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Abstract

Purpose of Review—The goal of this review is to provide an overview of the impact and 

underlying mechanism of oxidative stress on connexin channel function, and their roles in skeletal 

aging, estrogen deficiency, and glucocorticoid excess associated bone loss.

Recent Findings—Connexin hemichannel opening is increased under oxidative stress 

conditions, which confers a cell protective role against oxidative stress-induced cell death. 

Oxidative stress acts as a key contributor to aging, estrogen deficiency, and glucocorticoid excess-

induced osteoporosis and impairs osteocytic network and connexin gap junction communication.

Summary—This paper reviews the current knowledge for the role of oxidative stress and 

connexin channels in the pathogenesis of osteoporosis and physiological and pathological 

responses of connexin channels to oxidative stress. Oxidative stress decreases osteocyte viability 

and impairs the balance of anabolic and catabolic responses. Connexin 43 (Cx43) channels play a 

critical role in bone remodeling, mechanotransduction, and survival of osteocytes. Under oxidative 

stress conditions, there is a consistent reduction of Cx43 expression, while the opening of Cx43 

hemichannels protects osteocytes against cell injury caused by oxidative stress.
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Introduction

Bone is a dynamic organ that undergoes a constant and tightly regulated remodeling process. 

Osteocytes are the most abundant cell type in bone, communicating with the bone-forming 

osteoblasts and bone-resorbing osteoclasts, thus maintaining homeostasis and the 

biomechanical function of the skeleton [1, 2]. The redox balance plays a pivotal role in the 

regulation of bone remodeling and the generation and survival of bone cells. Oxidative 

stress, which is induced by excessive reactive oxygen species (ROS) production and/or an 

impaired antioxidant system, has been revealed as an underlying mechanism for loss of bone 

mass and quality [3–5]. ROS includes superoxide anion (O2
•−), hydroxyl (HO•), singlet 

oxygen (1O2), and hydrogen peroxide (H2O2). They are highly reactive molecules formed 
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upon incomplete reduction of oxygen during aerobic metabolism [6, 7]. The generation of 

ROS occurs primarily in mitochondria from the escape of electrons passing through the 

electron transport chain. ROS act as signaling molecules that affect critical physiological 

processes, and their accumulation has been shown to cause detrimental effects to DNA, 

protein, and lipids [8, 9]. Targeting ROS production in bone cells might be a viable 

therapeutic approach in the prevention of osteoporosis.

Gap junctions are composed of two juxtaposed connexons or hemichannels (HCs). These 

gap junctions mediate direct cell-cell communication between adjacent osteocytes and 

osteocytes with other cells residing within the bone surface, such as osteoblasts, osteoclasts, 

and vasculature cells. Among the different gap junction-forming proteins, connexin 43 

(Cx43) is the most abundant connexin present in bone cells [10, 11]. As a key modulator of 

skeletal homeostasis, Cx43 contributes to bone cell proliferation, survival, and 

differentiation [12–15]. HCs, unpaired gap junction channels, are extensively involved in the 

communication between the cytoplasm and the extracellular space and play critical roles in 

mechanotransduction, cell survival, and autocrine/paracrine signaling [16–19]. These 

connexin-based gap junctions and HCs allow the passage of small molecules (MW < 1 kDa), 

such as ions, essential metabolites, and second messengers, such as Ca2+, IP3, NAD+, 

prostaglandin E2 (PGE2), cAMP, cGMP, ADP, and ATP [20]. Under normal physiological 

conditions, few HCs are open; their activation (opening) is regulated by multiple factors, 

including mechanical stimulation, extracellular Ca2+ concentration, pro-inflammatory 

cytokines, and redox status [21, 22]. In addition, Cxs can be phosphorylated by several 

kinases, such as protein kinase A, protein kinase C, mitogen-activated protein kinase, and 

casein kinase 1 at serine/threonine or tyrosine residues [23]. Their phosphorylation plays 

important roles in the regulation of channel assembly/disassembly, internalization, 

degradation, trafficking, and gating [24].

Several lines of evidence have indicated that Cx43 gap junctions or HCs regulate 

susceptibility of H2O2-mediated cell death [25–28]. In this review, we will address the 

function of Cx43 channels under oxidative stress and summarize the important role of 

oxidative stress underlying osteoporosis induced by aging, loss of sex steroid, or 

glucocorticoid treatment. We will particularly focus on the regulations of Cx43 gap junction 

channels and HCs under the above physiological or pathological conditions. The aim of this 

review is to provide insights for targeting oxidative stress and Cx43 channels as potential 

therapeutic means in treating bone loss and osteoporosis.

