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Abstract

Purpose of review—In the past decade numerous studies analyzing the genome and 

transcriptome of large cohorts of acute myeloid leukemia (AML) and myelodysplastic syndrome 

(MDS) patients have substantially improved our knowledge of the genetic landscape of these 

diseases with the identification of heterogeneous constellations of germline and somatic mutations 

with prognostic and therapeutic relevance. However, inclusion of integrated genetic data into 

classification schema is still far from a reality. The purpose of this review is to summarize recent 

insights into the prevalence, pathogenic role, clonal architecture, prognostic impact and 

therapeutic management of genetic alterations across the spectrum of myeloid malignancies.

Recent findings—Recent multiomic-studies, including analysis of genetic alterations at the 

single-cell resolution, have revealed a high heterogeneity of lesions in over 200 recurrently 

mutated genes affecting disease initiation, clonal evolution and clinical outcome. Artificial 

intelligence and specifically machine learning approaches have been applied to large cohorts of 

AML and MDS patients to define in an unbiased manner clinically meaningful disease patterns 

including disease classification, prognostication and therapeutic vulnerability, paving the way for 

future use in clinical practice.

Summary—Integration of genomic, transcriptomic, epigenomic and clinical data coupled to 

conventional and machine learning approaches will allow refined leukemia classification and risk 

prognostication and will identify novel therapeutic targets for these still high risk leukemia 

subtypes.
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INTRODUCTION

Acute myeloid leukemia (AML) and myelodysplastic syndromes (MDS) are a 

heterogeneous group of diseases characterized by clonal expansion of undifferentiated 
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myeloid precursors, impaired hematopoiesis and bone marrow failure. The threshold of 20% 

bone marrow blasts distinguishes AML from MDS on morphologic examination [1]. 

Approximately 30% of MDS cases progress to AML, the incidence of which varies across 

different MDS subtypes. Progression is generally associated with acquisition of driver 

mutations leading to clonal outgrowth [2]. In both diseases genetic alterations are 

progressively acquired overtime in hematopoietic stem cells that first gain a selective 

advantage (premalignant clone) and then fully transform in malignant clones when 

secondary mutations are acquired (Fig. 1). According to their biological function and 

clinical significance, most frequent mutations can be grouped into nine classes including 

NPM1, myeloid transcription factors, DNA methylation–related genes, epigenetic/chromatin 

modifiers, tumor suppressor genes, signal transduction pathways, RNA processing and 

splicing factors, cohesin complex and DNA repair. Mutations in DNA methylation, 

epigenetic modifiers and splicing machinery genes are typically acquired early, while 

mutations in transcriptional regulators, signal transduction pathways and chromosomal 

abnormalities may occur later. In addition to somatic mutations, germline mutations in 

several genes, such as DDX41 [3], RUNX1 [4,5], GATA2 [6], ANKRD26 [7], ETV6 [8], TP53 
[9], CEBPA [10], SAMD9/SAMD9L [11-13], Fanconi anemia genes [14], or telomerase 

complex genes[15] predispose to AML and MDS in both children and adults [16,17]. 

Although common targets of mutations are largely similar across age and between AML and 

MDS, their frequency, type and co-mutational patterns vary by age and disease subtype 
[18,19]. The main genetic similarities, differences and their impact on prognosis will be 

discussed in this review.

CONSTELLATIONS OF GENETIC ALTERATIONS

Constellations of genetic alterations in AML

Acute myeloid leukemia includes a clinical and genetic heterogeneous group of 

hematopoietic malignancies that arise as a result of clonal expansion of undifferentiated 

myeloid precursors in the bone marrow due to genetic abnormalities that impair self-

renewal, proliferation and differentiation. The prevalence of AML increases with age from 

20% of all leukemias in childhood (with a peak in infancy) to 80% in older adults [20]. AML 

can present as either de novo or secondary disease (therapy related or post-antecedent 

hematologic disorder). Although intensified treatment regimens and risk-adapted patient 

stratification have improved overall survival, outcome is still dismal with overall 5-year 

survival of 35%-40% in patients aged <60 years and 5%-15% in older patients [20]. Since the 

first whole genome sequencing of a single AML patient in 2008 [21], large sequencing 

studies have considerably increased [19,22,23]. These studies have shown extensive genetic 

heterogeneity and important differences between the genomic landscapes of pediatric and 

adult AML. While cytogenetically normal AML represents ~40% of adult AML, it is only 

