ± 0.26 0.15 ± 0.23 < 0.001 0.812 0.727, 0.897 < 0.001

 ΔADC200,1000 0.50 ± 0.26 0.19 ± 0.22 < 0.001 0.831 0.747, 0.915 < 0.001

 ΔADCall 0.28 ± 0.20 0.09 ± 0.17 < 0.001 0.749 0.640, 0.858 < 0.001

 ΔD* − 3.06 ± 6.36 − 1.97 ± 6.35 0.409 0.577 0.460, 0.694 0.197

 Δf a 1.78 ± 4.33 0.82 ± 3.86 0.406 0.550 0.432, 0.667 0.406

 ΔDDC 0.78 ± 0.68 0.25 ± 0.35 < 0.001 0.778 0.675, 0.882 < 0.001

 Δαa − 0.02 ± 0.12 − 0.003 ± 0.09 0.478 0.503 0.364, 0.641 0.964

Post-treatment

 No. of patients 33 65

 ΔADC0,1000 0.60 ± 0.34 0.30 ± 0.32 < 0.001 0.743 0.637, 0.849 < 0.001

 ΔADC200,1000 0.60 ± 0.32 0.31 ± 0.32 < 0.001 0.745 0.641, 0.849 < 0.001

 ΔADCall 0.35 ± 0.26 0.18 ± 0.22 0.001 0.693 0.574, 0.813 0.003

 ΔD* − 1.84 ± 7.71 − 1.47 ± 5.90 0.794 0.528 0.402, 0.653 0.655

 Δf a 2.90 ± 5.33 1.69 ± 3.73 0.482 0.544 0.410, 0.677 0.482

 ΔDDC 0.96 ± 0.63 0.51 ± 0.60 0.001 0.726 0.610, 0.841 < 0.001

 Δαa − 0.05 ± 0.12 − 0.05 ± 0.10 0.820 0.503 0.368, 0.637 0.964



Page 7 of 12Suo et al. J Transl Med          (2021) 19:236 	

Discussion
Identification of breast cancer patients who will ben-
efit from NACT and achieve a final pCR is pivotal. Our 
study showed that mid-treatment flow-insensitive ADC 
changes were capable of predicting tumor treatment 
response. Patients with pre-treatment ER negativity 
and HER2 positivity, and greater mid-treatment ADC 
changes had more potential to achieve pCR after NACT. 
Advanced diffusion models including bi- and stretched-
exponential models showed no additional benefit for the 
prediction.

Our results are concordant with those from other 
studies [27, 31], indicating that mid-treatment ADC 
changes might be predictive of pCR. Greater mid-
treatment increases in tumor ADC from baseline were 
demonstrated in responders versus nonresponders. 
The increase in ADC values after NACT is believed 
to be a consequence of apoptosis and cell necrosis 

induced by chemotherapy [27]. Responders are more 
chemosensitive, thus resulting in more reduction 
in tumor cellularity and cell membrane integrity, 
reflected by greater ADC increases during treatment. 
Among all the ADC metrics analyzed in the study, the 
mono-exponential model derived ADC with b-values 
of 200 and 1000  s/mm2 exhibited a superior predic-
tion performance. According to the IVIM theory, the 
contribution of microcirculation-related pseudodif-
fusion on DW MRI signal is almost negligible at high 
b-values (e.g., > 200  s/mm2). Therefore, flow-insensi-
tive ADC200,1000 is merely accounted for by pure water 
molecule diffusion, which is thought to have a more 
direct association with tissue cellularity and cell mem-
brane integrity. From another aspect, it can be implied 
that diffusion may outperform perfusion in predict-
ing the treatment response of NACT in breast cancer. 
This implication can also be confirmed by our results 

Fig. 2  Time courses of mono-, bi-, and stretched-exponential diffusion-weighted imaging measures during neoadjuvant chemotherapy. Shown are 
mean values from all available subjects, with error bars indicating standard deviations. A discrepancy in parameter variations was recorded between 
groups with and without pathologic complete response, especially for diffusion-related imaging measures including ADC0,1000, ADC200,1000, ADCall, 
and DDC
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from bi-exponential IVIM and CE MRI analysis, show-
ing that IVIM based pseudodiffusion coefficient D* 
and perfusion fraction f, and CE MRI based relative 

Fig. 3  Images obtained in a 56-year-old woman with invasive ductal carcinoma (estrogen receptor-/progesterone receptor-/human epidermal 
growth factor receptor 2 + /Ki-67 > 20%) who was categorized in the pathologic complete response group. Shown from left to right are 
contrast-enhanced MRI images, diffusion-weighted (DW) MRI images (b = 1500 s/mm2), and color-coded quantitative DW MRI maps (overlaid on 
original DW images). Serial diffusion-related measures increased progressively with treatment. For example, ADC200,1000 values were 0.68, 0.97 and 
1.08 × 10–3 mm2/s, respectively, at pre-, mid-, and post-treatment

Fig. 4  Images obtained in a 49-year-old woman with invasive ductal carcinoma (estrogen receptor+/progesterone receptor+/human epidermal 
growth factor receptor 2-/Ki-67 > 20%) who was categorized in the non-pathologic complete response group. Shown from left to right are 
contrast-enhanced MRI images, diffusion-weighted (DW) MRI images (b = 1500 s/mm2), and color-coded quantitative DW MRI maps (overlaid on 
original DW images). Serial diffusion-related measures showed no obvious increase with treatment. For example, ADC200,1000 values were 0.86, 0.89 
and 0.80 × 10–3 mm2/s, respectively, at pre-, mid-, and post-treatment
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enhancement ratio RER were all inferior to ADC met-
rics for the prediction.