The Role of Connexin Channels in Response to Oxidative Stress

The study of cellular mechanisms as to how Cx channels respond to oxidative stress in bone 

is rather limited; however, the modulation of Cx channels by oxidative stress has been 

reported in several non-skeletal tissues [29–32]. These studies may shed some light on what 

is taking place in skeletal tissue. In eye lens fiber cells, Cx50 HCs are shown to open in 

response to H2O2, mediating the transport of reductant glutathione (GSH) [30]. The 

dominant-negative mutants in Cx50, including Cx50P88S, which inhibits both gap junctions 

and HCs, and Cx50H156N, which only inhibits HCs, block the protective role of Cx50 in 

response to H2O2-induced apoptosis, while the Cx50 E48K, which only inhibits gap 
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junctions, does not have such effect. This study highlights a cell protective role of Cx HCs 

against oxidative damage. In cardiomyocytes, Cx43 can be translocated to the mitochondrial 

inner membrane, exerting cardioprotection during ischemic preconditioning as well as 

during hypoxic postconditioning, a process involving ROS as a critical mediator to heart 

damage [33–35]. The translocation of Cx43 is initiated by heat shock protein 90 as a 

molecular chaperone and associates with the interaction of a mitochondrial protein, TOM20 

[33]. Recent studies show that ATP-sensitive potassium channels in mitochondria (mKATP) 

also interact with mitochondrial Cx43 HCs and protect cardiomyocytes under mild hypoxic 

conditions [32, 36, 37]. In astrocytes, Cx43 deficiency or Cx43 channel inhibition results in 

elevated susceptibility to oxidative stress-induced cell death [38]. H2O2 causes uncoupling 

of gap junctions, while HC activity is enhanced, which is likely regulated by altered states of 

protein phosphorylation and intracellular distribution of Cx43. In human retinal pigment 

epithelial cells, functional Cx43 gap junction channels confer protection from chemical 

oxidant tert-butyl hydroperoxide (t-BOOH)-induced cell death [26]. In contrast to the cell 

protective effect, Cx43 HCs have been implicated to reduce astrocyte viability during 

hypoxia/reoxygenation [39]. Several lines of evidence also indicate the detrimental role of 

Cx43 channels in response to oxidative stress. Cigarette smoke extract and H2O2 lead to 

membrane depolarization and opening of HCs, resulting in accelerated cell death of 

epithelial cells [28]. In another study, cadmium ions (Cd2+) induces higher concentration of 

ROS and more severe cell injury in Cx43 wild-type fibroblasts than in fibroblasts derived 

from knockout littermates, potentially caused by the efflux of intracellular GSH and ATP 

through opened Cx43 channels [31]. A recent study further proves the extracellular loss of 

the major antioxidant GSH via Cx43 HCs, contributes to Ca2+ depletion-elicited 

disassembly of cell junctions through regulation of intracellular oxidative status [40]. 

Moreover, blockade of Cx43 HCs by Cx43 mimetic peptide Gap 19 attenuates the LPS-

induced oxidative stress production and cell apoptosis in human umbilical vein endothelial 

cells [29].

Our previous work has demonstrated a novel cell protective mechanism mediated by Cx43 

channels against oxidative stress in osteocytes [27]. We have shown that H2O2 treatment 

decreases Cx43 expression in a dose-dependent manner and this can be reversed by the 

antioxidant N-(2-mercaptopropionyl)-glycine (NMPG). In contrast to the reduced gap 

junction intercellular communication (GJIC), there is an increase of HC function by H2O2, 

accompanied by increased cell surface expression of Cx43. The impaired GJIC in response 

to oxidative stress has also been reported in other studies [26, 41], which could be attributed 

to a reduction of the Cx43 protein available for assembly of functional gap junction 

channels. While the increased Cx43 expression on cell surface may be caused by either 

decreased internalization of cell surface Cx43 or increased protein trafficking, resulting in 

the increased HC activity after H2O2 treatment. The oxidative stress-induced Cx43 

migration to the cell surface and HCs opening is inhibited by the depletion of [Ca2+]i with 

BAPTA-AM, suggesting the [Ca2+]i is critical during this process [42]. Small interfering 