15-20% of pediatric cases (Fig. 2A). In childhood, common gene fusions drive distinct 

pathogenetic pathways. Among those, KMT2A (also known as mixed lineage leukemia, 

MLL) rearrangements (KMT2Ar) are common in childhood AML (~15%), especially in 

infants (~50%), and, although partner dependent, are generally associated with unfavorable 

outcome [24,25]. The fusion RBM15- MKL1 arising from the t(1;22)(p13;q13) chromosomal 

rearrangement is a World Health Organization (WHO)-defined subtype of AML that occurs 
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in around 10% of non-Down syndrome AML displaying megakaryoblastic differentiation 

(AMKL) [26,27], and is associated with intermediate clinical course [28]. Cryptic gene 

fusions, including NUP98-fusions (4-9% of pediatric AML) [18,29,30], CBFA2T3-GLIS2 
(2% of all AML pediatric cases but 20–30% of pediatric AMKL cases) [26,27,31], and 

MNX1-ETV6 (~ 1% of all pediatric AML cases but 4-30% of AML in children less than 2 

years old) [32] are almost exclusively found in pediatric AML and predict poor outcome 
[33-36]. Similar to MLL, NUP98, encoding a component of the nuclear pore complex, is 

rearranged to multiple different partner genes in AML. NUP98-KDM5A frequently co-

occurs with RB1 gene deletion and is recurrent in acute erythroid leukemia (AEL, ~20% of 

pediatric cases), while cells with NUP98-NSD1 fusion frequently harbors FLT3 internal 

tandem duplications (ITD) or WT1 mutations [36-38]. Fusions affecting the core binding 

factor (CBFB-MYH11), the retinoid acid receptor (PML-RARA and variant RARA 
rearrangements) or the runt-related transcription factor 1 (RUNX1-RUNX1T1; AML1-ETO) 

disrupt transcription factors important for myeloid differentiation, occur at any age but with 

a peak in children and young adults, and are associated with a relatively favorable prognosis 

in both adults and children [39,40]. Co-occurring genetic alterations are observed and they 

significantly alter outcome, such as in the case of KIT mutations in core-binding factor 

leukemias [41-43]. Additional AML-associated cytogenetic abnormalities, more frequently 

found in adults than pediatric cases, with dismal outcome [44,45] include the DEK proto-

oncogene fused to the nucleoporin gene 214 (NUP214) [46] (< 2%) and inv(3) or t(3;3) 

(1-4%) which is associated with elevated platelet counts, dysplastic megakaryocytes, 

multilineage dysplasia and MECOM overexpression [44,47-49]. With regard to mutations 

(Fig. 2B), alterations in transcription factors such as WT1 and GATA2 or in signaling genes 

(e.g. RAS and KIT) are more prevalent in pediatric cases compared to adult patients. 

Conversely, mutations in epigenetic modifiers, such as DNMT3A, TET2 and IDH1/2, in 

NPM1 and TP53 are more frequent in adult AML [19,38,50-53].

Although the complexity of the AML genetic landscape, the mutation status of only few 

genes is considered by the current WHO classification model [1]. These include mutations in 

NPM1, FLT3, CEBPA and a provisional entity represented by RUNX1 mutations. For the 

remaining subgroups, classification is still based on morphological and immunophenotypic 

criteria with most entities in this group reminding the old French American British (FAB) 

classification subtypes [1]. Both recurrent cytogenetic and molecular alterations are also 

considered for prognostication by two current scoring systems: the European 

LeukemiaNet[54] and the Medical Research Council [55]. Here, mutations in TP53, ASXL1, 

DNMT3A and partial tandem duplication (PTD) of KMT2A are added as predictors of 

adverse outcome. However, except for cases with NPM1 mutations and co-occurring FLT3 
ITDs, which are associated with intermediate prognosis compared to the favorable prognosis 

of NPM1 alone and adverse prognosis of FLT3 ITD alone, these models do not consider: i) 

functional consequences of distinct hotspot mutations; and ii) concurrent mutations that may 

dramatically alter the contribution of specific AML disease alleles to clinical outcomes. For 

example, NPM1 mutations preferentially occur with NRASG12/13 but not NRASQ61 and they 

generally are associated with favorable outcome [22]. In the case of NPM1-IDH2 mutational 

co-occurrence, IDH2R140 is significantly associated with NPM1 mutations, while IDH2R172 

is mutually exclusive with NPM1 and other class-defining lesions. This hotspot is associated 
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with a distinct gene expression, methylation and metabolic profiles [22]. Moreover, patients 

who have concurrent mutations of FLT3ITD, DNMT3A, and NPM1 have a very poor clinical 

outcome, compared to patients with NPM1 and DNMT3A mutations without FLT3ITD. In 

contrast, in pediatric AML, FLT3ITD and NPM1 mutations co-occur in the absence of 

DNMT3A mutations in a group of subjects with superior outcomes. However, when FLT3 

ITD co-occurs with NUP98-NSD1 or WT1 mutations the prognosis is poor [18].