Like previous studies [12, 13, 27, 32], pre-treatment 
ADC values were not predictive of NACT response in 
our cohort. This accordance can partly be attributed to 
the same type of reference standard used in these stud-
ies and ours, that is, responders and nonresponders were 
categorized by means of final histopathologic assessment. 
In the studies of Santamaria et  al. [12] and Woodhams 
et  al. [13], pCR was defined as the complete absence of 
any residual invasive cancer or DCIS, while in the studies 
of Partridge et  al. [27], Fangberget et  al. [32], and ours, 

pCR was defined as the complete absence of invasive 
cancer of any size, regardless of DCIS. Though the defi-
nition of pCR is slightly different among these studies, 
all reported ADC values prior to therapy did not predict 
pCR. Some other studies used clinical response (tumor 
size shrinkage on radiologic examination) as the refer-
ence standard and conflicting results have been demon-
strated [33, 34]. For example, Park et al. [33] and Sharma 
et  al. [34] showed that pre-treatment ADC values had 
predictive value of clinical therapeutic response, with 
clinical responders representing substantially lower pre-
treatment ADC values compared with nonresponders.

Table 3  Contrast-enhanced MRI findings according to response at each time point

* P < 0.0083 (0.05/6) is defined as the Bonferroni-corrected significance level

RER: relative enhancement ratio; pCR: pathologic complete response; AUC: area under the receiver operating characteristic curve; CI confidence interval

Variable Patients with pCR Patients with non-pCR P value AUC​ 95% CI P value

Pre-treatment

 No. of patients 54 90

 Size (mm) 39.8 ± 21.2 44.3 ± 18.8 0.189 0.578 0.475, 0.681 0.119

 RER (%) 164.1 ± 66.5 152.6 ± 57.0 0.271 0.551 0.452, 0.650 0.305

Mid-treatment

 No. of patients 37 64

 ΔSize (mm) − 27.4 ± 16.6 − 17.1 ± 14.2 0.001 0.698 0.591, 0.804 0.001

 ΔRER (%) − 101.2 ± 81.1 − 36.8 ± 81.1  < 0.001 0.706 0.603, 0.809 0.001

Post-treatment

 No. of patients 33 65

 ΔSize (mm) − 34.0 ± 18.9 − 24.6 ± 18.5 0.021 0.661 0.549, 0.774 0.009

 ΔRER (%) − 135.1 ± 81.4 − 60.5 ± 79.8  < 0.001 0.734 0.633, 0.836  < 0.001

Table 4  Univariate and multivariate analyses of variables associated with pCR

* Data in parentheses are 95% confidence intervals

For binary categorical variables, the latter category in the parentheses was used as the reference

IDC: invasive ductal carcinoma; pCR: pathologic complete response; ER: estrogen receptor; PR: progesterone receptor; HER2: human epidermal growth factor receptor 
2; ADC: apparent diffusion coefficient; RER: relative enhancement ratio

Variable Univariate analysis Multivariate analysis

Odds ratio* P value Odds ratio* P value

Pre-treatment

 Age 0.986 (0.953, 1.021) 0.429 – –

 Menopause (post- vs. pre-menopausal) 2.083 (0.895, 4.850) 0.089 – –

 Histologic type (IDC vs. Non-IDC) 1.770 (0.177, 17.665) 0.626 – –

 ER (negative vs. positive) 11.388 (4.367, 29.698) < 0.001 11.433 (3.363, 38.874) < 0.001

 PR (negative vs. positive) 2.388 (0.970, 5.881) 0.058 – –

 HER2 (positive vs. negative) 5.104 (2.131, 12.227) < 0.001 5.469 (1.631, 18.339) 0.006

 Ki-67 (≥ 20% vs. < 20%) 14.087 (1.795, 110.566) 0.012 3.852 (0.299, 49.574) 0.301

Mid-treatment

 ΔADC200,1000 (> 0.33 vs. ≤ 0.33 × 10–3 mm2/s) 13.481 (5.066, 35.877) < 0.001 9.074 (2.847, 28.917) < 0.001

 ΔSize (≤ − 26.6 vs. > − 26.6 mm) 5.098 (2.070, 12.553) < 0.001 2.351 (0.697, 7.931) 0.168