RNA (siRNA) knockdown of Cx43 renders osteocytes more vulnerable to oxidative stress-

induced cell death. This effect is further validated by the Cx43 (E2) antibody, which 

specifically blocks Cx43 HCs but not gap junctions [43, 44], showing inhibited dye uptake 

and exacerbation of H2O2-induced osteocytic cell death.
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To summarize, whether Cx43 channels play a protective or destructive role in response to 

oxidative stress is dependent on the type and duration of the insult and may vary among 

different cell types. In osteocytes, Cx43 HCs contribute to the resistance of oxidative stress; 

thus, the opening of HCs is beneficial. However, Cx HCs opening can also allow the entry of 

ROS or release of intracellular GSH, leading to detrimental effects under certain 

circumstances.

Oxidative Stress and Connexin 43 Channels During Bone Aging

Loss of tissue and organ function has been well documented during the aging process, and 

oxidative stress contributes to age-related deterioration, including skeletal tissue. With 

advancing age, both male and female C57BL/6 mice have been shown to exhibit a 

progressive reduction of cortical bone thickness, trabecular bone volume, bone mineral 

density, and bone strength [45, 46]. These changes are accompanied by decreased osteoblast 

and osteoclast numbers, and decreased bone formation rate. In addition, the aged mice show 

a significant increase of ROS levels, a decrease of GSH reductase activity, and a 

corresponding increase of the phosphorylation of p53 and p66shc, indicating the activation of 

signaling transduction pathway leading to apoptosis. Oxidative stress in aged bone tissue 

may damage mitochondria via the mitochondrial permeability transition pore (MPTP) in 

bone cells, leading to disruption of tissue homeostasis. Deletion of cyclophilin D (CypD), 

which is a protein regulator of MPTP, protects mitochondrial function and increases 

resistance to age-related decline of bone mass and mechanical properties [47]. Kobayashi et 

al. reports that compared to young mice (12-week-old), the level of cortical bone superoxide 

is more than twice in 2-year-old mice [48]. Targeted deletion of mitochondrial superoxide 

dismutase (SOD2) predominantly in osteocytes using dentin matrix protein 1 (DMP1)-cre 

increases cellular superoxide production and induces remarkable bone loss in an age-

dependent manner. SOD2 ablation in osteocytes also results in a disorganized 

lacunocanalicular network, a decrease in viable osteocytes, and decreased Cx43 expression, 

indicating the importance of antioxidant proteins in maintaining the osteocytic network.

Osteocytes through their long dendritic processes create an extensively interconnected 

lacunocanalicular network throughout the mineralized bone matrix. Emerging evidence 

shows that the extent and connectivity of the lacunocanalicular system degenerates in aged 

humans as well as in animal models [49–51]. As the major cells responsible for 

mechanotransduction, osteocytes mediate adaptive responses to mechanical loading by 

sensing the fluid flow shear stress in the lacunocanalicular system. The impairment of 

osteocyte connectivity through a combination of dendrite loss and cell death leads to defects 

in integrating environmental cues, including essential nutrients, survival factors, and 

mechanical stimuli, and this further increases stress on the remaining osteocytes, forming a 

vicious cycle [50, 52]. Cx43 gap junctions and HCs are utilized by osteocytes function as 

key modulators for anabolic and catabolic responses to maintain cell viability. Conditional 

deletion of Cx43 using DMP1-cre primarily in osteocytes results in increased apoptosis and 

empty lacunae [14]. Additionally, these mice exhibit an enlarged marrow cavity resulting 

from enhanced endocortical resorption and compromised mechanical properties, resembling 

the phenotype of aged mice. Cx43 expression is significantly decreased in osteocytes from 

old mice as compared to young mice [27]. In vitro studies using the osteocytic MLO-Y4 cell 

Hua et al. Page 4

Curr Osteoporos Rep. Author manuscript; available in PMC 2021 June 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



line shows that oxidative stress induces the reduction of Cx43 protein, and this reduction is 

rescued by the antioxidant NMPG [27]. This observation raises the possibility that the low 

expression of Cx43 could be due to increased oxidative stress in older animals, considering 

the direct association of oxidative stress and the aging process. Davis et al. generated a 