Morphology-based criteria have led to several changes in leukemia classification. This is 

notable for AEL, especially the historic FAB M6a (AML, not otherwise specified, NOS, 

erythroid-subtype) that in the latest revision of the WHO classification [56] was merged to a 

hybrid group of MDS or AML, NOS non-erythroid subtype. We have recently shown that 

AEL is a genetically heterogeneous with six defined age-related genomic subgroups:(1) 

biallelic TP53 mutations, often with concomitant mutations of chromatin regulators, 

transcription factors and tumor suppressors, 32%; (2) NPM1 mutations, 12%; (3) 

KMT2A/MLL mutations or rearrangements, 11%; (4)- NUP98-rearrangements, 4%; (5) 

DDX41 mutations, 3%; and (6) an MDS-like group with mutations in chromatin regulators 

and splicing factors, 37%; and overall with marked differences in mutation frequency 

between AEL and non-AEL AML and MDS [36]. For example, AEL has much lower 

frequency of canonical genes mutated in AML such as FLT3 and NPM1 when compared to 

non-erythroid AML, but they are more common than in MDS. Conversely, MDS-associated 

mutations such as SF3B1 and ASXL1 are less frequent in AEL compared to MDS, but more 

common than in non-erythroid AML. Genomic subgroups but not morphological phenotypes 

were the strongest predictors of outcome, highlighting the importance of genomic features to 

properly diagnose and risk-stratify patients [36].

Constellations of genetic alterations in MDS

Myelodysplastic syndromes encompass a spectrum of myeloid neoplasms characterized by 

ineffective hematopoiesis, cytopenia, abnormal cell morphology and a high propensity of 

progression to AML in 30% of cases (sAML) [57,58]. MDS is uncommon in children but it 

increases markedly with age, with a median age of onset of 71-76 years old [59]. It can be de 
novo or related to prior use of cytotoxic chemotherapy and/or radiation (therapy-related 

MDS, t-MDS)[1,2]. The latter is commonly associated with monosomies in chromosome 5 or 

7, complex cytogenetics and poor outcome [2,60]. Although large DNA-sequencing studies 

have led to the identification of multiple recurrent mutations [60-65], genetic lesions are not 

used to define MDS subtypes in the WHO classification of myeloid neoplasms [1] nor in the 

current traditional scoring systems, including the international prognostic scoring system 

(IPSS) and the revised IPSS (IPSS-R) [66,67]. The only exceptions are isolated del(5q), 

which is associated with refractory anemia and normal to increased platelet counts with 

micromegakaryocytes [68], and SF3B1 mutations which have been included as a diagnostic 

criterion in MDS with ring sideroblasts (MDS-RS) [1,69-71]. Mutations in SF3B1 occur in 

25% of all MDS cases but affect >80% of MDS-RS and are independent predictors of 

favorable outcomes [71,72]. Mutational targets in MDS overlap those in AML although with a 

different frequency and prognostic role and include those involved in RNA splicing, 

epigenetic modification, cohesin complex, transcription, DNA damage response, and signal 

transduction (Fig. 2C). RNA splicing is the most commonly mutated pathway in MDS, and 
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six genes (SF3B1, TET2, SRSF2, ASXL1, DNMT3A, and RUNX1) are mutated in at least 

10% of patients, while the others have a less occurrence and heterogenous patterns. In 

contrast to adult MDS, Ras/MAPK pathway mutations are common in pediatric MDS 

(45%), while mutations in RNA splicing genes are rare (2%) [73]. Mutation-interactions are 

not random, but several specific patterns have been described. For example, splicing 

mutations are almost mutually exclusive of each other, and, similarly, mutations in genes of 

cohesin complex, due to synthetic lethality mechanisms. By contrast, splicing mutations are 

significantly associated with mutations in epigenetic modifiers or transcription factors. For 

example, SRSF2 mutations are significantly associated with mutations in RUNX1, ASXL1, 

IDH2, CUX1, TET2, RUNX1 and STAG2. Although gene sequencing results are not 

included in the current prognostication guidelines, several mutation-prognosis associations 

have been described. Among those, the most concordant across different studies, include 

association between mutations in TP53, EZH2, ETV6, RUNX1, ASXL1, and SRSF2 and 

poor overall survival [61-63,65,74,75]. Notably, somatic mutations can predict overall survival 

independent of IPSS-R. However, genetic prognostic system may be improved by 

considering intra-patient co-mutational occurrence, type and number of mutation and variant 

allele frequency. For example, a recent study in over 3,000 MDS cases showed that MDS 

patients with monoallelic TP53 mutations did do not differ from TP53 wild-type patients in 

term of outcome and response to therapy, demonstrating the importance of allelic state in 

outcome [76**]. Two-thirds of TP53-mutated patients had biallelic targeting including more 

than one gene mutation, mutation and deletion, mutation and copy neutral loss of 

heterozygosity. These patients had association with genome instability, treatment resistance, 

disease progression and dismal outcomes, independently of IPSS-R [76**].