 ΔRER (≤ − 87.5% vs. > -87.5%) 4.202 (1.748, 10.100) 0.001 1.231 (0.339, 4.467) 0.752
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Predictive value of bi- and stretched-exponential DW 
MRI in assessing treatment response of NACT in breast 
cancer is rarely investigated. The results of this study 
demonstrated no significant benefit of bi-exponential 
(D*, ƒ) and stretched-exponential (DDC, α) parameters 
for predicting pCR as compared with mono-exponential 
ADC. Changes of bi-exponential (D*, ƒ) and stretched-
exponential (α) parameters during NACT were not 
significantly different between responders and nonre-
sponders, concordant with the results of prior studies of 
Bedair et al. [23] and Kim et al. [35]. The limited value of 
bi-exponential D* and ƒ may be explained by their high 
estimation uncertainty due to the non-linearity of the bi-
exponential model [35, 36]. Though stretched-exponen-
tial α is proposed to be a heterogeneity index of water 
diffusion environment, its underlying biologic basis still 
remains unclear. Likewise, in a recent study on response 
assessment of liver metastases to chemotherapy in colo-
rectal cancer, the usefulness of α value was also not iden-
tified [37].

In clinical settings, treatment response is mostly 
evaluated using tumor size alteration according to the 
RECIST criteria. However, our results showed that 
tumor size measured on CE MRI was less useful than 
ADC for predicting treatment response to NACT. 
This finding is consistent with that of a previous study 

showing that ADC change after the first cycle of NACT 
in breast cancer was statistically significant com-
pared with volume and diameter, even though clinical 
response criteria were used as the reference standard 
in the study 7. Breast CE MRI provides an additional 
tool for assessment of tumor size. However, therapy-
induced changes may cause substantial over- or under-
estimation of tumor size, especially in well-responding 
tumors [38]. Therefore, tumor shrinkage on CE MRI 
may be not an exact reflection of the true histologic 
regression status. In addition, it is also believed that 
morphologic changes often occur relatively late and 
thus may not accurately assess early tumor response 
during the time course of NACT [7, 31].

In this study, breast cancer with ER/PR negativ-
ity, HER2 positivity or Ki-67 ≥ 20% was more likely 
to reach a pCR after NACT. This finding has already 
been recognized [39, 40] and probably a higher cellular 
proliferation of these tumor types renders tumor cells 
more sensitive to chemotherapy. Multivariate logistic 
regression analysis suggested that ER negativity, HER2 
positivity and mid-treatment ΔADC200,1000 > 0.33 × 10–3 
mm2/s were the significant predictors. ROC analy-
sis indicated a better predicting performance when all 
the three variables were included in the model, with 
an AUC of 0.905. This is in agreement with the results 
published by Santamaría et  al. [12], who found the 
model incorporating breast cancer subtype and MRI 
features (including ADC ratio after treatment) demon-
strated a higher accuracy relative to prediction of pCR 
with an AUC of 0.92.

Our study had limitations. First, this was a retrospec-
tive study in a single institution. Patient selection bias 
may exist. Second, due to the retrospective design, MRI 
was not performed during early treatment, so an evalua-
tion of the early response to NACT was not possible. The 
role of ΔADC in prediction of pCR at early treatment, 
however, remains controversial in the literature [7, 27]. 
Third, the interobserver variability or reproducibility of 
quantitative DW MRI measurements was not evaluated. 
However, we calculated the tumor DW MRI parameters 
over the entire tumor volume delineated by one expe-
rienced in breast MRI. In addition, the interobserver 
agreement of mono-, bi-, and stretched-exponential DW 
MRI parameters has been demonstrated to be good to 
excellent in our previous studies [20, 41]. Fourth, quanti-
tative DW MRI parameters were measured by averaging 
all voxels within the ROI. More comprehensive analytic 
methods may provide added-value information. For 
example, histogram and texture analyses highlight the 
different heterogeneous appearances of breast cancer on 
ADC maps, which have proved to be related with tumor 
biology [42, 43].

Fig. 5  Receiver operating characteristic curves for mid-treatment 
ADC200,1000 change (ΔADC200,1000) and regression model 
(ΔADC200,1000 + estrogen receptor [ER] + human epidermal growth 
factor receptor 2 [HER2]) as predictors of pathologic complete 
response. The areas under the receiver operating characteristic curves 
were 0.831 (95% confidence interval: 0.747, 0.915) and 0.905 (95% 
confidence interval: 0.843, 0.966), respectively
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Conclusions
In conclusion, mono-exponential flow-insensitive ADC 
change at mid-treatment was the most accurate predic-
tor of pCR to neoadjuvant chemotherapy in patients with 
breast cancer among all parameters from mono-, bi-, 
and stretched-exponential DW MRI models. Patients 
with pre-treatment ER negativity and HER2 positivity, 
and greater mid-treatment ADC changes are more likely 
to completely respond to neoadjuvant chemotherapy. If 
these results are validated in future studies with larger 
cohort in more institutions, it could help guide the treat-
ment and predict the long-term outcome.
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