DMP1-8 kb-Cx43/GFP mouse model, which overexpresses Cx43 predominantly in 

osteocytes, with the percentage of Cx43-positive osteoblasts remaining similar to wild-type 

littermate controls [53••]. Osteocytic Cx43 overexpression preserves osteocytes viability, 

increases endocortical bone formation, and decreases resorption in aged mice, along with the 

increase of circulation marker P1NP and decrease of CTX, leading to improved bone 

strength. However, the increased osteocytic Cx43 does not prevent age-induced long bone 

geometrical changes and cancellous bone loss. This could probably be caused by the age of 

mice (14-month-old) used in this study, which represents a relatively early aging stage in 

mice, and the time may not be enough for the cellular level changes to translate into bone 

structural changes. The study of the molecular mechanism underlying Cx43 deficiency and 

aging-induced osteocyte apoptosis reveals the involvement of miR21 [54]. The reduction of 

miR21 under both conditions disrupts PTEN/Akt pathway, and the resulting apoptotic 

osteocytes releases more cytokines RANKL and HMGB1, which induce osteoclast 

recruitment. Altogether, the above findings point to the contribution of osteocytic Cx43 to 

the skeletal phenotype of aged mice. The age-related elevation of oxidative stress results in 

disorganized osteocytic network, osteocyte apoptosis, and decreased Cx43 levels, which is 

part of the fundamental pathogenic mechanism responsible for the decline of bone mass and 

strength during aging.

Oxidative Stress and Connexin 43 Channels in Postmenopausal 

Osteoporosis

Sex steroid deficiency accounts for another critical factor for the development of 

osteoporosis. Osteoporosis and osteopenia are common among postmenopausal women, 

which feature a high risk of fragility fracture and microarchitectural deterioration [55]. Like 

aging, loss of sex steroid promotes an increase of oxidative stress in bone, and a negative 

correlation between plasma lipid oxidation and bone mineral density values has been 

reported in osteoporotic postmenopausal women compared with healthy controls [45, 56, 

57]. Deficiency of sex steroids compromises the defense against oxidative stress in bone. 

The levels of the major thiol antioxidants (GSH and thioredoxin) and their reductases fall 

substantially in rat bone marrow after ovariectomy (OVX), which can be rescued by 

exogenous 17β-estradiol [58]. The causal link between oxidative stress and OVX-induced 

bone changes is further confirmed by intraperitoneal injections of the antioxidant N-acetyl 

cysteine (NAC) and dihydrotestosterone (DHT), which abolish the increase of ROS and 

OVX-related bone loss, while L-buthionine-(S, R)-sulfoximine (BSO), a specific GSH 

synthesis inhibitor, causes substantial bone loss [45, 58]. Although oxidative stress is a 

common feature responsible for the adverse effects of sex steroid deficiency and old age on 

bone, a recent study indicates that the mechanisms underlying these two processes are 

distinct [59]. By doing OVX surgery in young (4 months) and old (18 months) mice, the 

results show that mice remain functional estrogen-sufficient at 19.5-month old, indicating 

that the decline of bone mass during aging is independent of sex steroid status, which is in 
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agreement with a previous study [45]. Transgenic mouse models expressing the human 

catalase gene targeted to the mitochondria of myeloid (LysM-Cre) or mesenchymal lineage 

cells are generated. The attenuation of H2O2 generation by overexpressing catalase in 

myeloid lineage cells abrogates the loss of cortical bone caused by estrogen deficiency but 

does not affect age-related cortical or cancellous bone loss.

Estrogen confers regulatory roles on bone remodeling by exerting a pro-apoptotic effect on 

osteoclasts and an anti-apoptotic effect on osteoblasts and osteocytes [60, 61]. The 

importance of estrogen on osteogenesis and bone turnover via an antioxidative mechanism 

has been studied by employing a combined OVX model with bone marrow ablation (BMX) 

approaches [62]. At 12 and 14 days after BMX, estrogen deficiency increases bone turnover, 

showing increased osteoblastic and osteoclastic activity. In addition, recent evidence 

suggests that estrogen regulates the mechanosensitivity of osteocytes [63••, 64]. MLO-Y4 

cells are treated with estrogen, estrogen withdrawal from the culture medium, the condition 

mimicking postmenopausal estrogen deficiency, or with the estrogen receptor inhibitor, 

fulvestrant. Cells are subjected to oscillatory fluid flow (OFF) after treatment. Osteocytes 

responded to mechanical loading by a rapid release of NO and PGE2 and elevated 

intracellular Ca2+ [65–67]. Estrogen treatment enhances OFF-induced intracellular Ca2+ 

oscillations, NO, and PGE2 release. These effects are diminished in estrogen-withdrawal and 