NOVEL GENETIC AND COMPUTATIONAL APPROACHES

Clonal architecture at the single cell resolution

Single-cell sequencing studies can dissect clonal architecture and identify rare populations 

important for pathogenesis and response to therapy (Fig. 3). Dr. Peter van Galen and 

colleagues [77] combined single-cell RNA sequencing (Fig. 3A) and genotyping in AML and 

normal bone marrow cells and identified six malignant cell phenotypes whose abundancy 

varied between patients and between subclones in the same tumor, as well as across 179 bulk 

AML profiles from the Cancer Genome Atlas (TCGA) [19] queried with cell-type- specific 

gene signatures. This analysis yielded seven AML groups with distinct cell-type 

compositions and associated to characteristic genetic lesions. For example, cells with FLT3 
tyrosine kinase domain (TKD) mutations were enriched in AML with differentiation, 

whereas those with FLT3ITD have higher abundances in primitive stem cells. Interestingly, 

NPM1 subgroups showed different phenotype according to co-occurrent lesions: a strong 

stem/progenitor phenotype when co-occurring with FLT3ITD and a more differentiated 

monocyte- to dendritic cell–like signatures in FLT3ITD-negative cases.

Single-cell mutation data have the power to unambiguously reveal co- occurrence and 

mutual exclusivity of driver mutations at the cellular level (Fig. 3B). For example, Dr. 

Morita and colleagues [78**] described that when multiple signaling pathway genes (e.g. 

KRAS, NRAS, FLT3) are present in the same patient, at the cellular level they often occur in 
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mutually exclusive clones. A similar mutually exclusive relationship was observed among 

other functionally redundant mutations such as IDH1 and IDH2 or in the case of TET2 and 

IDH1. This may have important therapeutic implications since inhibition of one mutation 

may favor the expansion of the other clone. A notable group of mutations that display 

statistically significant mutual exclusivity in MDS and AML is that with mutations in 

splicing factors, although in very rare cases (< 1%) 2 concomitant splicing factor mutations 

may be present [79**]. By single-cell DNA-sequencing of patient cells with > 1 splicing 

mutation, Taylor et al [79**] showed that escape from this epistasis occurs when there is i) 

selection for less common alleles, such as SF3B1non-K700E mutations, that have reduced 

effects on RNA splicing and/or binding compared with the most common alleles; ii) 

mutations that occur in cis with preservation of the wild-type allele [79**].

Progress in single-cell technologies allows to simultaneously explore genotype-phenotype 

correlations by analysis of single-cell DNA and cell surface proteins [78**,80**]. For 

example, cells with NPM1 or IDH mutations have been described to express lower levels of 

CD34 and HLA-DR, while cells with a single TP53 mutations have higher levels of CD34 

and CD117, but double TP53 mutations have a monocytic immunophenotype [78**,80**].

Moreover, single-cell DNA sequencing studies can dissect the evolution of clonal 

architecture in response to different therapies (Fig. 3C) [78**,81-83*]. For example, a selection 

of a small subclone with FLT3 TKD (D835Y) was observed during azacitidine and sorafenib 

(a FLT3 inhibitor) treatment, which was associated with relapse. Similarly, selection of 

subclones with NRAS mutation along with the acquisition of PTPN11, FLT3ITD, and IDH1 
mutations were observed during treatment with azacytidine and enasidenib (an IDH2 

inhibitor) [78**]. Polyclonal emergence of multiple independent kinase activating clones, 

including FLT3ITD, FLT3TKD, and Ras mutations have been described by single cell analysis 

also in samples who acquired resistance to venetoclax [83*]. Overall, these findings show that 

single-cell sequencing studies by dissecting clonal diversity and revealing evolution patterns 

have important clinical relevance and it is likely that their use will increase in the clinical 

management of AML.

Machine learning approach in the diagnosis of AML and MDS

The enormous advances in technology and genomics have generated a very large and 

heterogeneous volume of data from large cohorts of patients. At the same time, advances in 

hardware and computing have led to an increasing use of machine learning approaches in 

medicine. “Machine learning” (ML) is an application of artificial intelligence (AI) that 

defines a data analysis method that automatically learns from data and experience and make 

decisions without being explicitly programmed [84]. Since both AML and MDS are 

characterized by high genetic and phenotypic heterogeneity, they represent the good 

candidates for ML. Warnat-Herresthal et al [85*] used a transcriptomic-based ML approach 

to predict in an unbiased, entirely data-driven manner, genome-wide predictors of AML in 

12,029 transcriptome samples from 105 different studies, including AML, MDS, acute 

lymphoblastic leukemia and healthy individuals. The results provided evidence that without 

ancillary data or expert input, the combination of large transcriptomic data with ML allows 

for the development of robust AML classifiers with>99% accuracy. AI-based image analysis 

Iacobucci and Mullighan Page 6

Curr Opin Hematol. Author manuscript; available in PMC 2022 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



has been successfully used in several studies to classify cells on bone marrow aspirates and 

predicts diagnosis with sensitivity and specificity > 95% [86,87]. MDS diagnosis strongly 

relies on morphological interpretation. ML approaches may overcome the limitation due to 

variable pathologic evaluations. Recently, Nagata et al [88] have used ML to identify patterns 

of co-occurrence among morphologic features and genomic events in 1079 MDS cases. 

Novel genotype/ morphology/prognosis associations include STAG2mut and SRSF2mut with 

myeloid dysplasia and ASXL1mut with megakaryocytic dysplasia. By unsupervised 

consensus clustering, 5 distinct MDS morphological profiles with unique clinical 

characteristics were identified, separating patients with different prognoses. Moreover, 

additional genetic signatures were further classified and associated with specific 

morphological profiles by Bayesian graphical models and validated in an independent cohort 
[88]. Overall, these findings demonstrate the power of large data sets and computing in 

identifying phenotype/genotype associations and assisting in primary diagnosis.

CONCLUSION

The catalogue of mutations affecting pathophysiological and clinical features of myeloid 

malignancies has exponentially grown in the past decade and showed that pathogenesis is 

much more complex than that suggested by morphology examination alone. Integrated 

conventional and molecular approaches are required to comprehensively identify all 

combinations of mutations, guiding in classification, risk assessment and therapy.
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KEY POINTS

• Myeloid leukemia subtypes of prognostic significance are defined by 

combinatorial mutations, most of which are age dependent.

• Single-cell sequencing studies have dissected clonal heterogeneity in AML 

and MDS and showed distinct correlations between cell-type compositions 

and genetic lesions, patterns of mutational co-occurrence and exclusivity and 

clones associated with therapy resistance.

• Machine learning has been successfully used to identify phenotype/genotype 

associations and predict diagnosis of AML and MDS.

• Future classification of myeloid malignancies will likely integrate 

conventional morphological-based, molecular and computational approaches.
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Figure 1. Simplified model of clonal expansion of hematopoietic stem and progenitor cells 
leading to MDS and AML.
An initiating driver mutation in a hematopoietic stem cell promotes the expansion of mutant 

stem cells and abnormal hematopoietic progenitor and precursor cells. These cells expand 

and become dominant. The occurrence of secondary mutations promotes a malignant cell 

transformation. According to cell morphology features, occurrence of dysplasia and 

percentage of bone marrow and peripheral blood blasts a diagnosis of AML or MDS is 

made. In MDS the acquisition of additional driver mutations or the emergence of preexisting 

ones leads to progression to AML in around 30% of cases.
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Figure 2. Recurrent genetic alterations in AML and MDS.
A) Main cytogenetic abnormalities according to age in pediatric (left panel) and adult (right 

panel) AML. B) Prevalence of somatic mutations (single nucleotide variations, indels and 

duplications) in adult versus pediatric AML. Data are from landmark previously published 

studies [18,19,23,38]. C) Prevalence of somatic mutations (single nucleotide variations, indels 

and duplications) in adult versus pediatric MDS. Data are from landmark previously 

published studies [60,62,63]. Genes are grouped according to their biological annotation.
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Figure 3. Schematic genomic analysis at the single-cell resolution.
A) Single-cell transcriptome sequencing can detect rare populations with distinct expression 

patterns and important for leukemogenesis. B) Single cell-DNA sequencing can dissect 

clonal intra patient genetic heterogeneity and identify co-occurrent or mutually exclusive 

aberrations. C) Representative fish plot graph showing emergence of mutations responsible 

for relapse. A schematic example is provided with data from [78**]. Each color represents 

an individual genetic clone. Abbreviations: sc GEX, single-cell gene expression; mut, 

mutation.
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