fulvestrant-treated groups, along with reduced F-actin fiber formation, and downregulated 

expression of DMP-1, sclerostin, and other bone-specific genes. Our group has demonstrated 

that in response to mechanical loading, Cx43 is rapidly redistributed to the cell surface and 

the opening of Cx43 HCs is increased, which serves as a direct portal for the exit of 

intracellular PGE2 [18, 68]. The study for the direct regulation of estrogen on Cx43 reveals 

that 17β-estradiol upregulates Cx43 expression and facilitated gap junction intercellular 

communication in vitro [64, 69]. Moreover, estrogen withdrawal from culture medium 

reduces the Cx43 protein level and Cx43 HC function [69••]. Consistently, a significant 

decrease of osteocytic Cx43 expression is observed in OVX mice compared to sham control. 

In order to dissect the differential functions of osteocytic Cx43 gap junctions and 

hemichannels under an estrogen deficiency condition, OVX surgery was performed on two 

transgenic mouse models driven by the DMP1 promoter that overexpresses Cx43 mutants in 

osteocytes we previously generated: R76W (dominant-negative mutant blocking only gap 

junction channels) and Δ130–136 (dominant-negative mutant inhibiting both gap junction 

channels and HCs). Our study has shown that impairment of Cx43 HCs negatively affects 

bone remodeling and osteocyte viability [19]. Compared to wild type and R76W groups, 

Δ130–136 OVX mice have greatly decreased vertebral trabecular bone mass, associated with 

a significant increase of osteocyte apoptosis, and bone material quality deterioration. 

Importantly, the ablation of HCs augments the oxidative stress induced by estrogen 

deficiency, showing increased 4-hydroxynoneanal (4-HNE), a biomarker for lipid 

peroxidation and SOD2 levels in Δ130–136 OVX mice. In summary, these findings highlight 

the significance of Cx43 HCs in protecting against catabolic effects due to estrogen 

deficiency.
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Oxidative Stress and Connexin 43 Channels in Glucocorticoid-Induced 

Bone Loss

Glucocorticoids (GCs), such as dexamethasone (Dex), are widely used in clinical medicine 

as effective anti-inflammatory and immunosuppressive agents. However, prolonged use of 

GCs results in bone loss and a high incidence of fracture risk, known as GC-induced 

osteoporosis (GIO), the most common form of secondary osteoporosis [70]. In addition to 

exogenous GCs excess, the production of endogenous GCs, as well as sensitivity to GCs, 

increases with advancing age [71]. GCs act directly on bone cells, which suppress 

osteoblastogenesis, stimulate osteoblast and osteocyte apoptosis, and prolong the lifespan of 

osteoclasts [61]. GCs have been reported to induce ROS generation, activating the 

PKCβ/p66shc/JNK signaling cascade, leading to apoptosis. In response to ROS, the activity 

of forkhead box O (FoxO) transcription factors is also increased, along with suppressed Akt 

phosphorylation and attenuated osteoblastogenesis [72]. Recent studies confirm that the 

oxidative stress can be induced by GC treatment, either via boosting ROS generation or 

suppressing the antioxidant systems. Dex induces a rapid onset and time-dependent 

superoxide overproduction in mouse osteoblastic MC3T3-E1 cells in vitro, and decreased 

GSH levels and SOD activity significantly in femur tissues of treated rats [73, 74]. The 

natural product propolis from plant and honeybees with antioxidant activities counteract 

Dex-induced oxidative stress and cytotoxicity. Moreover, our previous novel findings 

suggest that GC treatment induces the development of autophagy in osteocytes [75, 76]. 

Interestingly, our recent study reveals that the autophagy level are decreased in H2O2-treated 

MLO-Y4 cells and osteocytes of superoxide dismutase 1 (SOD1)-deficient mice [77••]. 

Moderated levels of GCs lead to autophagy, which pre-conditions the osteocytes and 

conveys a novel cell-protective function against oxidative stress-induced cell death.

Lane et al. have reported the direct effects of GCs on modifying the microenvironment of 

osteocytes, including an enlargement of the lacunar space and loss of perilacunar 

mineralized matrix [78]. Furthermore, GCs have been indicated to cause the detachment of 

osteocytic processes from the lacunar-canalicular walls through the disengagement of 

integrin from extracellular matrix proteins [79]. In line with previous studies, Gao et al. 

found that Dex administration induced a robust cytoskeletal rearrangement, coupled with a 

shortening of the dendritic processes and reduced expression of Cx43 via autophagy-

mediated degradation [80••]. Upon the induction of autophagy, Cx43 is internalized into 

autophagosome/autolysosomes. Lysosomal inhibition using chloroquine, Atg5 knockdown, 

or activation of Akt-mTOR signaling attenuated the degradation of Cx43. Furthermore, a 

decreased level of Cx43 RNA and protein by Dex has been described in osteoblastic 

MC3T3-E1 cells, involving the Akt/mTOR pathway [81]. Dex-induced downregulation of 

Cx43 and gap junction intercellular communication is further confirmed in human primary 

osteoblasts. The reduction of Cx43 expression is abolished by the pretreatment with a 

glucocorticoid receptor blocker, and overexpression of Cx43 reverses the Dex-inhibited 

osteoblast viability and proliferation, indicating a protective role of Cx43 in the effect of 

GCs on osteoblastic cells. In addition, previous in vitro study has shown that Cx43 HCs are 

essential for the transduction of the anti-apoptotic signal of bisphosphonates in response to 

GCs-induced apoptosis in osteoblasts and osteocytes through the activation of Src/ERKs 
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signal transduction pathway [82]. Interestingly, an in vivo mouse model using osteocalcin 

promoter-driven Cx43 deletion in mature osteoblasts and osteocytes exhibits no differences 

with regard to GCs-induced apoptosis and bone loss, compared to littermate controls [13]. 

The involvement of Cx43 HC function with Dex treatment has recently been shown in a 

skeletal muscle atrophy model [83]. Activation of Cx43 HCs, increased oxidative stress, and 

mitochondrial dysfunction are shown upon Dex administration. Antioxidants inhibits Cx 

HCs and reduces the undesired effects of GCs on skeletal muscles, indicating a deleterious 

effect of Cx43 on GCs-treated skeletal muscle. However, the mechanism remains elusive for 

the deleterious effect of Cx43 HCs on GCs-treated skeletal muscle, which is contray to the 

lack of effect of osteoblastic Cx43 deletion on GCs-induced bone loss. These important 

questions warrant further investigation.

Conclusions

Emerging evidence has suggested a close relationship between oxidative stress and 

osteoporotic status. As an important contributor to the pathogenesis of bone loss related to 

aging, estrogen deficiency, and GC excess, oxidative stress impairs the balance of bone 

remodeling regulated by osteoblast-mediated bone formation and osteoclast-mediated bone 

resorption. Importantly, increased oxidative stress levels or lack of antioxidative defenses 

contribute to osteocyte apoptosis. Osteocytes are key regulators of skeletal homeostasis, 

orchestrating osteoblasts and osteoclasts via communication through Cx43 gap junction 

channels and HCs. Cx43 channels play critical roles in bone growth, remodeling, 

mechanotransduction, and survival of osteocytes. Under elevated oxidative stress conditions, 

including osteoporosis caused by aging, postmenopausal, or GC treatment, there is a 

consistent decrease in Cx43 expression, accompanied by reduced gap junction intercellular 

communication; in contrast, Cx43 HC activation confers a protective role against oxidative 

stress (Fig. 1). Future studies of cellular mechanisms regarding the modulations of oxidative 

stress and Cx43 channel function will provide a better understanding of the pathogenesis of 

osteoporosis and bone loss and will aid in the development of potential new strategies or 

therapies in treating bone diseases.
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Fig. 1. 
The schematic diagram shows the regulation of connexin 43 (Cx43) channels under 

oxidative stress in skeletal tissue. Osteocytes are a key regulator of skeletal homeostasis, 

orchestrating osteoblasts and osteoclasts via communication through Cx43 gap junction 

channels and hemichannels (HCs). Cx43 channels play critical roles in bone remodeling, 

mechanotransduction, and survival of osteocytes. Oxidative stress decreases osteocyte 

viability and impairs the balance of anabolic and catabolic responses. Under oxidative stress 

(increased ROS level) or lack of antioxidative defense (decreased GSH) conditions, 

including osteoporosis caused by aging, loss of sex hormones/ovariectomy (OVX), or 

glucocorticoids (GCs) treatment, Cx43 expression is consistently decreased, accompanied 

by reduced intercellular gap junction communication (IGJC), while the opening of Cx43 

HCs protects osteocytes against cell injury caused by oxidative stress
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